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Abstract: An axisymmetric Stefan-type model is presented for glémiadf a cylindrical gas pipeline in sea-water, which is salv
numurically. Two simplified models are formulated, one ofisthadmits exact analytical solution. Comparison of the¢hmodels in
a particular case shows good agreement and indicates thiliesmodels could be useful in estimating ice thickness peljpies in

sea-water.
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1 Introduction An ice layer affects the heat exchange processes between
the gas flow and the environment as well as the pipeline
buoyancy. The general mathematical model of the process

In the northern seas, for example in the Barents Sea_,rl olves the alaciation model that is inseparable. strictl
pipeline glaciation is possible. involv glaciati IS Insep , sy

In the book "Models of sea gas-pipelinest] [the speaking, from the processes model in the gas flow.

mathematical models and algorithms for computing the, ~ The complete non-stationary gas transportation model
steady-state gas transportation in gas-pipelines runnin§ @ considerably complicated problem for numerical
from Shtokman gas-field in the Barents Sea to theSolution even in the qu:;15|—one—d|men3|onal formulation
Teriberka village were presented. These models enable tbtl-[4]. Any computation algorithm for the gas
calculate the temperature, the density, the pressure, thansportation system of equations involves a computation
velocity profile in the gas flow and the ice thickness uponalgorithm of heat exchange through the lateral surface,
the surface of pipeline for steady-state gas flow. In thet@king into consideration the varying over time ice layer
book the characteristic parameters values of the model arflickness. The ice layer thickness is of interest by itself
presented, in particular the ambient temperature of sefr Pipeline buoyancy estimation.

water T* = 272K, the freezing temperature of see-water  The possibility of simplifying the glaciation dynamics
T. = 271 K. A hot gas under pressure about 23 MPa ismodel is of great importance for creating effective
delivered to the inlet of pipeline. During the passage ofcomputational algorithms of gas transportation problems
the pipeline route the gas cools down due to heatvia sea gas-pipelines. In the present work a procedure for
exchange with the environment and due to gasdynamiobtaining such simpler models is proposed.

effects. For long sea gas-pipelines without compressor \ve consider a glaciation problem of a cylindrical gas
substations the gas temperatiligzt) at pipeline end  pipeline with radius R = 0.67 m. The pipeline is flowed
T. = 271 K. In these areas upon the outer surface oftemperature distributiofiy(t) of homogeneous pipeline is

pipeline glaciation may occur. Inl] the calculation ) _my
results of the ice thicknesses in steady flow of gas arede}cm'EOI asTo(t) = mp +t +m, wherem, [K/sec ], m;

given. In calculations of unsteady gas flow the ice [sec], mz [K] are dimensional constants. The choice of
formation dynamics is important, one depends on the gashis distribution is based on characteristic behavior &f ga
temperature, on the heat conductivities of the layerstemperature in cross-section distant from the inlet of
comprising the coat of the gas-pipeline, on the ambientpipeline. In such cross-section the gas temperature cools
temperature of sea water and on the flow over pipelinedown below the water-ice transition temperature. The

* Corresponding author e-maii:ermolaeva@spbu.ru

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/110333

926 NS 2 G. Kurbatova, N. Ermolaeva: Analysis of the cylinder gléicia...

parametemg corresponds to value of gas temperature in
this cross-section in steady flow, the parameter

corresponds to the cooling rate of gas temperature. In TREYH=T., t>%; )
practice the range of variation of the value; is of

interest between 271 K and 265 K. The pipeline

temperature behaviofy(t) for my = 15120 Ki/sec, Ad_T _q:Qd_y t>to: (5)
m, = 5040 sec,mg = 268 K is shown in Fig. 1. The or [riy ’ '

glaciation dynamics depends on the heat flux vector from

seawater to the glaciation fropft). The value of the heat

flux vector can be obtained from the external flow y|tO = Yo. (6)
problem of pipeline. In present paper this problem is not

considered. We assume axial symmetry, so that thane use the following designation®:is the radius of the
temperature T depends only on the radial coordinate andylinder [m]; p, A, & &= % are the density [kgv®], the

on time, T(r,t). It is assumed the radial component of they, o conductivity [W/m.K], the specific heat [kJ/kg.K]
and the thermal diffusivity of sea icenf/sec];Q = Qp, Q
is the latent heat (of fusion) for sea ice [kJ/kg]is the

