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Abstract: In this paper, KdV equations with variable coefficients an@kAtype stochastic KdV equations are investigated. White
noise functional solutions are shown by Hermite transfdnomogeneous balance principle and F-expansion method. égynsnof
the direct connection between the theory of hypercomplstesys and white noise analysis, we setup a full frameworkutdysthe
stochastic partial differential equations with non-Gaarsgarameters. Using this framework and F-expansion ndetive present
multiple families of exact and stochastic travelling wasusions for the variable coefficients KdV equations anddtuehastic KdV
equations with non-Gaussian parameters, respectivesélsolutions include functional solutions of Jacobi gdifunctions (JEFs),
trigonometric and hyperbolic types.
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1 Introduction where gy and Y, are bounded measurable or integrable
i - functions onR ..

Let p be a non-Gaussian probability measure on a locally  The Kdv equation is one of the essential nonlinear

compact spac®. Consider the quasinuclear riggirg] [ equations in mathematics and physicst,5[10].

quQLz(Q,dp(X))QH({ Therefore, it is important to find solutions for this
equation. The KdV has many applications in many
where the zero spade(Q,dp(x)) is the space of square branches of nonlinear sciendg[ This equation is an
integrable functions defined on a commutative normalimportant mathematical model arising in many different
hypercomplex systeni;(Q,dm(x)) with basisQ and  physical contexts to describe many phenomena which are
multiplicative measuren [2,36]. The spacesif andHX simultaneously involved in nonlinearity, dissipation,
are the spaces of test and generalized functionslispersion, and instability, especially at the descriptd
respectively, which are constructed via the Delsarteturbulence processes.
characterg, € C(Q). Since the solutions of KdV equation possess their
This paper is mainly concerned with Wick-type actual physical application, which is the reason why so
stochastic KdV equations with non-Gaussian parametersmany methods, such as Exp-function method proposed by
Ut + Y4(1) O U Oy Uy + Yh(t) Oy Usex = O, (1) Heand Wu,21] As is well known, solitons are universal
o i X L phenomenon, appearing in a great array of contexts such
where 0)" is the x-Wick product onHZ,, which is a5 for example, nonlinear optics, plasma physics, fluid
defined in th‘?( next section, an#y and %, are  gynamics, semiconductors and many other syste3ts |
non-Gaussiari”- 1-valued functions. Moreover, when 34 28 Studying of nonlinear evolution equations
the x-Wick product %" is replaced by the ordinary modeling various physical phenomena has played a
productin Eq.{), we obtain the variable coefficients KdV  sjgnificant role in many scientific applications such as
equations4,3J: water waves, nonlinear optics, plasma physics and solid
Ut + Wr(t) Uty + o (t) U = O, (2)  state physics33).
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The KdV equations2) describes the propagation of KdV equations {). The last section is devoted to a
nonlinear wave. Moreover, if the problem is considered insummary and discussion.
a non-Gaussian stochastic environment, we can get non-
Gaussian stochastic KdV equations. In order to give the
exact stochastic solutions of the non-Gaussian stochastig SPDEs with Non-Gaussian Parameters
KdV equations, we only consider this problem in a non-
Gaussian white noise enVironment, that iS, we will Study|n the Gaussian case, if the objects of a differential

the variable coefficients stochastic KdV equatioit)s ( equation are regarded ay)il_vaMed (5”)71 is the

It is well known that the solitons are stable against Kondratiev space of stochastic distributions constructed
mutual collisions and behave like particles. In this sense,uPoﬂ Gau;su’l:m méaalsufrer)], we often O_?t;?'” a ”(;O{e rﬁalt'ft'c
it is very important to study the nonlinear equations in a Mathematical model of the situation. This model called a

stochastic environment. However, variable coefficients"ViCk-type stochastic differential equation (sezg] for
ore details). Generally, we can introduce a

nonlinear equations, as well as constant coefficientd . . .
equations, cannot describe the realistic physicalfon-Gaussian Wick-type ?tOChaSt'C model by the
phenomena exactly. Wadati3q first answered the replacement of.%)_; on HZ, and the Wick product
interesting question, “How does external noise affect the2SSociated with the Gaussian measure on Yhé/ick

motion of solitons?” and studied the diffusion of soliton Product. - o .
of the KdV equation under Gaussian noise, which _|ne Wick product was first introduced by Wickd]

satisfies a diffusion equation in transformed coordinates2nd ysed' as a tool o renormalize certain infinite
uantities in quantum field theory. Later on, the Wick

The Cauchy problems associated with stochastic partiaﬂ . . : . :
differential equations (SPDES) was discussed by mamproduct was considered, in a sto.chasuc setting, by Hida
authors, e.g., de Bouard and Debussci25,45], and lkeda 22]. In [8], Dobroshin and Minlos were

Debussche and Printent 7] and Ghany and Hyded]. comprehensively treated this subject both in mathematical

By means of white noise functional analyses], Ghany ~ Physics and probability theory. Currently, the Wick

et al. [11,12,13,14,16,17,18,19] studied more intensely procf.“Ct. pro}’ides a useful —concept f?]r Vaéi"“?
the white noise functional solutions for some nonlinear@PPlications, for example, it is important in the study o

SPDEs. Furthermore, Okb El Bab, Ghany, Hyder andstochastic ordinary and partial differential equatioree(s

Zakarya R0, 1], studied some important subjects related e.g., B3).

