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Abstract: A new univariate three-parameter distribution, the tramst exponentiated Maxwell distribution, is proposed andisd.
This new univariate distribution can be seen as generalizaif the Maxwell distribution and its respective exponaied and
transmuted versions. The new generalization is generag tise families of exponentiated and transmuted distidinist Some
probabilistic properties are studied, maximum likelihasstimation discussed, derive the functions to be used iabikty studies
and present an application with a real data. We hope that éhedistribution proposed will serve as an alternative mddethe
Maxwell and the respective exponentiated and transmutiesioves.

Keywords: Exponentiated distributions, Maxwell distribution, Tsamuted distributions, Transmuted exponentiated Maxwell
distribution.

1 Introduction Kazmi et al. [L1] obtained the Bayesian estimation for
two components mixture of the Maxwell distribution
A random variableX follows a Maxwell distribution, assuming type | censored data.

denotedX ~ M(a), if its cumulative distribution function  pefinition 1. A random variable X is said to have an
(cdf) and probability density function (pdf) are given by exponentiated distribution if its cumulative distributio
function (cdf) and probability density function (pdf) are

Fx(x a) = %T/Xaguze‘“‘zdu= H (axz:gi) (1)  givenby
0 Gx(x0) =F(x)° and gx(x;0) = 8f(x)F(x)°1, (3)

and respectively, wheré > O is a shape parameter, () and

. 4 3o axk
fx(xa) = TRIET (@) f(x) = LF(x) are the cdf and pdf of the so called base
) ) distribution, respectively.
respectively, where > 0, 8 > O is a scale parameter and If 6 =1 we have the distribution of the base random

H(Xxa,B) = ]g%uaflefﬁud“ is the cdf of a gamma  y5iaple. Several distribution with positive support have
random variable. Tyagi and Bhattacharyz][ obtained  been introduced using the exponentiated distributions
the minimum variance unbiased estimator, Bayesfamily. For example, exponentiated exponentid], [
estimator and the reliability function of this distributio  exponentiated Weibull1F], Burr Type X [20], among
Chaturvedi and Rani 7] generalized the Maxwell others.

distribution and they obtained classical and BayeSianDefinitionz (Shaw and Buckley, L9). A random
estimators for generalized distribution. Bekker and Rouxvariable X .is said to have transmhted distribution if its

[6] studied empirical Bayes estimation for the Maxwell : PR . h

distribution. Shakil et al.1g] studied the distributions of = G2 (V® Ct‘i’c"srfr('bg?)oa”ref“i‘:/‘if'nog (caf) and probability
[XY| and|X/Y| whenX andY are independent random y P 9 y
variables having the Maxwell and Rayleigh distributions. Gx(xA) = (14+A)F(X) — AF2(x) 4)
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and where x> 0, a > 0is a scale parametef > 0 is a shape
ax(XA)=f(X)(1+A —2AF(x)), (5) parameter, |A| < 1 is a parameter that makes the

respectively, wherdA| < 1 is a shape parameter and @Symmetry more flexible and
F(x) and f(x) = (f—XF(x) are the cdf and pdf of the base x pa
distribution, respectively. F(xa,B)= /0 mu"*le*p“du

For A =0, we have the distribution of the base random_ . o .

variable. Several distribution of positive support hasrbee is the cumulative distribution function of the gamma
introduced using the transmuted distributions family, for distribution. We denote this asX TEM(a, 8,A).

example; transmuted Gumb@][transmuted Weibull4], . . .
transmuted Rayleigh 1B], transmuted generalized PrOF: Ret;))Ia_cmg the expressions shown#)ifito (4) and
Rayleigh fL4], among other distributions. (5), we obtaine

Iriarte and Astorga 9] used the family of transmuted . _ 6 26
distributions to introduce the transmuted Maxwell Gx(%0,4) = (1+A)F()" —AF(X)
distribution. A random variabl& follows a transmuted g