T radial coordinate in cylindrical coordinate system;
269 | T =T(r,t) is the temperature distribution in ice layer [K];
] y = y(t) is the ice thickness [m] upon the surface of
268.8 pipeline at time momertt; q is the radial component of
] the heat flux vector from seawater to glaciation front;
268'65 r = R+y(t) is the coordinate of glaciation frony is the
26841 ice thickness at the initial timefp(t) is the temperature
T distribution in ice layer at the initial time. Byg = 0
268.21 following equalities holdT (r,t) = T(R,to) = To(to).
] Condition @) expresses that the front is at the freezing
2681 temperature. Eq.5) is the Stefan condition, which
7020 30 40 50 60 70t expresses the heat balance between the heat fluxes vectors

at the ice-water interface and an amount of heat released
Fig. 1: Behavior of pipeline temperature in a cross-section. ~ during ice formation. Eq.1) is the heat equation in ice
layer; Eqgs. 2), (6) are the initial conditions; EqJ3] is a
Derichlet boundary condition at the outer surfaces of
heat flux vectorq from seawater to glaciation front is pipeline.
known and unchanged, which is equaldge= 31 W /n?. In Model 1 the parameters, ¢ p, T., Q are

The condition q = const corresponds to the considered to be constant. In real problems it may need to
quasi-stationary solution of the heat equation in the watekake into consideration dependency of these
boundary-layer outside the pipelincan be represented  thermodynamic properties on the seawater salinity and on
in the formq = y(T* —T.), wherey is the heat transfer other factors].
coefficient. It depends on the thermal boundary-layer  pegpjte its simplifying assumptions the task still
thickness d., which, in turn, depends on the bottom romains 4 challenging problem for numeric solution. One
currents and on the convective stirring intensities by theg (elated to the nonlinear Stefan-type problems with a
change of water salinity near the phase-transition fro”tmoving boundary. There are various analytical and
[1]. . , ) ) numerical approaches to the solution of similar problems.
Let us write down the one-dimensional non-stationarythe reviews of such methods can be found, for example,

model of the homogeneous cylindrical gas pipelinej, [6]_[14]. Under conditiong = const Model 1 has no
glaciation dynamic under the assumptions made. self-similar solution.

As it is known, a method with the explicit tracking of
moving surface can be used for the numerical solution
2 Model 1 one-dimensional Stefan probleriH—[18]. We use the
method of Douglas and Galli€l}], [16], which is an
iterative finite difference method, with variable time

d_T = i‘ﬁ (ra—T) , re(RR+y), t>ty; (1) steps. In this approach the time step sige; is variable
ot ror\ or and at the(n+ 1)-th temporal level it is determined so
0 . that the ice thickness increased on constant Vialdering
T(rto) =TH(r), reRR+Yol; @ this time step. The valukis the space grid step size. The
convergence of this numerical method was proved for a
T(Rt)=To(t), t>to; 3 Stefan-type problem inlf], [16].
(© 2017 NSP
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3 Numerical algorithm Table 1: Numerical solution of the pipeline glaciation dynamics.
Yo, cm. | 0.1 1 2 3 4 5 6
th. | 014 | 1.89 | 498 | 952 | 1574 | 2393 | 3436

T, min. | 86 | 143 | 202 | 315 | 424 | 549 | 695

We calculate indicated problem in a dimensional form. A
uniform spatial grid with the step size(in meters)r; =
R+ih,i=0,1,...,Nisintroduced. We denot€ andrt, 1
time steps size at then+ 1)-th temporal level in thes-

th iteration and after iteration process end, respectively
the1=T1+ T2+ ...+ Tny1 is the overall process time (all
time values are expressed in seconds); T""* are the
ice temperature in thieth node at thén+ 1)-th temporal
level in thes-th iteration and after iteration process end,
respectively. The value§" and 1, are assumed known.
New values'l'in+1 andrty 1 are calculated as follows.

The time step sizeS is set. Eq. {) is approximated
by an implicit finite difference method and it is solved by
sweep method at the regione (R, R+ (n+ 1)h) using
boundary condition3), (4). Using found sequenck?, i =
0,...,n+ 1 the heat flux vectau, is calculated

are presentedf, is shown in hours. The bottom line
contains the time step size&s (in minutes).

