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Abstract: A new univariate three-parameter distribution, the transmuted exponentiated Maxwell distribution, is proposed and studied.
This new univariate distribution can be seen as generalization of the Maxwell distribution and its respective exponentiated and
transmuted versions. The new generalization is generate using the families of exponentiated and transmuted distributions. Some
probabilistic properties are studied, maximum likelihoodestimation discussed, derive the functions to be used in reliability studies
and present an application with a real data. We hope that the new distribution proposed will serve as an alternative modelto the
Maxwell and the respective exponentiated and transmuted versions.

Keywords: Exponentiated distributions, Maxwell distribution, Transmuted distributions, Transmuted exponentiated Maxwell
distribution.

1 Introduction

A random variableX follows a Maxwell distribution,
denotedX ∼ M(α), if its cumulative distribution function
(cdf) and probability density function (pdf) are given by

FX(x;α) =
4√
π

∫ x

0
α

3
2 u2e−αu2

du= H

(
αx2;

3
2
,1

)
(1)

and

fX(x;α) =
4√
π

α
3
2 x2e−αx2

, (2)

respectively, wherex > 0, θ > 0 is a scale parameter and
H(x;α,β ) =

∫ x
0

β α

Γ (α)u
α−1e−β udu is the cdf of a gamma

random variable. Tyagi and Bhattacharya [21] obtained
the minimum variance unbiased estimator, Bayes
estimator and the reliability function of this distribution.
Chaturvedi and Rani [7] generalized the Maxwell
distribution and they obtained classical and Bayesian
estimators for generalized distribution. Bekker and Roux
[6] studied empirical Bayes estimation for the Maxwell
distribution. Shakil et al. [18] studied the distributions of
|XY| and |X/Y| when X andY are independent random
variables having the Maxwell and Rayleigh distributions.

Kazmi et al. [11] obtained the Bayesian estimation for
two components mixture of the Maxwell distribution
assuming type I censored data.

Definition 1. A random variable X is said to have an
exponentiated distribution if its cumulative distribution
function (cdf) and probability density function (pdf) are
given by

GX(x;θ ) = F(x)θ and gX(x;θ ) = θ f (x)F(x)θ−1, (3)

respectively, whereθ > 0 is a shape parameter, F(x) and
f (x) = d

dxF(x) are the cdf and pdf of the so called base
distribution, respectively.

If θ = 1 we have the distribution of the base random
variable. Several distribution with positive support have
been introduced using the exponentiated distributions
family. For example, exponentiated exponential [8],
exponentiated Weibull [15], Burr Type X [20], among
others.

Definition 2. (Shaw and Buckley, [19]). A random
variable X is said to have transmuted distribution if its
cumulative distribution function (cdf) and probability
density function (pdf) are given by

GX(x;λ ) = (1+λ )F(x)−λF2(x) (4)
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and
gX(x;λ ) = f (x)(1+λ −2λF(x)) , (5)

respectively, where|λ | ≤ 1 is a shape parameter and
F(x) and f(x) = d

dxF(x) are the cdf and pdf of the base
distribution, respectively.

For λ = 0, we have the distribution of the base random
variable. Several distribution of positive support has been
introduced using the transmuted distributions family, for
example; transmuted Gumbel [3], transmuted Weibull [4],
transmuted Rayleigh [13], transmuted generalized
Rayleigh [14], among other distributions.
Iriarte and Astorga [9] used the family of transmuted
distributions to introduce the transmuted Maxwell
distribution. A random variableX follows a transmuted
Maxwell distribution, denotedX ∼ TM(α,λ ), if its pdf is
given by

fX(x;α,λ ) =
√

2
π

θ
3
2 x2e−

θx2
2

[
1+λ −2λG(

θx2

2
;
3
2
,1)