Maxwell distribution, denoteX ~ TM(a,A), if its pdf is

given by ox(x8,4) = Bf()F()° |1+ A —2AF (x)°],
fx(xa,A)=14/=02x€ 2 [1+A—-2AG(—;=,1)|, and replacingX) and @) into this expressions, the result is
T 22 obtained

wherex > 0, a > 0, |A| < 1 andG is the cdf of a gamma
random variable. IfA = 0 the Maxwell distribution is  Next, we present two transformations related to the TEM
obtained. distributions.
In this paper, we introduce a new three parameters .
distribution that can be seen as a generalization of thé roPOsition 2.Let X~ TEM(a,8,A). Then,
Maxwell distribution. We use the families of the (a)w = axNTEm(a/aZ,Q)\) foralla> O;
exponentiated distributions and transmuted distribwtion .
considering as the baseline function a Maxwell (P) Thepdfof W=log(T)is given by
cumulative distribution function, to generate the new
model. In this way, two shape parameters are added to the
Maxwell distribution. 3
The paper is organized as follows. In Section 2 we derive 1+ =2 Fe(aez""; =, D|,weR
its density, moments and asymmetry and Kkurtosis 2
coefficients of the new distribution. In Section 3 we
discuss maximum likelihood estimation and calculate theProof. Parts(a) and (b) are directly obtained from the
elements of the observed information matrix. In Section 4change-of-variables methad.
the reliability function is derived. In Section 5 we obtain
the density function of order statistics. Section 6 present
application to real data sets. The application illustrétes ~RemarkPart(a) of Proposition2 indicates that the TEM
good performance of the model proposed in realdistributions belong to the scale family, P&t can be
applications. Final conclusions are reported in Section 7. used to study regression models in same lines as in the
context of regression models for positive random
variables; see McDonald and Butldrg. In addition, Part
2 The transmuted exponentiated Maxwell (a) allows us to obtain a two parameter TEM distribution.
istributi That is, if X ~ TEM(a,6,A), then
distribution VaX ~ TEM(L,8,A). It is known that the Maxwell
Proposition 1. A random variable X follows a distribution arises as the model of the magnitude of the
transmuted exponentiated Maxwell (TEM) distribution if velocity of a randomly chosen molecule of a gas in a
its cumulative distribution function (cdf) is given by closed container under the assumption that the gas is not
3 3 flowing and that the pressure in the gas is the same in all
Gx(xa,0,A)=(1+A)F%ax?=,1)—AF®(ax?;=,1), directions, see Johnson et all0] Then the TEM
2 2 distribution has the same motivation with the
and the respective probability density function (pdf) is characteristic of being more flexible.

fw (W, a,0,A) = %Tea3/2e2""’“ewF9’l(ae2""; g,l)

ox(Xa,0,A) = iea%XZefaxzpefl(axz;g,l) Figur_e 1 depicts some of the shapes that the density
VT 2 function of the transmuted exponentiated Maxwell
3 distribution can take for different values of the paranmeter
8/ 2.
<1+/\—2)\F (ax,§,1)>, a, 6 andA.
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2.2 Moments

/0 — M Proposition3. Let X ~ TEM(a,6,A). Then, for
o \ - - TEM(1,1,-1.0) . . .
- FEPEN o, TEMAL1-09 r=1,2,...itfollows that the r-th moment is given by
o | II / h ’ N - TEMEI:l: 1:0;
i e =a "

0.6

where a is defined as

1 3 5
a,:/ (1+A —2Aw) (F1<W1/9;§,1>> dw,
0

0.4
1

0.2

0.0

00 05 10 15 20 25 30 where F1 is the quantile function of the gamma
. distribution.
Proof. Using the definition of moments, threth moment
is given by
(?i N — TEM(1,0.1,0) 4 3
T TEMA01-08 Hr = 7500z
-=+ TEM(1,0.1,0.5)
o — - TEM(1,0.1, 1.0) j(;” Xr+2e—aX2|:9—l(aX2; %’ 1) (1+)\ —2A FG(GXZ; %’ 1)) dX,

and considering the changing of variable
w=F®ax?;3,1), the result followsD

Densidad

Corollary 1. If X ~ TEM(a,6,A), then

. | ‘. By ‘ ‘ ‘ ‘ E(X): % and Var(X)

az—al

Corollary 2. If X ~ TEM(a, 6, ), then the coefficients of
asymmetry{/ 1) and kurtosis f8,) are, respectively,

ag — 3ajap + 2ad
\/E: & ! j 3/2 1
2.1 Properties (22— aj)

Fig. 1: Plot of the transmuted exponentiated Maxwell density,
TEM(a,6,7).

