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Abstract: We here investigate the exponential stability of a kind néér systems of first order with variable delay. By means of an
auxiliary functional, we discuss exponential stabilitysaiutions of the system considered. During the proof, we benefit from
linear matrix inequalities (LMIs).
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1 Introduction where

In the literature, stability analysis of first order linear . PN
systems with time-varying delays of the form o(): R~ {1,2,...N}, .
fi(x(t)) = (fie(xa(t)). .. fin (Xn(t)))

X(t) = AX(t) + Dx(t — h(t))

has received considerable attention. and
In fact, Sun ] considered _the following system with Gi(X(t)) = (G (XL (€))s o, Gin (Xn (1)) -
multiple variable delays described as

n As distinguished from this line, the following article isal
X(t) = Agx(t) + ZiA‘X(t —hi(t)) notable.
= Phat et al. §] took into consideration the retarded
FAF(tx(t),x(t — ha(t)), ... x(t = hp(t)) + Bu(t). differential problem
The author discussed the stability of solutions of this . P
equation. X(t) = AX(t) +Dx(t —h(t)),t e 07,07 = [0,00),
In 2007, Phat and NanT] dealt with the following the X(t) = @(t),t € [—hy,0].

time-varying linear system
N N The authors investigated-exponential stability of the
X(t) = Zlai(t)AiX(t)—'_ ai (t)Bju(t). zero solution of this problem. For a comprehensive
i= i= review and some recent and related results on the
gualitative properties of solutions to various linear and

They constructed sufficient conditions which guarantee thenon-linear systems, we refer the reader to see Boyd et al.
solutions of that system are exponential stable.

Later, 2010, by defining an appropriate [1], De Oliveira et al. 2], Gu et al. B], Hale and Verduyn

Lyapunov-Krasovski functional, Niamsup and Phat [6] Lunel [4], Kwon and Park$], Shao [L0], Sun et al. L1],

: o " -~ Tunc [12)-[16], Wang et al. 7], Zhang et al. 18 and the
obtained specific conditions related the exponen'ualreferences in these works.

tability th luti f th t
siabillfy the solifions of the sysiem In particular, motivated by the paper of Phat et §]. [
X(t) = —AgX(t) + Bg fo(X(t)) + Cogo (X(t — T(1))), and those found in the literature, we consider following
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problem with multiple variable retardations: i=(1,2,...,5), such that the following LMI holds
n
. M1 M1z M3 Mg Mis
X(t) :AX(t)+ZLD|(t)X(t—h|(t)), (1) * M22 0 M24 SZ
=
p=1| * * MazMay S <0, (2
X(t) = ¢(t),t € [-h2,0], * ok X M44&—%Z?:1Di(t)
where Xty € R is the state, A Mes
ADi(t) e M = 12..n), and  then the zero solution of system (1) is-exponential
o(t) € C*([—hy,0],R") is the initial function with the  giaple where Y @) P
norm  [|@ = supp,<<oflll@®)ll.[l@M)[}.  The

time-varying delay functionk; (t) satisfies Muz — ATP 1 PAL 2aP— Z(e‘z"hli e 2R
0<hy <hi(t) <hg,(i=12..n)te0" =
+0.58(1 — A) +0.5(1 — AT)S] +2Q,
The purpose of this article is to give specific conditions, n
which guaranteax-exponential stability of the system My = Ze‘z"’hliR—SzA,
considered. By the defining a  suitable i=
Lyapunov-Krasovskii functional, we proof a new theorem L oahs
i ; i Miz=H e ““"R—-SA
on the topic. Our result generalizes and improves the 'V'13 21 )
some results found in the literature. =