]
,

wherex> 0, α > 0, |λ | ≤ 1 andG is the cdf of a gamma
random variable. Ifλ = 0 the Maxwell distribution is
obtained.
In this paper, we introduce a new three parameters
distribution that can be seen as a generalization of the
Maxwell distribution. We use the families of the
exponentiated distributions and transmuted distributions,
considering as the baseline function a Maxwell
cumulative distribution function, to generate the new
model. In this way, two shape parameters are added to the
Maxwell distribution.
The paper is organized as follows. In Section 2 we derive
its density, moments and asymmetry and kurtosis
coefficients of the new distribution. In Section 3 we
discuss maximum likelihood estimation and calculate the
elements of the observed information matrix. In Section 4
the reliability function is derived. In Section 5 we obtain
the density function of order statistics. Section 6 presents
application to real data sets. The application illustratesthe
good performance of the model proposed in real
applications. Final conclusions are reported in Section 7.

2 The transmuted exponentiated Maxwell
distribution

Proposition 1. A random variable X follows a
transmuted exponentiated Maxwell (TEM) distribution if
its cumulative distribution function (cdf) is given by

GX(x;α,θ ,λ )= (1+λ )F θ (αx2;
3
2
,1)−λF 2θ (αx2;

3
2
,1),

and the respective probability density function (pdf) is

gX(x;α,θ ,λ ) =
4√
π

θα
3
2 x2e−αx2

F θ−1(αx2;
3
2
,1)

(
1+λ −2λF θ (αx2;

3
2
,1)

)
,

where x> 0, α > 0 is a scale parameter,θ > 0 is a shape
parameter, |λ | ≤ 1 is a parameter that makes the
asymmetry more flexible and

F(x;α,β ) =
∫ x

0

β α

Γ (α)
uα−1e−β udu

is the cumulative distribution function of the gamma
distribution. We denote this as X∼ TEM(α,θ ,λ ).

Proof.Replacing the expressions shown in (3) into (4) and
(5), we obtained

GX(x;θ ,λ ) = (1+λ )F(x)θ −λF(x)2θ

and

gX(x;θ ,λ ) = θ f (x)F(x)θ−1
[
1+λ −2λF(x)θ

]
,

and replacing (1) and (2) into this expressions, the result is
obtained.�

Next, we present two transformations related to the TEM
distributions.

Proposition 2.Let X∼ TEM(α,θ ,λ ). Then,

(a) W = aX∼ TEM(α/a2,θ ,λ ) for all a > 0;

(b) The pdf of W= log(T) is given by

fW(w;α,θ ,λ ) =
4√
π

θα3/2e2w−αew
Fθ−1(αe2w;

3
2
,1)

[
1+λ −2λFθ (αe2w;

3
2
,1)

]
, w∈ R

Proof. Parts(a) and (b) are directly obtained from the
change-of-variables method.�

Remark.Part(a) of Proposition2 indicates that the TEM
distributions belong to the scale family, Part(b) can be
used to study regression models in same lines as in the
context of regression models for positive random
variables; see McDonald and Butler [12]. In addition, Part
(a) allows us to obtain a two parameter TEM distribution.
That is, if X ∼ TEM(α,θ ,λ ), then√

αX ∼ TEM(1,θ ,λ ). It is known that the Maxwell
distribution arises as the model of the magnitude of the
velocity of a randomly chosen molecule of a gas in a
closed container under the assumption that the gas is not
flowing and that the pressure in the gas is the same in all
directions, see Johnson et al. [10]. Then the TEM
distribution has the same motivation with the
characteristic of being more flexible.

Figure 1 depicts some of the shapes that the density
function of the transmuted exponentiated Maxwell
distribution can take for different values of the parameters
α, θ andλ .
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Fig. 1: Plot of the transmuted exponentiated Maxwell density,
TEM(α,θ ,λ ).