In this subsection some basic properties of the transmute@nd o an 4 6228, — 380
exponentiated Maxwell distribution are considered. B = B4 — %83 1 03 & — 33
LetX ~ TEM(a,0,A), then (az—al)

1. ForA = 0 we obtain

0-1
gx (X @, 0) = 4 0a 5 x2e ¥ (F (axz; §’ 1)) RemarkAs A = 0 the asymmetry and kurtosis coefficients
VT 2 take the values

namely, the density function of the exponentiated Maxwell b= — 3b1bs & 203
distribution. Brey = 224 2+ 20y

_p2)32
2. Fora = % andf = 1 we obtain (b2 —bi)

BxX? 3 and
gx(x;B,A):\/732x2e7X 1+A—-2AG(—5;=,1)|, by — 4bybz + 6bfh, — 3b7
22 Boem = (b b2)2 )
namely, the density function of the transmuted Maxwell S
distribution. (Iriarte and Astorgd]]). respectively, which correspond to those for the
. exponentiated Maxwell distribution, where
3. ForA =0 and6 = 1 we obtain r
4 , = o (F1(w%3,1))% dw, r =1,2,3,4 andF 1 is
ax(xa) = a?xze*"x the quantile function of the gamma distribution. As= 1
\/_ and A = 0 the asymmetry and kurtosis coefficients take

that is, the density function of the Maxwell distribution.  the values 0.485692804 and 3.108164, respectively,
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which correspond to those for the classical Maxwell
distribution. Figure® depict plots for the asymmetry and
kurtosis coefficients of the TEM distribution for different
values of its parametesandA. In the 2D graphics it can

be seen that the asymmetry and kurtosis coefficients of
the TEM distribution can take the values of skewness and
kurtosis of the EM and M distributions. The graphs were
developed using the MATLAB software, see A1 and A2
in Appendix .

Lambda Theta

3 Inference

In this section we discuss maximum likelihood estimation
for parametersa, 6 and A for the transmuted
exponentiated Maxwell distribution.

KURTOSIS
IS

N\
N

N
R

3.1 Maximum Likelihood estimation

For a random sampléy,...,X, from the distribution v 70 Theta
TEM(a, 8,A), the log likelihood function can be written
as

l(a,0,A) = nlog(%) + Plog(a) + nlog(h) N

n n n 14
+2¥ log(x) + (8 — 1) S logF(x) — a$ X + -
n i; (%) ( )i; (%) i;Xi

logH (),
I; 0.6

where F(x) = F (ax?;3,1) is the cdf of the gamma
distribution and H(x) = 1+ A — 2AF%(x). The
maximum likelihood equations are given by

3n n > n Fl(Xj) n Hl(Xj) 39
— 5 X+(6-1) + =0, (6)
2a i; I i;F()(i) 5 H(x) .
n & 2 Ha(x) g3
=+ logF (%) + =0, 7 g,
9 z g ( ) z H(X|) () ég
n H3(Xi) 33
= 07 (8) 32
i= H(Xi) 31
OF (X% 2 3 05 1 5 2 25 3
Where F]_(X|) _ 05;(‘) — \/_I—Tal/zxigeiaxiz , Theta
OH(x) 4 12,3, axE6-1/y 1. Fig. 2: 2D and 3D graphs of the asymmetry and kurtosis
Hi(x) = Jda _ﬁ)‘ 6a Xiae TR coefficients of the TEM distribution. Skewness and kurtasis
AH(x) 0 EM (solid line), TEM (dashed and doited lines), M (circle)
Ho(xi) = 0 - —2AF"(xi)logF(x))  and distributions.
OH (X
Ha(x) = 2RO g o0 ().