M4 = _ZPDi (t) - _Z&Di (1) — S4A,
2 Exponential stability Mis=S — SA,

We first express some auxiliary results. Mo = Zl[—e’z"hliQ — e 20haRy),
Proposition 2.1 (see Phat et al. 8]). For any i=

symmetric positive definite matrixN € M™" and n

— . —2ah: i
a,be R", we have M24_i;[_SZD'(t)+e AU,
+a'b<a'Na+b "N 'h. Mas = — ie—zahz [Q+R+U]
Proposition 2.2 (see Phat et al. §]. For any symmetric nlz

positive definite matrixM € R™" | scalary > 0 and Mag = Z[_%Di (t) +e 29y,
vector functionw : [0,y] — R" such that the integrations i=

concerned are well defined, the following inequality n o —
holds: Myg = — Z[&DI (t) + Di (t)s4 +e Z'U],

{ /O yw(s)ds} "M [ /O yw(s)ds} < /0 "W (sMw(s)ds). Mss — S+ ST + _ihim .ihgim _i(hz _hy)U,

Proposition 2.3(see Phat et aB]). Let E,H andF be any A= Amin(P),

constant matrices of appropriate dimensions@h8 < I. n n
For anye - 0, we have T de=Ana(P)+ 23 hahna(Q) + 23 Midmax(R
1= 1=

n
EFH+HTFTET <¢EET + & *HTH. i 21(h2i ~ hii)?Amax(U).
i=
Proposition 2.4 (Schur complement Lemma-(see Phat et

al. [8])). Given constant matrices,Y,Z with appropriate  Moreover, the solution(t, ¢) of system (1) satisfies
dimensions satisfyingX = XT,Y = YT > 0. Then

X+2Z"Y~1Z < 0ifand only if .
[x(t, @) < A—Ze*"‘||qo||,\7teR+.

X Z' -Y Z
(Z—Y) <0 or (ZT X) < 0.

Our main result is the following theorem. 6
Theorem. Let a be a positive constant. If there exist Vit,x) =S Vi
symmetric and positive definite matricB$Q,R,U andS, ’ i; a

Proof. We define a Lyapunov- Krasovskii functional for
system (1) by
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where

Vi = x" (t)Px(t),

t
_ a(s—t), T
Vs iZ: t7hlie2 X" (5)Qx(s)ds

n 0 t
Va3 by / (04T (1)R(1)d1ds
i= —hyj Jt+s

x(s)ds

n 0 t
Vo= o / 9057 (1)Rx(1)d1ds
i= —hgi Jt+s

n —hy;

t
Vo= (hy — hy / a(T5T (1)y
6 i;( i — Nyi) s (1)

Itis now easy to verify that

x(1)drds

MIXOIIZ <V (tx) < Azflx % vt > 0. 3)

Hence, we omit the details of the calculations.

We now calculate the time derivatives ofi,
(i=1,2,...,6). Then, it can be followed that

Vi = X" ()Px(t) +x" (t)Px(t)

— XA+ ixT (t —hy(1)DT (O]Px()

P[AX(t) +21D

=x" ()ATPX(t) + zle (t—hi(t))D] (t)Px(t)

X(t—hi(t

X (t)PAX1) +xT ( PZlD X(t—hi(t))

X" () [ATP+PAx(t) +2xT (t) PZD X(t —hi(t)),

n

Vo = .Z[XT (1)QX(t) — e 2MuixT (t — hy )QxX(t — hyj)

t
_2a eZa(sft)XT
t—hy

=xT (1)Qx(t) -

(5)Qx(s)ds

n
Zefzahn X (t—hyi)QX(t —hyj) — 2aVa,

i=
n

V3= 3 QK1) - e 28T (t — hyi )QX(t — i)
. t a(s—t), T
2a [, @O (9)0x(s)ds

=x" ()QX(1) - ie*z"“z X" (t—hgi ) QX(t —hgi) — 2aV3,

t)ds— Zlhl./ 95T (t + )RX(t + 5)ds

w_zm/hﬂ

th K (t Zhl' /7 . (V5T (9)RX(s) —

By using the mean value theorem for integrals, we have

y . 2T . 2ah t T

Vi<§ hix' (H)Rx(t) — hl-e"’li/ X' (S)RX(s
3 M ORK =3 hue *™ | XT(9RK()

Takin into account Proposition 2.2 and the
Newton-Leibniz formula, it follows that
n

SLTE hlle oRxss< -3 ([ sasTR | K9

- _;[ (t) (t—hli)]TR[X(t)—x(t_hli)].