2.1 Properties

In this subsection some basic properties of the transmuted
exponentiated Maxwell distribution are considered.
Let X ∼ TEM(α,θ ,λ ), then

1. Forλ = 0 we obtain

gX(x;α,θ ) =
4√
π

θα
3
2 x2e−αx2

(
F

(
αx2;

3
2
,1

))θ−1

,

namely, the density function of the exponentiated Maxwell
distribution.

2. Forα = β
2 andθ = 1 we obtain

gX(x;β ,λ ) =
√

2
π

β
3
2 x2e−

β
2 x2
[
1+λ −2λG(

βx2

2
;
3
2
,1)

]
,

namely, the density function of the transmuted Maxwell
distribution. (Iriarte and Astorga,[9]).

3. Forλ = 0 andθ = 1 we obtain

gX(x;α) =
4√
π

α
3
2 x2e−αx2

,

that is, the density function of the Maxwell distribution.

2.2 Moments

Proposition 3. Let X ∼ TEM(α,θ ,λ ). Then, for
r = 1,2, ... it follows that the r-th moment is given by

µr = α−r/2ar ,

where ar is defined as

ar =

∫ 1

0
(1+λ −2λw)

(
F−1

(
w1/θ ;

3
2
,1

)) r
2

dw,

where F−1 is the quantile function of the gamma
distribution.

Proof. Using the definition of moments, ther-th moment
is given by

µr =
4√
π θα

3
2

∫ ∞
0 xr+2e−αx2

Fθ−1(αx2; 3
2,1)

(
1+λ −2λFθ (αx2; 3

2,1)
)

dx,

and considering the changing of variable
w= Fθ (αx2; 3

2,1), the result follows.�

Corollary 1. If X ∼ TEM(α,θ ,λ ), then

E(X) =
a1√

α
and Var(X) =

a2−a2
1

α
.

Corollary 2. If X ∼ TEM(α,θ ,λ ), then the coefficients of
asymmetry (

√
β1) and kurtosis (β2) are, respectively,

√
β1 =

a3−3a1a2+2a3
1(

a2−a2
1

)3/2

and

β2 =
a4−4a1a3+6a2

1a2−3a4
1(

a2−a2
1

)2 .

Remark.As λ = 0 the asymmetry and kurtosis coefficients
take the values

√
β1EM =

b3−3b1b2+2b3
1(

b2−b2
1

)3/2

and

β2EM =
b4−4b1b3+6b2

1b2−3b4
1(

b2−b2
1

)2 ,

respectively, which correspond to those for the
exponentiated Maxwell distribution, where

br =
∫ 1

0

(
F−1

(
w1/θ ; 3

2,1
)) r

2 dw, r = 1,2,3,4 andF−1 is
the quantile function of the gamma distribution. Asθ = 1
and λ = 0 the asymmetry and kurtosis coefficients take
the values 0.485692804 and 3.108164, respectively,
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which correspond to those for the classical Maxwell
distribution. Figures2 depict plots for the asymmetry and
kurtosis coefficients of the TEM distribution for different
values of its parametersθ andλ . In the 2D graphics it can
be seen that the asymmetry and kurtosis coefficients of
the TEM distribution can take the values of skewness and
kurtosis of the EM and M distributions. The graphs were
developed using the MATLAB software, see A1 and A2
in Appendix .

3 Inference

In this section we discuss maximum likelihood estimation
for parameters α, θ and λ for the transmuted
exponentiated Maxwell distribution.

3.1 Maximum Likelihood estimation

For a random sampleX1, ...,Xn from the distribution
TEM(α,θ ,λ ), the log likelihood function can be written
as

l(α,θ ,λ ) = nlog
(

4√
π

)
+ 3n

2 log(α) + nlog(θ )

+2
n

∑
i=1

log(xi) + (θ − 1)
n

∑
i=1

logF (xi) − α
n

∑
i=1

x2
i +

n

∑
i=1

logH(xi),

where F(xi) = F
(
αx2; 3

2,1
)

is the cdf of the gamma
distribution and H(xi) = 1 + λ − 2λFθ (xi). The
maximum likelihood equations are given by