Therefore, numerical algorithms are required for solving

the score equations. One possibility is to employ the(a,8,A) and covariance matrix equals to the inverse of
subroutine optim with the R Core Teariq|. the Fisher (expected) information matrix. Due to the
It is well known that as the sample size increases, thecomplexity of the likelihood function it is not possible to
distribution of the MLE tends (under regularity obtain analytical expressions for those quantities. It is
conditions) to the normal distribution with mean vector possible, however, to work with the observed information
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matrix, which is a consistent estimator for the expected

information matrix. The observed information matrix N OR) a2 2 —ax?
. ! : Fia(x) = = T (1-2a¢) e,

follows from the Hessian matrix by replacing unknown da

parameters by their MLEs. Some algebraic manipulationsyy, , ) :— OH1(x) 2)\719 Be TEEO-2(x)

yield the following Hessian matrix: Ja (V2 202) F () + 20F(x))
Haz(x) = P — - S AabES ) (L+ BlogF ).
His(x) = m-:;l)EXi) _ —%Qal/zxfe’“XIFe L(x),
d%logL(B) d%logL(B) 92logL(B) Ho1(X) i= d'j;(gx‘) —22 F(( ))<6F2(x.)+1)
oar. 000 - ohoa Haolx) = 2H208) _ oy 0 (Q)IogZF(xm

n(B) = : IZ%E(B) : (IaoAgaLéB) Has(x) = ‘”*}Em = ~2F%(x)logF (x).
2logL(B) Ha(x) 1= 280 20 2Ry (x).
or i) = 2P0 2E0(x) t0gF (x).

3.2 Simulation study
such that In this section, a small scale simulation is performed to
illustrate the behavior of the MLEs for parameters6
andA. We generate 1000 random samples of sizes30,

n =50 andn = 100 from the distributiolT EM(a, 6,A)

#2logL(B 3n N E (% Frix)\ 2 for fixed values of the parameters. Random numbets
T() = 52 +(0-1) [ ét;')) - ( Fl(()q))) TEM(a,6,A) can be generated as
i=
0 THyg) (M) ? } :
1) (M 7 1_, 1+A—+/(1+2)2—-4AU\" 3

IZ\|: H(Xi) ( H(XI) ) :| X: |:EF (< 2)\ 1551

9%logL(B) _ F1(4) | Haa(x) _ Hl(xi)HZ(Xi)}
060a S [F(x) H(x) H2(x;) whereU ~ u(0,1),a > 0,0 >0, |A| <1y F ! quantile

n

ot function of the classical gamma distribution. The
d%logL D [His(%)  Hi(x)Hsa(x : : . >
#gm Z\ 13 )'Q) 1) ?(X')} : estimates can be obtained using the optimization method

= based on Nelder-Mead, quasi-Newton  and

n

d%logL(B) Fi(x)  Hai(x) Hi(x)Ha(x) conjugate-gradient algorithms and implemented in the
dade 2 F(x) + Hx)  H2(x) } statistical package R Core Team6]. Measures and
= empirical standard deviations are presented in Tdble
d?logL(B) n ) Hz(Xi) z Notice that the parameters are well estimated and the
002 92 Z H(x) ’ estimates are asymptotically unbiased.
9%logL(B) [Ha3(x)  Ha(xi)Hs(x)
9Ad6 i;_ H (%) H2(x) |’
] 4 Reliability Analysis
Plool D) (i) o] y Anay
dadA ; H(x) H2(6) ]’ The reliability functionR(t), which is the probability of
AlogL(B) & [Haox)  Ha(i)Ha(x) an item not failing prior to some timg, is defined by
~Goan i; A A2 } R(t) = 1— F(t). The reliability function of a transmuted

exponentiated Maxwell distribution is given by

d2logL(B) _ (H3< )) 2 2
aA2 i; Hx) /) ' R(t):l—Fg(axz;i,l) (1+)\—)\F9(ax2;§,1)>.
Figure3 illustrates the reliability function of a transmuted
exponentiated Maxwell distribution for different
where combinations of parameters.
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Table 1: Maximum likelihood estimators for parametexs 6

andA for the TEM distribution.