2aVy.

—20aV;.

Thus
Vs < ihfi)ﬂ (HRX(t
- ie&’hli [X(t) — X(t — hg))] TRX(t) — X(t — hy;)] — 20V

and

Vs = .ihzi / i K (ORK()ds
_ithi /7(:1_82“5>'<T(t+3)R>'<(t+s)ds
n 0
+i;h2i/ b /tis_zaezMPt)XT(T)RX(T)drds

:i:ih%xT ZthI/ N (st

By using mean value theorem for integrals, it is clear that

Rx(s)ds—2aVs.

S hge 2 b X7 (s)

Vs < 3Ly X" (RX(E) — X7 (9)RK(s)ds— 2aVs,

By means of Proposition 2.2 and the Newton-Leibniz
formula, we find

- zihz. /ti (9
TN

Then, we can see that

n
Vs < $ hgix" (t)Rx(t
2"

— _ie—mhzi [X(t) — x(t — ha)] TRX(t) — X(t — hg)] — 20V

n

RX(s)ds < — Zl[ /tthz_ %(s)dsTR| /tthz_ X(s)dg

X(t — hg)] TRIX(t) — x(t — hy)].
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and

n

. —hyi
Vo= ha—hy) [ AT (U
_ i(hzi — hy) /411i 9% (t+s)UX(t +s)ds

h1|
+21h2' hl./h /+
i S

—2a&9TUKT (1)U x(T)dTds

= i(hZi — hy)?XT (HUX(t)

t—hy

—Zihzu hai) ) 9V (s)Ux(s)ds— 2aVe.
t=hy;

By using mean value theorem for integrals, it is clear that

Vg < i(hz —hy)2xT (U X(t)

n t—hyj
-3ty )&~ 2ate / "X (s)Ux(s)ds— 2aVe.
i= t—hy;

In view of Proposition 2.2 and the Newton-Leibniz

formula, it follows that

nopt=hyg
2L 7
t—hy;
t—hi(t

ST

(s)Ux(s)ds

S)UX(s)ds+ Zift

t— h1|

and

n —hi(t) n hl()

3ha—n) [ uigas= 3 ([ ioas”
M

t—hy
xU [/
t—hy;

X(s)ds}

Since 0< hg; < hj(t) < hy, (i=1,2,...,n), then we have

t—hi(t)

- Z h2| hll /
t—hyi

x" (s)Ux(s)ds

<- Zi X(t — hi(t)) — x(t — hai)] TU X(t — hi(t)) — X(t — ha)]-
Similarly, it follows that
S (hoi—hn) [ KT (9UX(S)dS< — 3 [x(t — hy
=3 (hah) [ AT (SUKEsS 5 it )
—X(t—hi(0)]TUx(t — hy) —x(t — hi(1))].

Then

Ve < (hi — hy)2XT (HUX(t)

-3 M)

x UX(t—hi(t)) —x(t — hy)]
- _ie”’“ﬂ X(t— hyy) = x(t— h(0))]"
X U x(t — hay) — x(t — hi(1))] — 2aVe.

Hence, it is obvious that

V() 42aV() <xT(t )[ATP+ PA+2aP+ 2QJx(t)

+2X7( PZlD x(t — hi(t))

— _ie—zf’hﬂx (t—hy)QX(t —hy;)

—ie—zahax (t —ha)Qx(t — hy)

n
+ X" (t)[(; + hg)R+ (hy —

—ie—zf’“ﬂ[(t) X(t — ha)|TRIX(E) — x(t— hy)]

hyi)2Ux(t)

n
_ e 2a h2|
i=

— _ieZ"hZi [X(t — hi(t)) — x(t — hg)]"
< UX(t— hy(t)) —x(t g
— _ieZ"hZi [X(t — hai) — x(t — hi(t))]"

x U x(t — hgj) — x(t — hi(t)].