3n
2α

−
n

∑
i=1

x2
i +(θ −1)

n

∑
i=1

F1(xi)

F(xi)
+

n

∑
i=1

H1(xi)

H(xi)
= 0, (6)

n
θ
+

n

∑
i=1

logF(xi)+
n

∑
i=1

H2(xi)

H(xi)
= 0, (7)

n

∑
i=1

H3(xi)

H(xi)
= 0, (8)

where F1(xi) =
∂F(xi)

∂α
=

2√
π

α1/2x3
i e−αx2

i ;

H1(xi) =
∂H(xi)

∂α
= − 4√

π
λ θα1/2x3

i e−αx2
i Fθ−1(xi) ;

H2(xi) =
∂H(xi)

∂θ
= −2λFθ (xi) logF(xi) and

H3(xi) =
∂H(xi)

∂λ
= 1−2Fθ (xi) .

Therefore, numerical algorithms are required for solving
the score equations. One possibility is to employ the
subroutine optim with the R Core Team [16].
It is well known that as the sample size increases, the
distribution of the MLE tends (under regularity
conditions) to the normal distribution with mean vector
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Fig. 2: 2D and 3D graphs of the asymmetry and kurtosis
coefficients of the TEM distribution. Skewness and kurtosisof
EM (solid line), TEM (dashed and doited lines), M (circle)
distributions.

(α,θ ,λ ) and covariance matrix equals to the inverse of
the Fisher (expected) information matrix. Due to the
complexity of the likelihood function it is not possible to
obtain analytical expressions for those quantities. It is
possible, however, to work with the observed information
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matrix, which is a consistent estimator for the expected
information matrix. The observed information matrix
follows from the Hessian matrix by replacing unknown
parameters by their MLEs. Some algebraic manipulations
yield the following Hessian matrix:

In(β ) =




∂ 2 logL(β )
∂α2

∂ 2 logL(β )
∂θ∂α

∂ 2 logL(β )
∂λ ∂α

∂ 2 logL(β )
∂θ 2

∂ 2 logL(β )
∂λ ∂θ

∂ 2 logL(β )
∂λ 2




such that

∂ 2 logL(β )
∂α2 = − 3n

2α2 +(θ −1)
n

∑
i=1

[
F11(xi)

F(xi)
−
(

F1(xi)

F(xi)

)2
]

+
n

∑
i=1

[
H11(xi)

H(xi)
−
(

H11(xi)

H(xi)

)2
]
,

∂ 2 logL(β )
∂θ∂α

=
n

∑
i=1

[
F1(xi)

F(xi)
+

H12(xi)

H(xi)
− H1(xi)H2(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂λ∂α

=
n

∑
i=1

[
H13(xi)

H(xi)
− H1(xi)H3(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂α∂θ

=
n

∑
i=1

[
F1(xi)

F(xi)
+

H21(xi)

H(xi)
− H1(xi)H2(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂θ 2 = − n

θ 2 +
n

∑
i=1

[
H22(xi)

H(xi)
−
(

H2(xi)

H(xi)

)2
]
,

∂ 2 logL(β )
∂λ∂θ

=
n

∑
i=1

[
H23(xi)

H(xi)
− H2(xi)H3(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂α∂λ

=
n

∑
i=1

[
H31(xi)

H(xi)
− H1(xi)H3(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂θ∂λ

=
n

∑
i=1

[
H32(xi)

H(xi)
− H2(xi)H3(xi)

H2(xi)

]
,

∂ 2 logL(β )
∂λ 2 = −

n

∑
i=1

(
H3(xi)

H(xi)

)2

,

where

F11(xi) :=
∂F1(xi)

∂α
=

α−1/2
√

π

(
1−2αx2

i

)
x3

i e−αx2
i ,

H11(xi) :=
∂H1(xi)