to a construction of non-Gaussian white noise analysis V\/I'n l:h's SSCt'On' wehdefme ae:l)?w W'ﬁk product, called
using the theory of hypercomplex systems. X-Wick product, on the spaceiZq with respect to a
non-Gaussian probability measype Then, we give the

The goal of this paper is to explore exact and definition of the x-Hermite transform and apply it to
stochastic travelling wave solutions for the KdV establish a characterization theorem for the sp&é&:(
equations %) and the stochastic KdV equatiorl){ for more details see2, 1]).
respectively. Firstly, we develop a non-Gaussian Wick
calculus based on the theory of hypecomplex system®efinition 2.1.[20] Let & = S 7o EmGl, N = S o ok
Ll(Q,dm(x)). That is, we use the Delsarte characterse qu with &m,Nn € C. The x-Wick product of &, n,
Xn(x) to introduce ax-Wick product andx-Hermite  genoted by ox N, is defined by the formula
transform on the space of generalized functibllﬂfa (with
the zero spack;(Q,dm(x))) and discuss their properties. i X
Secondly, by means of the usual properties of complex §oxn= Z &mMnGmyn- ®)
analytic functions, we setup a framework to study the mn=0
SPDEs with non-Gaussian parameters. Finally, we apply
this framework and the F-expansion metha#é][to give a
multiple families of exact and stochastic travelling wave
solutions for the KdV equation2] and the stochastic
KdV equations {), respectively. The resultant solutions
include functional solutions of JEFs, trigonometric and 1. Eoxne qu,
hyperbolic types. Moreover, we support our results by 2. poywecHE
detailed example. ' X 9

It is important to show that the spackg’y,Hf are
closed undeg-Wick product.

Lemma 2.1.[20] If &,n € HX, and¢, y € HY, we have

The following important algebraic properties of the

This paper is organized as follows: Section 2 is X-Wick product follow directly from definition 2.1.

devoted to study the SPDEs with non-Gaussian
parameters. In Section 3, we apply the results obtained if s yma 2.2.120] For each c HX  we get
Section 2 and F-expansion method to give the exact an& 220 §:11,¢ € Hog weg
stochastic travelling wave solutions for the KdV 1. &oyn =noy <& (Commutativelaw),
equationsZ). In Section 4, we obtain exact non-Gaussian 2. & oy (noy{) = (& oy n)oy { (Associativelaw),
white noise functional solutions for Wick-type stochastic 3. &oy (n+{) =& oy n+ & oy { (Distributive law).
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Remark. According to Lemmas 2.1 and 2.2, we can dimension. Moreover, if the objects of such equations are
conclude that the spaceﬁfq and Hé( form topological regarded asHi(q-vaIued, then differentiation can be
algebras with respect to the Wick product. interpreted in the usual strong sensédy,.

As shown in Lemmas 2.1 and 2.2, tgeWick product
satisfies all the ordinary algebraic rules for multiplicati ~ Theorem 2.1.[23,20] Suppose u(x,t,z) is a solution (in

Therefore, one can carry out calculations in much thethe ysual strong, pointwise sense) of the equation
same way as with usual products. But, there are some

problems when limit operations are involved. To treat K(x,t,dt,Dx,u,z) =0, (8)
these situations it is convenient to apply a transformation

called thex-Hermite transform, which converpe-Wick  for (x;t) in some bounded open set D c R" x R, and for
products into ordinary (complex) products and g| z e Qq(M), for some g, M. Moreover, suppose that
convergence i into bounded, pointwise convergence y(x,t, z) and all its partial derivatives, which are involved
in a certain neighborhood of 0 i@d. The original Hermite  jp Eq.(8) are  (uniformly) bounded  for
transform, which first appeared in Lindstrem et &3] (x,t,2) € D x Og(M), continuous with respect to
has been applied by the authors in many different(x t) c D for eachz ¢ Og(M) and analytic with respect to
connections. Now, we give the definition of the 7 ¢ 0q(M), for al (xt) € D. Then there exists
Xx-Hermite transform and discuss its basic properties. Uxt) € Hi(q such that u(xt,2) = J4U (xt,2) for all

(x,t,2) € D x Og(M) and U(x,t) solves in the strong

Definition 2.2. [20] Let & = $© X e HX with ‘ .
etintion [20 Let & = Fnoénth € Hoq wi sensein HX, the equation

én € C. Ihen, thex-Hermite transform o, denoted by
;& or &, is defined by AX(x,t, 3, Ox,U,8) =0 in Hi(q. 9)

HE(2) = g?(z) = ioénz” € C (when convergent). (4)

In the following, we define for < M,q < o the

neighborhood€q(M) of zero inC by 3 Travelling Solitary Wave Solutions of

Eq.(1)
0g(M) = {ZE C: ZO|Zn|2an < Mz} : (5)  In this section, first we reduce Ed)(into a deterministic
n= partial differential equations (PDEs) by applying

X-Hermite transform. Further, by applying proper

Itis easy to see that transformation, the obtained PDEs can be converted into a

<D.N<M= On(N) C Ou(M). nonlinear qrdinary differential equations' (ODES). Then,
asp, N<M=0p(N) < Og(M) by employing the proposed F-expansion method, we
The conclusion above can be stated as follows: obtain a family of exact solutions for E@)(

Taking thex-Hermite transform of Eql, we get the

Proposition 2.1.[20] If & € HX,, then 7% & converges ~ following deterministic equations.

for all ze Og(M) for all g,M < co. 3 0 0 3

A useful property of the(-Hermite transform is that U(xt,2) + lfl(t,z)Li(x,t,z)Ux(x,t,z)
it converts thex-Wick product into ordinary (complex) + $5(t,2)Usx(x,1,2) = 0, (10)
product.

wherez € C is a parameter.