In this example the ice layer thickness increases to 6
cm over about 35 hours. The calculations show Model 1
is sensitive to change of the valage In calculations we
applied the dimensional quantities, savas equal to 4
that corresponded to 0.1 sec. With this precision the
number of iterations at every time moment was not more
than 4. The obtained results show the ice temperature
distributionsT (r,t) are close to linear distributions. This
conclusion is in qualitative agreement with the measured
data on temperature distribution in growing sea e |

_ s s s The calculation of all pipeline glaciation process up to
G2 =A(Twra = T)/Ny - Tty = Te. achieve steady-state regime with a unchanged
- : temperature and a unchanged ice thickness advisable to
- The heat flux vectao; is calculated using the sequence perform in two stages. At the first stage Eq#)(€) are
! — AT =TI /h solved using the Douglas-Gallie scheme described above.
Q=AU =1o)/N. Here, we define the moment of tintg after which the

The time new step size®* ! in the (s+ 1)-th iteration ~ pipeline temperature can be assumed constant equal to

is defined using the valug® and heat fluxes;, o, g as and the temperature distribution in ice layer can be

follows considered close to quasi-stationary logarithmic
distribution (which under smalf and majorR is almost
linear).

1 = 154 Q(h—h%) /(91 —q), h®>=1%02,—0)/Q. From this momenty the solution of non stationary

problem ()(6) is approximated by the solution stationary
Hereq is a given heat flux from seawater to glaciation problem (Model 1).
front. The iterative process is terminated if the ineqyalit ,
|51 — 15| < € holds for a specified small quantity The Model 1
first time step size in the zeroth approximation can be
found, for example, using the known analytical Stefan _ .
problem solution 19]. Further the step value is refined TR =AM +BEIr reRR+Y, >k

according to the presented algorithm. For the following T(Rt)=mg, t>tp;

stepst as a zeroth approximation can choose previous

step sizer,. The ice layer thickness at time momenis T(R+yt) =T, t>to

equal tonh. B(t d
Using the Douglas-Gallie scheme, we calculated a )\L_q: _y’ t> to:

particular test case wusing the boundary value R+y dt

To(t) = mg/(mp +t) + mg, with q = 31 Wir?, and B

parameter values: y‘to = Yo.

3 The valuegy, Yo are defined using Model 1. The solution

R=067m A =23W/mK, p=928kgm", of Model I convenient to search in non-dimensional form.
Q=1335kJ/kg E=21kJkg.K T, =271K We introduce the dimensionless variables:

m; = 15120K/sec mp = 5040sec mg = 268K, (7)
h=0.001m £=0.1se¢

to =0sec Yo=0m. accepted characteristic valugs tx are equaly = 1 cm,
ty =1 hour.
As an example, in Table 1 we present the numerical The problem reduces to the ODE f@ft).
solution of the pipeline glaciation dynamics in seawater
with parameter values). In the table first line the values dy’ a b
of ice thicknesg, (in centimetres) at the time momept ar (R+y)In(1+y/R) (8)

Yy =y/ry, t'=t/ty, R=R/R
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with the initial condition density and gas pressure. The general complete model of
the processes is a considerably complicated. In numerical
}/\té =Yo- (9  solving the gas temperature is assumed either constant or

varying linearly during every time step. Of interest is
The dimensionless quantiti@s b and the dimensionless estimation the admissibility of replacement of non

radiusR’ of the pipeline for parameterg)(are equal to: stationary glaciation model by quasi-stationary one, unde
the linear temperature distribution at every time step. For
 A(To—mg) this purpose we consider two quasi-stationary variants of
= ——~———=079902 s o —
rgQ (10) Model 1 with linear temperature distribution of pipeline
T(Rt) =a+Bt, (a [K], B [K/sec]).
b:ﬂ:omsg R —67 (R1) Bt, (a [K], B[ 1)
Ix Model 2

The calculations using Model 1 show as ttjecan take
ty = 34.36, then the dimensionless valis equal to 6 and T(rt)=At)+B(t)Inr, re[RR+y], t>to;
the temperature distribution in ice layer is logarithmic. ]

For the numerical solution of the ODE initial value TRYO=a+pt, t=>l

problem B), (9) we used the Runge-Kutta method. The T(R+yt) =T, t>to
value of the dimensionless time step size was equal to 0.1.