n=230 S -~ — EM(LY)
a 0 A a (SD) 6 (SD) A (SD) . - - TEM(11-10)
T 05 10 1.299(0.454) 0556 (0.112)  0.898 (0.185) o N L
0.5 1.245(0.412) 0.512(0.135) 0.245 (0.468) e v\ TEM(1,1, 1.0)
1.0  1.095(0.240) 0.639(0.242)  -0.888 (0.214) \
©
2 10 1.0 2377(0.714) 1.128(0.331)  0.884 (0.239) s
0.5 2.254(0.570) 1.046(0.294)  0.337 (0.469) €
1.0 2.151(0.419) 1.343(0.580)  -0.875 (0.240) 3
3 20 1.0 3.566(0.933) 2.447(0.939)  0.845 (0.300) o
0.5 3.218(0.664) 2.152(0.712)  0.380 (0.476) s
1.0 3.215(0.549) 2.848 (1.514)  -0.860 (0.259)
n=50 2 ==
a 6 A a (SD) 6(sD) A (SD) o‘o 0‘5 1.‘0 1.‘5 2‘0 2‘5 3‘,0
1 05 1.0 1.216(0.351) 0.532(0.086) 0.907 (0.175)
0.5 1.199(0.357) 0.494(0.101)  0.259 (0.452) Time
-1.0 1.060(0.182) 0.613 (0.190)  -0.880 (0.223)
2 10 1.0 2.364(0.583) 1.100(0.211)  0.868 (0.227)
0.5 2231(0.510) 1.002(0.214)  0.304 (0.456) o
1.0  2.111(0.286) 1.245(0.390)  -0.886 (0.196) = T
- TEM(1,0.1,-0.5)
3 20 1.0 3.461(0.750) 2.297 (0.568)  0.844 (0.273) a b -+ TEM(10.1,05)
05 3.181(0.583) 2.038(0.492)  0.365 (0.467) ' - TEMA01.10)
-1.0 3.159(0.411) 2.551(0.899) -0.882 (0.233) .
n=100 5
a 6 A G (SD) 0 (SD) A (SD) 4
1 05 1.0 1.167(0.303) 0520(0.057) 0.912 (0.168) 3
0.5 1.109(0.273)  0.484(0.077)  0.318 (0.417)
1.0  1.037(0.125) 0.576(0.137)  -0.904 (0.178) .
2 10 1.0 2259(0.473) 1.060(0.150)  0.899 (0.200)
0.5 2.162(0.431) 0.985(0.161)  0.333 (0.431) 5
1.0  2.082(0.216) 1.193(0.320)  -0.901 (0.181) w w w w w w w
0.0 05 10 15 20 25 30
3 20 10 3.328(0.618) 2.182(0.406)  0.888 (0.236) e
0.5 3.104(0.522) 1.978(0.327)  0.399 (0.426)
1.0 3.084(0.280) 2.383(0.671)  -0.899 (0.186)

Fig. 3: The reliability function of a TEM distribution.

Another characteristic of interest of a random variable is

its hazard rate function defined by statistics are among the most fundamental tools in non-

parametric statistics and inference. For a sample ofrsize

ht) = f(t) the n'" order statistics (or, the largest order statistic) is its
1-F(t)’ maximum, that is,
which is an important quantity characterizing the Xiny = max{ Xy, Xz, ..., Xn}.

life-time of a certain phenomenon. It can be loosely
interpreted as the conditional probability of failure atéi
sample.

t, given it has survived to time The hazard rate function . . .
for a transmuted exponentiated Maxwell random variable! N€ Sample range is the difference between the maximum

is given by and the minimum in the sample. It is clearly a function of
h(t) = %ea%XZe—asze—l (ax;3.1) the order statistics:
Rangg Xy, Xa, ..., Xn} = X(n) = X(1)-
It is well known that ifX(1> <Xz < ... <Xpn) denotes
the order statistics of a random sample Xy, ..., X, from

a continuous population with cdfx (x) and pdffx then,
the pdf ofX;, is given by

Similarly, X(1) = min{Xy, Xz, ..., Xn} is the minimum of the

1+A-2A Fe(axz;%,l)
lfFe(axz;%,l) (l+)\ —A Fe(axz;%,l)) :

Figure 4 illustrates the hazard function of a transmuted
exponentiated Maxwell distribution for different
combinations of parameters.