Proposition 2.2.[20] I &, € HX. then Now, we using F-expansion method to solve EG).(

—q To look for the travelling solitary wave solution of
AExm@=AEDAND. OGN ik e it and
for all zsuch that J#; & and 77 n exist. Uh(t,z) == Yn(t,z), with
For x-Brownian motion, we see that E(X1,2) i= kx+ u/t w(T,2)dT +C, (11)
0
Wy (t) = %BX (t) in qu' (7 wherek, u andc are arbitrary constants which are satisfy

ku # 0 andw(t,z) is a nonzero function of the indicated

Theg(efore, one advantage of working in the generalyariaples to be determined later. Hence, (E6) can be
spaceH”, of stochastic distributions is that it contains the transformed into the following ODEs.

solutions of many non-Gaussian stochastic differential ) ) .
equations, both ordinary and partial and in arbitrary u w(t,z)u + ki (t,z)uu + KCys(t,2u” =0, (12)
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where the prime denote to the differential with respect toBy the second set of coefficients we get the other solution
¢. In view of F-expansion method, the solutions of _12K2P(t, 2)
Eq.(12), can be expressed in the forms. u*(x,t,2) = ag+ TZ)’ F2(E*(x,t,2), (20)
,Z
& with 1
(&) = 3 aF'(2) (13) t
= E*(x,t,2) = k[x—/ a0 4 (1.2)
whereg; are constants to be determined later. considering 0

homogeneous balance betwegn and uu’ (the highest + 4K Qun(1,2)] dr} +c.

order nonlinear terms and the highest order partial ) . ) .
derivative ofu) in Eq.(12), then we can obtaiN = 2. So, From appendix A, we give solutions for some special

Eq. (13), can be rewritten as following cases as following.

u(x.t,z) = ag+arF (&) +aF2(§), (14) case 1. If we take P = 1,Q = 2 — 1 and
whereag,a; anda, are constants to be determined later. R = —m?(1—n?), we haveF (&) — ds(§). Hence, we
Substituting {4) with conditions in F-expansion method have

into (12) and collecting all terms with the same power of —pw(t,z) — 4K (2P — 1) Yir(t, 2)
FI(EF'(E)])(i=0,41,%+2,...,j = 0,1) as following U (xt,2) = kyi(t,2)
[aspt w(t,2) + kaoay Y (t,2) + K2ay Quu(t,2)| F —12K2 Yr(t,z
+[2a2pw(t,2) +k<,u1§t,z)[2aoa2+a§] ﬁi)() ds*(&(xt,2)), (21)
+8k3a,Qui(t,2)| FF (15)

+[3karax Yu(t,2) + 6k3a  Pyn(t,2)] F2F' —12k2 Yr(t,2) 42

(¢i(xt2), (22

+[2ka3 Y (t,2) + 24K P o (t,2) | F3F = 0. Yn(t,2)
Setting each coefficients & (£)[F/(£)]! to be zero, we  With
et a system of algebraic equations which can be express t
porasy gebraiced Press 2 = Kfx— [ [aoua(r.2
apl w(t,z) +kapag Ys(t,2) + k3a1Ql,Uz(t,Z) =0, + N (Zmz —1) WZ(TaZ)] d-[-} e
2a 4 w(t,2) +kyn(t,z)[2a0a, + a2
+8k3a; QU (t,z) =0, (16) I Inthe limit case whem— o, we haveds(é) — csq€),
Skagap Yn(t,z) + 6k3a1PqJ2(t,z) =0, thus @1) and @2) become.
2kajyn(t,2) + 24k%a P @(t,2) = O, (g _ —HOLD) + 4K yn(t,2)
with solve the system in1@) to get the two sets of Uz(X,t,2) = kyn(t,2)
coefficients as the following 2
—12k wZ(taz)
a =0, g CSCEkxt), (23)
_ —Hw(t2-4KCQup(t2) _12k2
NETT R A7) us(xt,2) =ag+ %ﬁ@ osé(&5(x1.2), (24)
a = —125121?%@72)7 with
t
and &0t.2) = kx— [ [a04a(r.2)— 4K go(r.2)] d] +c.

a; = 0, ag = ag (free parameter)
II. In the limit case whenm — 1 we have

_ —12K2Pyp(t2) ds(&) — csch(€), thus 1) and @2) become.
R="prg (18) ;
—H w(t,Z) —4k qJZ(taZ)
) us(x,t,z) =
_ —k[aown(t.2)+4KQup(t2)] kyn(t,2)
w= .
g —12k? WZ(taZ) 2
Substituting by two sets of coefficients in EGS4nd18) + Tt csch®(€(x,t,2)), (25)
into Eq.(L4) yields general form solutions of Eql)( So ne
by the first set of coefficients we get the following solution —12K2 Yu(t,2) )
W(xt.2) = —Hw(t,2) — 43 Qus(t,2) Uz(x.t,2) = a0+ Tty csch®(é3(x.t,2)),  (26)
T kyu(t,2) with
—12K°Pyn(t,2) _, t
= T T F2(E(x.t,2)). 19 * —k|x— 2 ,
.2 (&(xt,2) (19)  &(xt,2) k[x /0 [a0 Y (1,2) + 4K Yr(1,2)] dr} +c
(@© 2017 NSP
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(1-mP)?
4 1