The calculation results of the pipeline glaciation at the )\& —q= Qd_y t>to:
second stage are shown in Fig. 2. By the abscissa axis, R+y dt’ '
time in days is indicated, by the ordinate axis the ice _

thickness in in centimeters is indicated. For this model y|to =Yo.

problem the maximum thickness of the ice layeris g \ell as in Model 1 the problem now reduces to the
equal to 19.628 cm. For a real gas pipeline in steady-stat§imensionless ODE

regime the steady ice thickness is less even under lower

temperatures. For example, steady ice thickngsss dy’ a—ct

equal to 4.4 cm under the gas temperaflye 266.5 K ar — (R+y)In(1+y/R) b (11)
[1]. This difference is related to the influence of the

heat-insulation layers of a real gas pipeline on thewith the initial condition

glaciation its surface. The valye = 4.4 cm is calculated

in [1] for pipeline that has three heat-insulation layers. y ¢ = Yo- (12)

The dimensionless quantitia§ b, c in Model 2 are

y

) AMy(To—a At
20 a/:%, b:%, c= ZXB. (13)

18 rsQ Qrx r;Q

16 The numerical solution of the ODELY) with initial

condition (L2) presents no difficulty. In our calculation we

14 used the Runge-Kutta method. The results of test
12 calculations are presented below (Table 2).

g Model 3

6 For relatively small ice thicknesses the logarithmic

05030 4050 60 T0 + tgmperatqre'd|s§r|but|ons in ice layer are close to the
linear distributions which are solution of a

L o . guasi-stationary problem of plane glaciation process.

Fig. 2: Dynamic of ice growth during 70 days. Model 3 can be written as

T(rt)=Alt)+BMt)r, re[RR+y], t>t;

TR =a+pt, t=>t;

4 Simplified versions of Model 1
T(R—I—y,t):T*, t > to;

As mentioned in the introduction, calculation of

e , e ) , dy
glaciation dynamic of pipeline part, in which the gas )\B(t)—quE, t > to;
temperature cools down below the freezing point of
sea-water, is inseparable from calculation of temperature y|tO =Yo-
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In non-dimensional variableg,t’ the problem reduces to Table 2: Comparison of simulation results using simplified

the ODE: models.
t,h. | 2657 | 6.78 | 11364 | 16080 | 20873 | 25719 | 30.608
d)/ a —ct’ y1, cm. 1 2 3 4 5 6 7
W = y/ - b’ (14) Yo, CM. 1.021 | 2.018 3.018 4.021 5.027 6.036 7.046
i o . Y3, CM. 1.023 | 2.028 3.042 4.065 5.095 6.130 7.178
with the initial condition

. . . . parameters are ag)( exept initial conditionsty = 16416
where the dimensionless quantit&sb, c are defined by sec, v, = 0.003 m.

Egs. (3. The Eq. (4 follows from Eq. (1), when In Table 2,y;(t), y2(t), ys(t) are the dimensional ice
Yy /R < 1. In this case the approximate equality layer thicknesses at the corresponding tinen the first
N N line, obtained from Model 1,2,3, respectively with initial
(R+Y)In(L+y/R) ~ (R+Y)(Y/R) =Y. valuesy; — y» — y3 — 0.3cm at timeto — 0.456 h— 16416

sec. We see that the three models predict about the same

The ODE (4) can be analytically integrated. Under ice thickness, 7 cm. after 30.6 .

the condition/A = 4c— b? < 0 the solution is written in
/

. a
terms of the new variabbe=

as follows:

4

5 Conclusion
th—d
o™

— _} In i ? 7)((2) _ bX0+C _
t'—dy| 2 X0 X2 —bx+c In this paper the algorithms to the solution of the
(16) homogeneous cylindrical gas pipeline glaciation dynamic
w((zes) (5a))
—Ya )

In

problem are presented. The performed calculations prove
2x0 —d2 2x—d3 admissibility of using simplified quasi-stationary models
. The considered algorithms allow to estimate the
X0 = a _CtO’ dy =4//c, admissibility using of simplified glaciation models for
Yo many practical problems. In general model the capability
to use instead of the glaciation model 1 its simplified
o =b+/=A, dyg=b—y-A, di=b/(2y-A). models results in a significant decrease in the
The Eq. (6) is converted to the transcendental equationcomputational time when calculating the gas

for x: transportation by long sea gas-pipelines in the northern
seas. The generalization of presented mathematical
X X% —bxo+c 1/2 models and numerical algorithms of the pipeline with
Xo X2 —bx+C X heat insulating layers is not difficult.
y 2X—dp 2Xg — d3 da _ t'—dq
2Xg — do 2x—ds o té—dl7
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