∂α
= − 2λθ√

πα
x3

i e−αx2
i Fθ−2(xi)

((
1−2αx2

i

)
F(xi)+2αF1(xi)

)
,

H12(xi) :=
∂H1(xi)

∂θ
= − 4√

π
λα

1
2 x3

i Fθ−1(xi)(1+θ logF(xi)) ,

H13(xi) :=
∂H1(xi)

∂λ
= − 4√

π
θα1/2x3

i e−αx2
i Fθ−1(xi) ,

H21(xi) :=
∂H2(xi)

∂α
= −2λ

F1(xi)

F(xi)

(
θF2(xi)+1

)
,

H22(xi) :=
∂H2(xi)

∂θ
= −2λFθ (xi) log2 F(xi) ,

H23(xi) :=
∂H2(xi)

∂λ
= −2Fθ (xi) logF(xi) ,

H31(xi) :=
∂H3(xi)

∂α
= −2θFθ−1(xi)F3(xi) ,

H32(xi) :=
∂H3(xi)

∂α
= −2Fθ (xi) logF(xi) .

3.2 Simulation study

In this section, a small scale simulation is performed to
illustrate the behavior of the MLEs for parametersα, θ
andλ . We generate 1000 random samples of sizesn= 30,
n = 50 andn = 100 from the distributionTEM(α,θ ,λ )
for fixed values of the parameters. Random numbersX ∼
TEM(α,θ ,λ ) can be generated as

X =


 1

α
F−1



(

1+λ −
√
(1+λ )2−4λU
2λ

) 1
θ

;
3
2
,1






1
2

whereU ∼ u(0,1), α > 0, θ > 0, |λ | ≤ 1 y F−1 quantile
function of the classical gamma distribution. The
estimates can be obtained using the optimization method
based on Nelder-Mead, quasi-Newton and
conjugate-gradient algorithms and implemented in the
statistical package R Core Team [16]. Measures and
empirical standard deviations are presented in Table1.
Notice that the parameters are well estimated and the
estimates are asymptotically unbiased.

4 Reliability Analysis

The reliability functionR(t), which is the probability of
an item not failing prior to some timet, is defined by
R(t) = 1−F(t). The reliability function of a transmuted
exponentiated Maxwell distribution is given by

R(t) = 1−Fθ (αx2;
3
2
,1)

(
1+λ −λFθ (αx2;

3
2
,1)

)
.

Figure3 illustrates the reliability function of a transmuted
exponentiated Maxwell distribution for different
combinations of parameters.
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Table 1: Maximum likelihood estimators for parametersα, θ
andλ for the TEM distribution.

n= 30

α θ λ α̂ (SD) θ̂ (SD) λ̂ (SD)
1 0.5 1.0 1.299 (0.454) 0.556 (0.112) 0.898 (0.185)

0.5 1.245 (0.412) 0.512 (0.135) 0.245 (0.468)
-1.0 1.095 (0.240) 0.639 (0.242) -0.888 (0.214)

2 1.0 1.0 2.377 (0.714) 1.128 (0.331) 0.884 (0.239)
0.5 2.254 (0.570) 1.046 (0.294) 0.337 (0.469)
-1.0 2.151 (0.419) 1.343 (0.580) -0.875 (0.240)

3 2.0 1.0 3.566 (0.933) 2.447 (0.939) 0.845 (0.300)
0.5 3.218 (0.664) 2.152 (0.712) 0.380 (0.476)
-1.0 3.215 (0.549) 2.848 (1.514) -0.860 (0.259)

n= 50

α θ λ α̂ (SD) θ̂ (SD) λ̂ (SD)
1 0.5 1.0 1.216 (0.351) 0.532 (0.086) 0.907 (0.175)

0.5 1.199 (0.357) 0.494 (0.101) 0.259 (0.452)
-1.0 1.060 (0.182) 0.613 (0.190) -0.880 (0.223)