Case 2.1f we takeP = %, Q= % andR =

thenF (&) — %. Hence, we have

—pw(t,z) —2k3 (MP + 1) Yh(t,2)
kyn(t,2)
—3Kk? (t,2) s?(&(x,t,2))
yn(t,2) [cnidn]z(f(x,t,z)f

us(x,t,z) =

(27)

“3K¢y(t2)  sP(&(xt,2))
Yi(t,2) [cnidn]z(f;{(x,t,z))’

uy(x,t,2) =ap+

(28)
with
t
E:{(X,t,Z) = k{X—/O [aol,Ul(T,Z)
+ 2K (MP+1) Wa(1,2)] dr} +c
I. In the limit case whem — o we havem
- cosé'?éizil- thus @7) and @8) become.
_ —Hw(t,2) - 2K gh(t,2)
Us(x,t,z) = ]
—3K2Yn(t,2)  Sin?(&(xt,2)) (29)

Y(t,2) [cos(E(X,LZ))il]z’

—3K%yp(t,2)  sin*(&5(xt.2))
¢u(t.2)  [cos(&(x.t,2) + 1]
(30)

us(x,t,2) =ap+

with
t
Eg(X,t,Z) = k[X_A [aO l,Ul(TaZ) +2k2 ‘,Uz(TaZ)] d-[:| +cC.

Il In the limit case whem — 1 we have—3)__

cn(&)=+dn(&)
- 517358, thus @7) and 28) become.

_uw(taz)_4k3 w2(tvz)
k(.IJl(t,Z)
—3Kyp(t,2) tanh*(&(x,t,2))
Uitz dsecP(E(xt,2)

Us(x,t,2) =

(31)

~3K2(h(t,2) tanh?(&(xt,2))
Yi(t,z)  dsech?(&3(xt,2)

Case 3. If we takeP = %, Q= 1*%"‘2 andR = %, then
F(&) — ns(&) +cs(€). Hence, we have

—pw(t,z) —2k3 (1 —2nP) Yhr(t,2)
kLﬂl(th)

—3K? Ur(t,2) 2
TLZZ) {”Sics} (E(xt,2),  (33)

u(x,t,2) = ap+ (32)

uz(x,t,z) =

—3K? (r(t,2)

Y(t,2) [”si 05} Z(Eé‘ (x,t,2))(34)

uz(x,t,2) =ao+
with
&0t2) =[x [ aoun(r.2)

+ 2K (1-2mP) o(1,2)] dt + .

I. In the limit case whem — o we havens(§) +-cs(§) —
csc(€) £cot(€), thus @3) and 34) become.
—pw(t,z) —2k3 Yr(t,2)

kqjl(tvz)

—3k? LI—’Z(t,Z) 2
it {CSCiCOI} (£(xt,2), (35)

ug(x,t,z) =

—3K? Yr(t,2)

=Rt )

[csci cotr(sg(x,t,z)).
(36)

Il. Inthe limit case whem— 1 we havens(§) +cs(&) —
coth(&) 4= csch(&), thus @3) and 34) become.

—H (A)(t,Z) +2k3 w2(tvz)

UQ(X,t,Z) = kqjl(t Z)

—3K2 ot 2) 2

“nts {cothicsch} (&(xt,2), (37)

a2
Us(x,t,2) = aw%zgﬂ
X [cothicschr(f;(x,t,z)), (38)

with
Gtz = "[X‘/Ot [0y (1,2) ~ 22 go(1,2)] dt | +c.

Obviously, there are other solutions for Etj))( These
solutions come from setting different values for the
coefficientsP, Q andR. (see Appendix A, B and C). The
above mentioned cases are just to clarify how far our
technique is applicable. For more details s&&20.

4 Non-Gaussian White Noise Functional
Solutions

In this section, we employ the results of the Sections 2
and 3 respectively, by using-Hermite transform to
obtain exact non-Gaussian white noise functional
solutions for Wick-type stochastic KdV equations).(
The properties of exponential, trigonometric and
hyperbolic functions yield that there exists a bounded
open setD € R x R4, g < o, M > 0 such that the
solutionsu(x,t,z) of Eq.(L0) and all its partial derivatives
which are involved in Eq10) are (uniformly) bounded
for (x,t,z2) € D x O@g(M), continuous with respect to

(@© 2017 NSP
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(x,t) € D for eachz € Og(M) and analytic with respectto =3(x,t) = k{x— /t [ag Wi (1)

z € Og(M), for all (x,t) € D. Therefore, Theorem 2.1 0

gives that there existsU(xt) € HY; such that + 2Kk? (1—2mP) Y4(1)] dr}+c.
U(x,t) = #; tu(x.t,2). Also,U(xt) are solves of Eql)

in HX,. Hence, by applying the inversg-Hermite
transform to the results of Section 3, we get exact

non-Gaussian white noise functional solutions of Eq. ( —Non-Gaussian White Noise Functional Solutions of