#&n—mfx@ [Fx ()] 1= Fx ()",

for j = 1,2,...,n. The pdf of thej" order statistics for
In statistics, thgt" order statistical of a sample is equal to transmuted exponentiated Maxwell distribution is given
its j!"-smallest value. Together with rank statistics, orderby

fx) () =
5 Order Statistics

(@© 2017 NSP
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Reliability function

Reliability function

—  EM(LY)
- - TEM(1,1,-1.0)
oo TEM(1,1,-0.5)
.=+ TEM(1,1,0.5)
— - TEM(1,1, 1.0)

Time

-+ TEM(1,0.1,-0.5)

EM(1,0.1)
TEM(1,0.1,-1.0)

TEM(1,0.1, 0.5)
TEM(1,0.1, 1.0)

Fig. 4: The hazard function of a TEM distribution.

fx;) (09 =

[1-Fb(ax?;3

3 2 ;
40a2x2e ™ nIFfi-1(ax?; 3 1)

VR
[1+A —2AF%(ax?

3]

3.1 [1+A -

«
[14A —AF9(ax 3 1))

AFS(ax?;3,1)]]

-1

n—j

Therefore, the pdf the largest order statists is given

by

e () = Gazxze @EEn-1(gy2; 3 1)

[14+A —22F% (% 3, 1)] [142 —AFO (ax% 3,1)]" .
and the pdf of the smallest order statisti¢g) is given by

We consider a data set related to a single edge V-notched
Aluminun plate repaired with Kevlar 49/epoxy that are
subject to constant pressure at the 90% stress level until
all had failed, so that complete data with is available with
exact times of failure. For previous studies with the data
sets see Andrews and Herzbe®j dnd Barlow et al. ).

We calculated the maximum likelihood estimates for the
M distribution, which ared = 0,6547649. As starting

values for the MLEs we tooB = 1 andA = 0.

The large sample variance-covariance matrix (the inverse
of the observed information matrix) of the parameters for

the transmuted exponentiated Maxwell was computed

given the estimate§ = 0.108,6 = 0.252 andA = 0.883.

1©) "=
8,984-10*4 3,653.10* —1,864-10°3
3,653-10% 5/845.10°% —5,037-10°°

—1,864-10"3 -5,037-10°°% 1,357-10°?

Thus, the large sample estimates for the asymptotic
variances of the MLE of 8, a and A are
Var(@) = 8,984- 104 Var(8) = 5,845- 104 and
Var(A) =1,357-10°2

The usual Akaike information criterion (AIC) introduced
by Akaike [1] and Bayesian information criterion (BIC)
proposed by Schwar4J] to measure of the goodness of
fit  were also computed. It is known that
AIC = 2k — 2loglik andBIC = klogn — 2loglik where k

is the number of parameters in the model, n is the sample
size and loglik is the maximized value of the likelihood

function. For the TEM model,
AIC = 2(2) — 2(-1085968 2211936 and
BIC = 2log(101) — 2(—1085968 = 2264238.
Similarly, for the TEM model,
AIC = 2(3) — 2(—1034609 and

BIC = 3log(101) — 2(—103 4609 = 220,7672. In both
cases, the TEM model has the lowest values of AIC and
BIC. Thus, the results show that the TEM model fits
better the data set. Figur® displays the fitted models
using the MLEs. Tabl@ shows MLEs to each one of the
fitted distributions and the corresponding AIC and BIC
values.

Table 2: Estimated parameters of the M, TM, EM and TEM
distributions for the life of fatigue fracture data set.

fx (x) — ﬂea3/2x29—axz|:9—l( x2,3,1) Model  Parameter estimates (SD) AIC BIC
*) 2 TEM @ = 0,108 (0,029) 212,921 220,767
[1+A —2AF%(ax?; 3,1)] 6 = 0,252 (0,024)
I 0, 2.3 N1 A = 0,883 (0,116)
[1-F8(ax%3,1) [1+A - AF®(ax?; 3, 1)]] EM a—0,194 (0,037) 221,193 226,423
6 = 0,204 (0,022)
. ™ o = 1,050 (0,094) 496,039 501,269
6 lllustrative data set 3 — 0,793 (0.087)
The fracture behavior of a single edge V-notched _ M a = 0,654 (0,053) 530,957 533,572
Aluminum plate repaired with Kevlar-49/epoxy or
e-glass/epoxy pre- preg patches on both sides.
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