2 1.0 1.0 2.364 (0.583) 1.100 (0.211) 0.868 (0.227)
0.5 2.231 (0.510) 1.002 (0.214) 0.304 (0.456)
-1.0 2.111 (0.286) 1.245 (0.390) -0.886 (0.196)

3 2.0 1.0 3.461 (0.750) 2.297 (0.568) 0.844 (0.273)
0.5 3.181 (0.583) 2.038 (0.492) 0.365 (0.467)
-1.0 3.159 (0.411) 2.551 (0.899) -0.882 (0.233)

n= 100

α θ λ α̂ (SD) θ̂ (SD) λ̂ (SD)
1 0.5 1.0 1.167 (0.303) 0.520 (0.057) 0.912 (0.168)

0.5 1.109 (0.273) 0.484 (0.077) 0.318 (0.417)
-1.0 1.037 (0.125) 0.576 (0.137) -0.904 (0.178)

2 1.0 1.0 2.259 (0.473) 1.060 (0.150) 0.899 (0.200)
0.5 2.162 (0.431) 0.985 (0.161) 0.333 (0.431)
-1.0 2.082 (0.216) 1.193 (0.320) -0.901 (0.181)

3 2.0 1.0 3.328 (0.618) 2.182 (0.406) 0.888 (0.236)
0.5 3.104 (0.522) 1.978 (0.327) 0.399 (0.426)
-1.0 3.084 (0.280) 2.383 (0.671) -0.899 (0.186)

Another characteristic of interest of a random variable is
its hazard rate function defined by

h(t) =
f (t)

1−F(t)
,

which is an important quantity characterizing the
life-time of a certain phenomenon. It can be loosely
interpreted as the conditional probability of failure at time
t, given it has survived to timet. The hazard rate function
for a transmuted exponentiated Maxwell random variable
is given by

h(t) = 4√
π θα

3
2 x2e−αx2

Fθ−1
(
αx2; 3

2,1
)

1+λ−2λ Fθ (αx2; 3
2 ,1)

1−Fθ(αx2; 3
2 ,1)(1+λ−λ Fθ(αx2; 3

2 ,1))
.

Figure 4 illustrates the hazard function of a transmuted
exponentiated Maxwell distribution for different
combinations of parameters.

5 Order Statistics

In statistics, thejth order statistical of a sample is equal to
its jth-smallest value. Together with rank statistics, order
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Fig. 3: The reliability function of a TEM distribution.

statistics are among the most fundamental tools in non-
parametric statistics and inference. For a sample of sizen,
thenth order statistics (or, the largest order statistic) is its
maximum, that is,

X(n) = max{X1,X2, ...,Xn}.

Similarly,X(1) =min{X1,X2, ...,Xn} is the minimum of the
sample.
The sample range is the difference between the maximum
and the minimum in the sample. It is clearly a function of
the order statistics:

Range{X1,X2, ...,Xn}= X(n)−X(1).

It is well known that if X(1) ≤ X(2) ≤ ... ≤ X(n) denotes
the order statistics of a random sampleX1,X2, ...,Xn from
a continuous population with cdfFX(x) and pdf fX then,
the pdf ofX( j) is given by

fX( j)
(x)=

n!
( j −1)!(n− j)!

fX(x) [FX(x)]
j−1 [1−FX(x)]

n− j ,

for j = 1,2, ...,n. The pdf of the jth order statistics for
transmuted exponentiated Maxwell distribution is given
by
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Fig. 4: The hazard function of a TEM distribution.

fX( j)
(x) =

4θα
3
2 x2e−αx2

n!Fθ j−1(αx2; 3
2 ,1)√

π( j−1)!(n− j)!

[
1+λ −2λFθ (αx2; 3

2,1)
]
·
[
1+λ −λFθ (αx2; 3

2,1)
] j−1

[
1−Fθ (αx2; 3

2,1)
[
1+λ −λFθ (αx2; 3

2,1)
]]n− j

.