Trigonometric Type:

as follows.
—Non-Gaussian White Noise Functional Solutions of —HQ()+4K3Uh(t)  —12K> Yh(t)
JEFs Type: Ualxt) = KWA(t) T
Oy csC¥?(Z(x,1)), (45)
Us(xt) = —HQ(t) — 4K (2nF — 1) Yh(t)
wA = k@) Usint) — Q) -2k Y(t)  —3K2Yh(1)
—12K2Y5(1) oo ’ k4 (t) Hi(t)
7{[]1“) <>X ds (— (Xat))v (39) <> SinOXZ(E(X,t)) (46)
. 5 * [COSQX(E(x,t))il]QXZ’
Us(xt) = —HQ() — 2K (P + 1) Y5(t) | 3K Y4(1)
k#i(t) Hi(t) Uclxg) — —H Q(t)—2k3 Yh(t)  —3K2 Yh(t)
N SO2(Z (x,1)) ay YT T oy
- — 0x2’
[enx (Z(x,t)) £dn®x (= (x,1))] Oy [CSCOX(E(X,U)iCOlQX(E(XJ))}OXZ’ )
_ —HQ() -2k (1-2nP) Yh(t) | 3K Yh(t)
Ualt) = KW (t) " Hi(t) Uj(x,t) = &H—#(:;&(t) Oy cs@*?(Z;(x,1)), (48)
x2 1
Oy [ns@x(z(x,t))ics<>x(5(x,t))]<> . (41)
. —3Kk2Yh(t)
o Ui (xt) = ag+ — 12
Uixt) = a0+ o 28 o, ast(Z k), (@2) o
A(t) 0 Sinx2(Z(x,t)) (49)
. ~3K245(1) [oos? (Z5(x,1)) 1]
Us(x,t) = ag+———-"
qjl(t) —3K2 %(t)
sn%x3(Z3(x,1)) Us(x,t) = a0+
<>X [ Oy /= ) & dnox (= t }027 (43) wl(t)
n¥x (=5 (x nx (25 (x X
enPx (23 (%)) (Z3(x.1)) 0 {cchX(Eg‘(x,t))icotQX(Eg‘(x,t))rxz, (50)
2
Ui (x,t) = aﬁ%{fm with
t
<>X [HSOX(Eék(X,t)):I:CSOX(Eg(X,t))} <>)(27 (44) :4(X,t) ZK{X—/O [aoqjl('l')—4k2 (Ilz('l')} dT}+C,
with o t
Z(xt) = kx+H/0tQ(T)dr+c, =500 =k [ [o%a(0) + 26 wy(n)] dr 4o
—x t
=1(xt) = k{x—/o [0 (T) -Non-Gaussian White Noise Functional Solutions of
N 4k2(2mz—1)l#2(r)] dr}+c, Hyperbolic Type:
ety — 1y [ —HQ(t) — AR UL(t)  —12K2 Yb(t)
S50 = k{x~ [ a4 (1 Ur(xt) = T
+ 202 (P + 1) Y4(1)] dr}+c, 0y csch™r2(Z(x,1)), (51)
(@© 2017 NSP
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—uQ(t) —4K3Yh(t) —3k2Uh(t) —UAA -2k —3K?

Ug(x,t) = + Un(xt) = +
sy o) ) b ==, %
tanh®x?( = (x,t sin?(O1(x,1))
X T 2( (X)) (52) X > (59)
4sech¥x?(Z(x,t)) [cos(@1(x,t)) £1]
3 2
Uslxt) = “HRO 2D | 3K 4 Una(x t) — A2 =2k 3k
’ 0 W) KAz o
Ox2
Oy [cothOX( (x,t)) £ csch® (Z(x,1))] *, (53) X [CSC(@l(X,t))iCOT(Gl(X,t))} , (60)
—UAAy— 4K —12K?
U (xt) = g+ —12k* 44(t) Oy Ch2(Z(x1), (54) Upa(xt) = —= 1ka M csch?(@1(x,1)),
re CIOR (61)
3 2 2
—3k2‘-l-§(t) tanh<>X2(E (x,1)) Usa( _ —UA1A2 — 4k =3k tanh“(O1(x,1))
x _ ’ 14(x,t) = ;
S =0t Ty O aeaniz ) K2 b2 dseti(@(x)
(62)
—3K* $(t) —pAA 42K 3K
Ug (x,t) = ag+ ————2 Oy |cothOx (Z3(xt _ “HAA
500) i, Ox [t (E ) Uss(x.) T
Ox2 2
+ csch(Z5(x )] ", (56) x [coth(@y(x.t)) £esch(@y(x1)| ", (63)
with X —12k?
t Ulo(xt) =80+ — csG(Oz(x,1)), (64)
Z500t) =k{x— [ [ao¥(r) + 4K ()] dr } +c, 2
0 . —3Kk Sn(Os(x 1))
t Uiy (X,t) =ao+ 3 5 (65)
Z506t) =k{x— /0 [0 ¥A(1) 22 Ws(1)] dr } +c. 2 [cos(@3(x.1)) =1
—3K2 2
We observe that, for different forms 84 and45, we  Uj5(xt) =ap+ 3k [csc(eg(x,t)) =+ COt(@g(X,t))} ,
can get different solutions of Eq) from formulas in A2
above section. We promote this by the following example: (66)
—12k?
Example. Suppose  that. Q(t) = MWi(t), Unkt)=a+— csch?(@4(x,1)), (67)
WA(t) = A44(t), and Yh(t) = M(t) + AWy (t), where 2
WY, £ 0, A1,Az,A3 are arbitrary constants and —3Kk%A, tanh?(O4(xt))
A1A2A3 # O, [1(t) is integrable or bounded measurable Ugy(xt) =ao0+ A2 4sechZ(O4(x1))’ (68)
function onR and Wy (t) = By(t) is the 1-parameter , ’
non-Gaussia-white noise andy (t) is the 1-parameter | -3k
X-Brownian motion. We have thg-Hermite transform Uis(x,t) = a0+ 2 {COth(OF’(X’t))
W (t,2) = S"_o Xn(t)zn. Since expx (By) = exp[B; — &1, 2
wé(ha\)/e 2-onlt ) B%] icsch((%(x,t))} ) (69)
sin®x (By) = sin[BX(t)—%], with .
cos’x (By) = cos[By(t) — ‘?}, O1(x,t) = kx+ u)\l)\z/ A+c,
cotx (By) = cot[By(t) — 5], ° .
oS¢ (By) = osc[By(t) — 2], 7 @z(x,t):k{x—[ao)\z—4k2]/ Ab+c,
tanix (B;) = tanh[By (t) — %], Ot
cothx (By) = coth[By (t) — &, Os(x.t) = k{x- [ao)\2+2k2]/ Ab+e
sech®x (By) = sech[By (t) — ‘g}, Ot
cschx(By) = esch[By (t) - 5. Oa(x,t) :k{x— [aox\2+4k2]/ A}+c,
We have a nory-Wick version of non-Gaussian white Ot
noise travelling wave solutions of Eq.(1.1) as follows. Os(x,t) = k{x— [ao/\2—2k2]/ A}—|—C,
0
—UAA 44K —12K? 2
Uio(x,t) = KA 5, csC(G1(x1)),(58)  where A= (I‘I(T)dr+)\3[BX(t)—‘7]).
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: . Q R F(<)
5 Summary and Discussion 1] —1-nm? 2 nsf = gy, dcg = tg_rqéE
. : : 1] 22— 1-n? csf = g