X(t —ha)]TRIX(t) —x(t — ha))]

(4)

By using the relation
X(t) — Ax(t) —

we have

2x' ()SX(t) — 2" (1) SIAX(Y)

_ 2XT(t)S]_ iDi (t)X(t —h (t)) =

ZiZX (t —hy))Sox(t) ZZXTt h1i) SAX(t)

- Zizx (t — hai) SDi (1)x(t — hi(t)) =
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V()+2aV() <

212)( (t — hgi) Sex(t) ZZX (t — hy) SSAX(t)

- foT (t — hy)S3Dj (t)x(t — hi(t)) =0,
ZLZXTt hi(t))Sux(t) ZaTt hi(t)) SuAX(t)

- ZiZXT(t —hi(t))SDi(t)x(t —hi(t)) =
2XT (1) SsX(t ) X' (1) SsAX(t)
—2x(t) %ZD x(t—hi(t)) =0. (5)

In view of (4) and (5), we can obtain

X' (t )[ATP+ PA-+2aP+ 2Qx(t)

+2xT (1) PZD x(t—hi(t))
— ie—zf’hnx (t — hi)Qx(t — hy;)

—ie‘z"hz'x (t —hy)Qx(t — hy)

n
+ 5 X (O)[(hd; +h5)R+ (hai —

- iie—““ﬂ (0) — x(t— )"

x RX(t) —x(t — hy;)]

- iie—mhzi X(t) — x(t —hg)]"

» RIX(t) — X(t — ha)]

— 3. 2 () it o)
x UX(t—hi(t)) —x(t—hy)]

- iie—mhzi [X(t — hy) —x(t — hi(t))]"

x U[X(t —hgi) —x(t — hi(t))]
+ Xt >sa< )= 2 ()SAX(D)

—2x" (1) leD X(t—hi(t))

hy)2U]x(t)

+_;2x (t—hy)Sx(1)
- izﬂ (t — hyi) SAX(Y)

_iZXT(t — hy)SDi(OX(t— hi(t))

N iizXT (t — hoy) SsX(t)

_ éisz (t — hyi) SsAX(t)

- ézXT (t — har) SsDi (£)x(t — (1)
+iisz(t —hi(t))Sex(t)

_ iiZXT (t—hi(t)) SuAX(t)

—iizXTa—hi(t))aDi(t)x(t—hi(t>>
#2030 -2 OB
—2KT(t) %ZD X(t—hi(t)).

If we use the following estimates

]

e 2ahy; [X(t) —X(t— hli)]T R[X(t) —X(t— hli)]

W.
=}

=Y e 20T (t)RXt) —

2x" (t)Rx(t — hy)

oy

+ X (t — hg)RX(t — hy)],

S &2 [x(t) — x(t —hgi)]TRIX(t) = x(t — ha)]
:-j e ahz.[ (HRXt) — 2xT (t)RX(t — hy;)

4+ X T(t hoi ) RX(t — hy)],

d e 20N [t — hi(t)) — x(t — hyi)]T

U[(t hl()) (t h2|)]
—Z —2ala T (¢ — hyi(1))UX(t — hi(t))

— 2xT (t — hi(1))UX(t — hgi) +XT (t — g )UX(t — hy)]

and
ée—mhzi [X(t — hyi) — x(t — hi(t))]"
 U[X(t — hy) — x(t — hi(t))]
= ée—mhzi X" (t — hg) UxX(t — hyy)
— 2" (t — hy)Ux(t — hi(t)) +x"

then we get

(t—hi(t))Ux(t —hi(t))],
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V()+2av()<x

+ ZXT(t)P_iDi (tx(t—hi(t))