Therefore, the pdf the largest order statisticsX(n) is given
by
fX(n)

(x) = 4n√
π θα 3

2 x2e−αx2
Fθn−1(αx2; 3

2,1)

[
1+λ −2λFθ (αx2; 3

2,1)
][

1+λ −λFθ (αx2; 3
2,1
)]n−1

.

and the pdf of the smallest order statisticsX(1) is given by

fX(1)
(x) = 4n√

π θα3/2x2e−αx2
Fθ−1(αx2; 3

2,1)
[
1+λ −2λFθ (αx2; 3

2,1)
]

[
1−Fθ (αx2; 3

2,1)
[
1+λ −λFθ (αx2; 3

2,1)
]]n−1

.

6 Illustrative data set

The fracture behavior of a single edge V-notched
Aluminum plate repaired with Kevlar-49/epoxy or
e-glass/epoxy pre- preg patches on both sides.

We consider a data set related to a single edge V-notched
Aluminun plate repaired with Kevlar 49/epoxy that are
subject to constant pressure at the 90% stress level until
all had failed, so that complete data with is available with
exact times of failure. For previous studies with the data
sets see Andrews and Herzberg [2] and Barlow et al. [5].
We calculated the maximum likelihood estimates for the
M distribution, which areα̂ = 0,6547649. As starting
values for the MLEs we tookθ = 1 andλ̂ = 0.
The large sample variance-covariance matrix (the inverse
of the observed information matrix) of the parameters for
the transmuted exponentiated Maxwell was computed
given the estimateŝα = 0.108,θ̂ = 0.252 andλ̂ = 0.883.

I(Θ̂)−1 =


8,984·10−4 3,653·10−4 −1,864·10−3

3,653·10−4 5,845·10−4 −5,037·10−6

−1,864·10−3 −5,037·10−6 1,357·10−2




Thus, the large sample estimates for the asymptotic
variances of the MLE of θ , α and λ are
Var(α̂) = 8,984 · 10−4; Var(θ̂) = 5,845 · 10−4 and
Var(λ̂) = 1,357·10−2.
The usual Akaike information criterion (AIC) introduced
by Akaike [1] and Bayesian information criterion (BIC)
proposed by Schwarz [17] to measure of the goodness of
fit were also computed. It is known that
AIC = 2k−2loglik andBIC = k logn−2loglik where k
is the number of parameters in the model, n is the sample
size and loglik is the maximized value of the likelihood
function. For the TEM model,
AIC = 2(2) − 2(−108,5968) = 221,1936 and
BIC = 2log(101) − 2(−108,5968) = 226,4238.
Similarly, for the TEM model,
AIC = 2(3) − 2(−103,4609) and
BIC = 3log(101)− 2(−103,4609) = 220,7672. In both
cases, the TEM model has the lowest values of AIC and
BIC. Thus, the results show that the TEM model fits
better the data set. Figure5 displays the fitted models
using the MLEs. Table2 shows MLEs to each one of the
fitted distributions and the corresponding AIC and BIC
values.

Table 2: Estimated parameters of the M, TM, EM and TEM
distributions for the life of fatigue fracture data set.

Model Parameter estimates (SD) AIC BIC
TEM α̂ = 0,108 (0,029) 212,921 220,767

θ̂ = 0,252 (0,024)
λ̂ = 0,883 (0,116)

EM α̂ = 0,194 (0,037) 221,193 226,423
θ̂ = 0,204 (0,022)

TM α̂ = 1,050 (0,094) 496,039 501,269
λ̂ = 0,793 (0,087)

M α̂ = 0,654 (0,053) 530,957 533,572
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Fig. 5: Models fitted by the maximum likelihood method for the
data under study.