The propagation of nonlinear wave in systems with e
polarity symmetry can be described by the KdV equations 1 | om2 — 1 —m2(1—m?) dsf = g_nf
(1.2). If the problem is considered in a non-Gaussian
stochastic environment, we can get non-Gaussian 711 szJrl <1*Z‘2>2 Lna_
stochastic KdV equations. In order to give the exacti————— - cnédne
stochastic solutions of the non-Gaussian stochastic KdV 7 2 2 nsé +cs§
equations, we only consider this problem in a1 ) id NS + dsf
non-Gaussian white noise environment, that is, we_* 2 4

investigate the variable coefficients stochastic KdV ]

equations (1.1). For this aim, we develop a non-Gaussian —Appendix B.

Wick calculus based on the theory of hypecomplexThe jacobi elliptic functions degenerate into trigonorizetr
systems L1(Q,dm(x)). Precisely, we use the direct fynctions whermm — O.

connection between the hypecomplex systems and th .

white noise analysis3[1] and the Delsarte characters z:i:Zm?(c:gg;:i%ss?ig:géic;r;ftii’ecf

Xn(X) to introduce ax-Wick product andyx-Hermite ndé — 1 csé—>cot€ dsé—>csc€ dcé—>sec£ ’
transform on the space of generalized functiblﬁfg (with ’ ’ ’ '
the zero spack,(Q,dm(x))) and discuss their properties.
By means of the usual properties of complex analytic
functions, we proved a characterization theoremHéE‘,
and setup a framework to study the SPDEs with The jacobi elliptic functions degenerate into hyperbolic
non-Gaussian parameters (for more details 2@p[ functions wherm — 1.

Finally, we employ this framework and F-expansion sné — tanhé,cné — seché,dné — seché,scé — sinhé,
method to give a multiple families of exact travelling sd& — sinh&,cdé — 1,nsé — cothé,nc€ — coshé,

wave solutions of KdV equation®) and non-Gaussian nd& — coshcsé — csché,dsé — csché, dcé — 1.

white noise functional solutions of Wick-type stochastic : .

KdV equations in 1), respectively. The obtained For more details (See Appendiogs3 andC.)[33,20).
solutions include functional solutions of JEFs,
trigonometric and hyperbolic types. Obviously, the
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applied to other non-linear PDEs in mathematical physics[
. . ] 1]A. S. Okb El Bab, H. A. Ghany and M. Zakarya, A
such ~as Kdv-Burgers, modified Kdv-Burgers, construction of non-Gaussian white noise analysis usiag th

KdV-Burgers-Kuramoto 35,26,9] generalized .

. e . theory of hypercomplex systemG|obal Journal of Science
Hirota-Satsuma CO.qu.ad KdV' systen27]2d, Z_hlber- Frontier Research: F Mathematics and Decision Sciences, 16
Shabat and Benjamin-Bona-Mahony equations. We (2016) 11-25.

observe that the used F-expansion Method has many othes) o s ‘okb EI Bab, A. M. Zabel, H. A. Ghany, Harmonic
particular solutions, depending on the paramefgr€ analysis in Hypercomplex systensternational Journal of
andR, this in turn gives many other exact solutions forthe  pyre and Applied Mathematics, 80 No.5 (2012), 739-750.
considered stochastic KdV equations. Also, we have[3]Yu. M. Berezansky, A connection between the theory
discussed the solutions of SPDEs driven by non-Gaussian of hypergroups and white noise analysiBeports on
white noise, this discussion is less detailed than the Mathematical Physics 36 (1995), 215-234.