- iie‘z"hli X" (t — haj)QX(t — hyj)

(t)[ATP+PA+ 2aP+ 2QJx(t)

- ie‘z"hﬁx (t —hgi)QX(t — ha)

n
+ 5 X O)[(h]; + 1) R+ (hai —

~ iiemhux (ORXY)

+ éZe—Zahﬂ X" (t)RX(t — hy;)

- ée—mhﬂ X" (t — hg))RX(t — hy)
1imwx<mm>

+ ZZe 2ahaixT (t)RX(t — hy)

- 212e 2ahaiyT (¢

_Ze—mzux (t—hi(t))Ux(t — hi(t))

+ Z\ 72Gh2|x

—zie‘z"’hax (t—hg)Ux(t — hy)

h2| RX(t hai )

t))Ux(t —hy)

- _ie‘z"hﬁ X" (t — hy)UX(t — hy)
+ izeZ"hZixT (t —hg)Ux(t — hi(t))

— iezathT (t—hi()Ux(t —hi(t))

+2xT (1)Sx(t) — 2XT () S AX(t)

_ 2XT(t)Sl_iDi (t)x(t—

+ _inT (t—hg)SX(t)
_ iisz (t — hy)) SSAX(t)

- _isz (t = ha)SDy (Ox(t — hi(1))

hi)?U

[X(t)

V() +2aV()<x

+ _isz (t — hy)Ssx(t)
- iZXT (t — hgi) SsAX(t)

—ZZX (t — hoi) S (t)x(t — hi(t))

+212x (t—nh
—ZZX (t—nh

— -Z\ZX (t—hi(t))S4Di (t)x(t — hi(t))

+2XT (1) SsX(t) — 24T (1) SsAX(t)

- ZXT(t)SsiiDi (Ox(t -

Hence, it follows that

))SIAX(t)

(t)[ATP+PA+2aP
_ 'il(efzthi +e*2“h2i)R+ 055 (1 —A)
+0.5(1 —AT)S] +2Q)x(t)

+2xT (1) [_i e 2R _5A .ix(t —hai)
+2x(t) Li e 2R 54 _iX(t —hai)

Lo (t)[_ipoi ) —_iamm —SA

x ix(t —hi())

+23 x(t)[SL— SsAJX(t)

+zixT (t—h1i>[—,iszoi(t)+e*2"“2iU1
X X(t —hi(t))

+2leT (t— haj) SHX(t)

n

+ ZixT (t— h2i)[_672ah21Q_ e2ahaRg _ e—ZahZiU]
i7

X X(t — hzi)
n n

+z_ZxT (t=ha)l- 3 SDi(t) +e 20hay]
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< x(t—hi(t))

+2'ixT(t — hy)Ssx(t)

+ ‘iXT (t—hit))[— -iz&Di (t)— e—ZahZiU]
oxt-hm)

#2540 (RS- 3 SO
OIS+ + 5 R S R

+3 (b~ h U
= &THE(),

where

n n n

(0, 3 x(t—h), 5 Xt ), 5 X~ (0) (O

§ht) =

1=
In view of condition (2), we obtain

V(t,%) < —2aV(t,x),vt € R,
Integrating both sides of (6) from 0 towe have

V(t, %) <V(p)e 2 vt e R,

Furthermore, taking into account estimates (3), we obtain

MIX(t, Q)7 < V(%) < V(@)e 2" < Ae 2| g||?

A2
Ix(t, @) < /\—ie atyg||,t € R,

which completes the proof of the theorem

so that

3 Conclusion

A kind of linear systems of differential equations of the

first order with variable time-lag was considered. The ) o ,
m [15] Tung, C., On the existence of periodic solutions of

exponential stability of zero solution of the syste

considered was discussed by a suitable Lyapunov-

Krasovskii functional and linear matrix inequalities

(LMIs). By means of the result obtained, it was improved
and extended some results found in the literature. Our aim

is to do a contribution to the relevant literature.
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