7 Concluding Remarks

In this paper, we introduce an generalization of the
Maxwell distribution. Exponentiated and transmuted
versions of the Maxwell distribution can be considered as
special cases of the generalization. The new model is
originated using the exponentiated and transmuted
distributions families. We derive analytical expressions
for the distributional moments and use these results to
calculate the expected value, variance and asymmetry and
kurtosis coefficients. We calculate the likelihood
equations and the elements of the observed information
matrix. An instance of simulation is performed to
illustrate the behaviour of the parameters in the maximum
likelihood estimates, for the new model, finding that the
estimates are consistent with our development. We obtain
the reliability and hazard functions and density functions
to the order statistics. Consequently, we conclude that the
new model can be used as an alternative model to the M,
EM and TM distributions.
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Appendix

A1. Codes for 3D graphs

lambda=[-1:0.1:1]
theta=[0.1:0.1:5]
n1=length(lambda)
n2=length(theta)
raizbeta1=zeros(n1,n2)
beta2=zeros(n1,n2)
a=zeros(4,n1,n2)

for r=1:4
for i=1:n1
for j=1:n2
pp=@(uu)(gaminv((uu.ˆ(1./teta(j)))...
,1.5,1)).ˆ(r/2)
a1(r,i,j)=quadgk(pp,0,1)
qq=@(uu)(uu). * ((gaminv((uu.ˆ(1./...
teta(j))),1.5,1)).ˆ(r/2))
a2(r,i,j)=quadgk(qq, 0, 1)
a(r,i,j)=a1(r,i,j)+lambda(i). * ...
a1(r,i,j)-2 * lambda(i). * a2(r,i,j)
end
end
end

for i=1:n1
for j=1:n2
raizbeta1(i,j)=((a(3,i,j)-3 * a(1...
,i,j) * a(2,i,j)+2 * (a(1,i,j)ˆ3))/
((a(2,i,j)-a(1,i,j) * a(1,i,j))ˆ...
(1.5)));
numbeta2=(a(4,i,j)-4 * a(1,i,j) * ...
a(3,i,j)+6 * a(1,i,j) * a(1,i,j) * a(2,...
i,j)-3 * (a(1,i,j)ˆ4));
denbeta2=(a(2,i,j)-a(1,i,j) * a(1,...
i,j))ˆ2;
beta2(i,j)=numbeta2/denbeta2;
end
end

mesh(theta,lambda,raizbeta1)
xlabel(’Theta’)
ylabel(’Lambda’)
title(’ASYMMETRY’)

mesh(theta,lambda,beta2)
xlabel(’Theta’)
ylabel(’Lambda’)
title(’KURTOSIS’)

A2. Codes for 2D graphs

rb1lme1=raizbeta1(1,:)
plot(theta,rb1lme1,’k--’)
hold on
rb1l0=raizbeta1(11,:)
plot(theta,rb1l0,’k-’)
rb1l1=raizbeta1(21,:)
plot(theta,rb1l1,’k:’)
plot(raizbeta1(11,10),’ko’)
axis([0 3 0 2])
legend(’\lambda=-1’,’\lambda=0’,...
’\lambda=1’,’\lambda=0, \theta=1’)
xlabel(’Theta’)
ylabel(’ASYMMETRY’)

b2lme1=beta2(1,:)
plot(theta,b2lme1,’k--’)
hold on
b2l0=beta2(11,:)
plot(theta,b2l0,’k-’)
b2l1=beta2(21,:)
plot(theta,b2l1,’k:’)
plot(beta2(11,10),’ko’)
axis([0 3 3 4])
xlabel(’Theta’)
ylabel(’KURTOSIS’)
legend(’\lambda=-1’,’\lambda=0’,...
’\lambda=1’,’\lambda=0, \theta=1’);
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Valparaı́so, Chile (2000) and
the MSc degree in Industrial
Statistics from Universidad
de Antofagasta, Chile (2014).
Currently, he is an associate

professor at the Departamento de Tecnologı́as de la
Energı́a, Facultad Tecnológica of the Universidad de
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