Gaussian discussion but more general, because it deald] A. de Bouard and A. Debussche, On the stochastic Korteweg
with the dual pairing generated by integration with  de Vries equation). Funct. Anal. 154(1998), 215-251.

—Appendix C.

respectto a non-Gaussian measure. [5] A. de Bouard and A. Debussche, White noise driven
Korteweg-de Vries equatiod, Funct. Anal. 169(1999), 532-
558.
[6] A. Debussche and J. Printems, Numerical simulation ef th
Appendices stochastic Korteweg-de Vries equatiéysica D: Nonlinear

Phenomena 134 (1999), 200-226.
[7] A. Debussche and J. Printems, Effect of a localized ramdo
—Appendix A. forcing term on the Korteweg-de Vries equatidnComput.
Anal. Appl. 3 (2001), 183-206.
[8] R. L. Dobrushin and R. L. Minlos, Polynomials in linear
random functionsRussian Math. Surveys 32 (1977), 71-127.
[9] Z.T. Fu, S.K. Liu, S.D. Liu, New exact solutions to the
KdV-Burgers-Kuramoto equation. Chaos Solitons Fractals,
(F)2(&) = PF4&) + QF%(&) +R, 23 (2005): 609-616.

The ODE and JEFs: Relation between valuesH{J, R)
and corresponding (&) in ODE.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 3, 915-924 (2017)www.naturalspublishing.com/Journals.asp NS = 923

[10] C. S. Gardner, J. M. Greene, M. D. Kruskal, Method for [28] E. G. Fan, Soliton solutions for a generalized Hirota-

solving the Korteweg-de Vries equatioRhysics Review Satsuma coupled KdV equation and a coupled MKdV
Letters 19 (1967), 1095-1097. equationPhys. Lett. A. 2822001), 18-22.

[11] H. A. Ghany, Exact solutions for stochastic generalize [29]Z. Yan, The extended Jacobi elliptic function expansio
Hirota-Satsuma coupled KdV equatiorhin. J. Phys. 49 method and its application in the generalized Hirota-Satsu
(2011), 926-940. coupled KdV system,Chaos, Solitons and Fractals, 15

[12] H. A. Ghany, Exact solutions for stochastic fractional (2003), 575-583
Zakharov-Kuznetsov equation§hin. J. Phys. 51 (2013), [30] M. Wadati, Stochastic Korteweg-de Vries equatidrRhys.
875-881. Soc. Jap. 52 (1983), 2642-2648.

[13] H. A. Ghany and A. Hyder, White noise functional solmso  [31] A. M. Wazwaz,Partial differential equations and solitary
for the Wick-type two-dimensional stochastic Zakharov- waves theory, Springer-Verlag: Beijing (2009).
Kuznetsov equations|nternational Review of Physics 6 [32] G. C. Wick, The evaluation of the collinear matriRhys.
(2012), 153-157. Rev. 80 (1950), 268-272.

[14]H. A. Ghany and M. Zakarya, Generalized solutions of [33] Yu. Zhou, M. Wang, Yu. Wang, Periodic wave solutions to
Wick-type stochastic KdV-Burgers equations using Exp-  a coupled KdV equations with variable coefficierfysics

function method|nternational Review of Physics 8 (2014), Letters A, 308(2003), 31-36.

38-46. [34] H. Eleuch and R. Bennaceur, An optical soliton pair agion
[15] H. A. Ghany and A. Hyder, Local and global well-posednes absorbing three-level atomg, Opt. A : Pure Appl. Opt. 5

of stochastic Zakharov-Kuznetsov equatidrComput. Anal. (2003),528-533.

Appl. 15(2013), 1332-1343. [35] Y. Kuramoto and T. Tsuzuki, Persistent propagation of

[16] H. A. Ghany, A. S. Okb El Bab, A. M. Zabal, and A. Hyder, concentration waves in dissipative media far from thermal
The fractional coupled KdV equations: Exact solutions and  equilibrium,Progress of Theoretical Physics 55n0. 2,(1967),

white noise functional approacighin. Phys. B 22 (2013), 356369.

080501. [36] A. M. Zabel and Buthinah A. Bin Dehaish, Levy
[17] H. A. Ghany and M. Zakarya, Exact solutions for Wick-¢yp Khinchin Formula on Commutative Hypercomplex System,

stochastic coupled KdV equatior@lobal Journal of Science KYUNGPOOK Math. Journal 48 (2008), 559-575.

Frontier Research: F Mathematics and Decision Sciences 14
(2014), 57-71.

[18]H. A. Ghany and M. Zakarya, Exact travelling wave
solutions for Wick-type stochastic Schamel-KdV equations
using F-expansion methoBhysics Research International 1
(2014), 1-9.

[19] H. A. Ghany, S. K. Elagan and A. Hyder, Exact travelling
wave solutions for stochastic fractional Hirota-Satsuma
coupled KdV equationszhin. J. Phys. 53 (2015), 1-14.

[20] A. Hyder and M. Zakarya, Non-Gaussian Wick calculus
based on hypercomplex systenisfernational Journal of
Pure and Applied Mathematics, 109No. 3 (2016), 539-556.

Hossam A. Ghany
is Assistant Professor in
Department of Mathematics,
Helwan University, Cairo,
Egypt. Academic Positions;
From 1997 up to 2002;
Demonstrator in Department
of Mathematics, Helwan
University, Cairo, Egypt,

[21] J.-H. He and X.-H.Wu, Exp-function method for nonlinea From 2002 up to 2005;
wave equationsChaos, Solitons and Fractals, 30, no. 3,  Assistant Lecturer in Department of Mathematics,
(2006), 700708, Helwan University, Cairo, Egypt, From 2005 up to 2011;

[22] T. Hida and N. lkeda, Analysis on Hilbert space with Lecturer in Department of Mathematics, Helwan
reproducing kernel arising from multiple Wiener integral. University, Cairo, Egypt, From 2011 up to 2015; Lecturer
Proc. Fifth Berkeley Symp.Math. Sat. Probab. I1 (1965), 117-  in Department of Mathematics, Taif University, Taif,
143. Univ. California Press, Berkeley. _ Saudi Arabia, Now; He is Lecturer in Department of

[23] H. Holden, B. @sendal, J. Ubge and T. ZhaSigchastic  Mmathematics, Helwan University, Cairo, Egypt. He was
partlfsd differential equations, Springer Science+Business Visiting Mathematics Department, Imperial College,
Media, LLC, (2010). _ _ London, United Kingdom (2007). He is a member of the

[24] W. Junmin, Y. Xiao, Riemann theta functions solutions t Egyptian mathematical society (2003-now), he is
g}eNgr?l\i/r; S::%iﬁi‘;‘gi%%%?ggff)onzémtzeéga"ona' Jolma consultant in strategic-plan unit, ministry of higher

[25]T. Lindstrom, B. @ksendal and J. Ubge, StochaSticeducat'on.’ Egypt. He is referee in |nternqt|onal Journal of

Computation and Applied Mathematics and other

differential equations involving positive noise. In M. Baw ] ls. R hi E . | vsi di
and N. Bingham (editors)Sochastic Analysis. Cambridge ournals. Research Interests; Functional analysis and its

University Press: Cambridge, MA, (1991), 261-303. applications on mathematical physics and stochastic
[26] S.D. Liu, S.K. Liu, Z.H. Huang, Q. Zhao, New exact analysis such as white noise analysis, stochastic partial

solutions to the KdV-Burgers-Kuramoto equati&nog. Nat. differential equations, stochastic fractional partial
i, 9(1999), 912-918. differential equations. Furthermore, potential theory on
[27] H. Eleuch, N. Ben Nessib and R. Bennaceur, Quantumgroup, semigroup, hypergroup and hypercomplex
Model of emission in weakly non ideal plasnia,r. Phys. systems, the moment problem In different spaces group,
J. D 29(2004), 391-395. semigroup, hypergroup and hypercomplex systems,

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

924 %Ng\P) H. A. Ghany et al. : Non-Gaussian white noise functional Sohs...

Mohammed  Zakarya
is Assistant Lecturer in
Department of Mathematics,
Al-Azher University, Assiut,
Egypt. Academic Positions,
From 2012 up to 2015;
Demonstrator in Department

integral representation of positive and negative definite
functions, geometric properties of Banach spaces.

Abd-Allah Hyder
is Lecturer in Department
of Engineering Mathematics
and Physics Faculty of

Engineering, Al-Azhar of Mathematics, Al-Azher
University, Cairo, Egypt. a ) University, Assiut, Egypt,
Academic Positions; From 2015 up to Now; He is

From 2008 up to 2012; Assistant Lecturer in Department of Mathematics,
Demonstrator in Department Al-Azher University, Assiut, Egypt. He is a member
of Engineering Mathematics of the Egyptian mathematical society, a member
and Physics, Faculty of Engineering, Al-Azhar of the Egyptian syndicate of scientific professions
University, Cairo, Egypt. From 2012 up to 2014; (2006-now). He has published research articles in
Assistant Lecturer in Department of Engineering reputed international journals of mathematical and
Mathematics and Physics, Faculty of Engineering,mathematical physics. Research Interests; Functional
Al-Azhar University, Cairo, Egypt. From 2014 up to analysis and its applications on mathematical physics and
Now; He is Lecturer in Department of Engineering stochastic analysis such as Gaussian white noise analysis
Mathematics and Physics. He is a member of theand its application on stochastic partial differential
Egyptian mathematical society. In 2015, he received theequations, hypercomlex systems, harmonic analysis in the
prize of Prof. Bahaa Eddin Hilmi (The best PhD product of hypercomplex systems and a construction of
thesis) in mathematics, the Egyptian mathematicalnon-Gaussian white noise analysis and its applications on
society. Research Interests; Functional analysis and itstochastic partial differential equations.

applications on mathematical physics and stochastic

analysis such as white noise analysis its application on

stochastic partial differential equations, stochastic

fractional partial differential equations, furthermore

stochastic optimal control, hypercomlex systems and

non-Gaussian Wick calculus based on hypercomplex

systems.

(@© 2017 NSP
Natural Sciences Publishing Cor.



	Introduction
	SPDEs with Non-Gaussian Parameters
	Travelling Solitary Wave Solutions of Eq.(??)
	Non-Gaussian White Noise Functional Solutions
	Summary and Discussion

