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Abstract: An axisymmetric Stefan-type model is presented for glaciation of a cylindrical gas pipeline in sea-water, which is solved
numurically. Two simplified models are formulated, one of which admits exact analytical solution. Comparison of the three models in
a particular case shows good agreement and indicates that simple models could be useful in estimating ice thickness on pipelines in
sea-water.
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1 Introduction

In the northern seas, for example in the Barents Sea,
pipeline glaciation is possible.

In the book ”Models of sea gas-pipelines” [1] the
mathematical models and algorithms for computing the
steady-state gas transportation in gas-pipelines running
from Shtokman gas-field in the Barents Sea to the
Teriberka village were presented. These models enable to
calculate the temperature, the density, the pressure, the
velocity profile in the gas flow and the ice thickness upon
the surface of pipeline for steady-state gas flow. In the
book the characteristic parameters values of the model are
presented, in particular the ambient temperature of sea
waterT ∗ = 272K, the freezing temperature of see-water
T∗ = 271 K. A hot gas under pressure about 23 MPa is
delivered to the inlet of pipeline. During the passage of
the pipeline route the gas cools down due to heat
exchange with the environment and due to gasdynamic
effects. For long sea gas-pipelines without compressor
substations the gas temperatureTg(z, t) at pipeline end
may be lower than the seawater-ice transition temperature
T∗ = 271 K. In these areas upon the outer surface of
pipeline glaciation may occur. In [1] the calculation
results of the ice thicknesses in steady flow of gas are
given. In calculations of unsteady gas flow the ice
formation dynamics is important, one depends on the gas
temperature, on the heat conductivities of the layers
comprising the coat of the gas-pipeline, on the ambient
temperature of sea water and on the flow over pipeline.

An ice layer affects the heat exchange processes between
the gas flow and the environment as well as the pipeline
buoyancy. The general mathematical model of the process
involves the glaciation model that is inseparable, strictly
speaking, from the processes model in the gas flow.

The complete non-stationary gas transportation model
is a considerably complicated problem for numerical
solution even in the quasi-one-dimensional formulation
[1]–[4]. Any computation algorithm for the gas
transportation system of equations involves a computation
algorithm of heat exchange through the lateral surface,
taking into consideration the varying over time ice layer
thickness. The ice layer thickness is of interest by itself
for pipeline buoyancy estimation.

The possibility of simplifying the glaciation dynamics
model is of great importance for creating effective
computational algorithms of gas transportation problems
via sea gas-pipelines. In the present work a procedure for
obtaining such simpler models is proposed.

We consider a glaciation problem of a cylindrical gas
pipeline with radius R = 0.67 m. The pipeline is flowed
around by a sea-water at temperatureT ∗ = 272 K. The
temperature distributionT0(t) of homogeneous pipeline is

defined asT0(t) =
m1

m2+ t
+m3, wherem1 [K/sec ], m2

[sec], m3 [K] are dimensional constants. The choice of
this distribution is based on characteristic behavior of gas
temperature in cross-section distant from the inlet of
pipeline. In such cross-section the gas temperature cools
down below the water-ice transition temperature. The
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parameterm3 corresponds to value of gas temperature in
this cross-section in steady flow, the parameterm1
corresponds to the cooling rate of gas temperature. In
practice the range of variation of the valuem3 is of
interest between 271 K and 265 K. The pipeline
temperature behaviorT0(t) for m1 = 15120 K/sec,
m2 = 5040 sec,m3 = 268 K is shown in Fig. 1. The
glaciation dynamics depends on the heat flux vector from
seawater to the glaciation fronty(t). The value of the heat
flux vector can be obtained from the external flow
problem of pipeline. In present paper this problem is not
considered. We assume axial symmetry, so that the
temperature T depends only on the radial coordinate and
on time, T(r,t). It is assumed the radial component of the
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Fig. 1: Behavior of pipeline temperature in a cross-section.

heat flux vectorq from seawater to glaciation front is
known and unchanged, which is equal toq = 31 W/m2.
The condition q = const corresponds to the
quasi-stationary solution of the heat equation in the water
boundary-layer outside the pipeline.q can be represented
in the formq = γ (T ∗−T∗), whereγ is the heat transfer
coefficient. It depends on the thermal boundary-layer
thicknessδ∗, which, in turn, depends on the bottom
currents and on the convective stirring intensities by the
change of water salinity near the phase-transition front
[1].

Let us write down the one-dimensional non-stationary
model of the homogeneous cylindrical gas pipeline
glaciation dynamic under the assumptions made.

2 Model 1

∂T
∂ t

=
ã
r

∂
∂ r

(

r
∂T
∂ r

)

, r ∈ (R,R+ y), t > t0; (1)

T (r, t0) = T 0(r), r ∈ [R,R+ y0]; (2)

T (R, t) = T0(t), t > t0; (3)

T (R+ y, t) = T∗, t > t0; (4)

λ
∂T
∂ r

∣

∣

∣

∣

R+y
− q = Q

dy
dt
, t > t0; (5)

y
∣

∣

t0
= y0. (6)

We use the following designations:R is the radius of the
cylinder [m]; ρ , λ , c̃, ã = λ

ρ c̃ are the density [kg/m3], the
thermal conductivity [W/m.K], the specific heat [kJ/kg.K]
and the thermal diffusivity of sea ice [m2/sec];Q = Q̃ρ , Q̃
is the latent heat (of fusion) for sea ice [kJ/kg];r is the
radial coordinate in cylindrical coordinate system;
T = T (r, t) is the temperature distribution in ice layer [K];
y = y(t) is the ice thickness [m] upon the surface of
pipeline at time momentt; q is the radial component of
the heat flux vector from seawater to glaciation front;
r = R+ y(t) is the coordinate of glaciation front;y0 is the
ice thickness at the initial time;T0(t) is the temperature
distribution in ice layer at the initial time. Byy0 = 0
following equalities holdT (r, t0) = T (R, t0) = T0(t0).

Condition (4) expresses that the front is at the freezing
temperature. Eq. (5) is the Stefan condition, which
expresses the heat balance between the heat fluxes vectors
at the ice-water interface and an amount of heat released
during ice formation. Eq. (1) is the heat equation in ice
layer; Eqs. (2), (6) are the initial conditions; Eq. (3) is a
Derichlet boundary condition at the outer surfaces of
pipeline.

In Model 1 the parametersλ , c̃, ρ , T∗, Q̃ are
considered to be constant. In real problems it may need to
take into consideration dependency of these
thermodynamic properties on the seawater salinity and on
other factors [5].

Despite its simplifying assumptions the task still
remains a challenging problem for numeric solution. One
is related to the nonlinear Stefan-type problems with a
moving boundary. There are various analytical and
numerical approaches to the solution of similar problems.
The reviews of such methods can be found, for example,
in [6]–[14]. Under conditionq = const Model 1 has no
self-similar solution.

As it is known, a method with the explicit tracking of
moving surface can be used for the numerical solution
one-dimensional Stefan problem [15]–[18]. We use the
method of Douglas and Gallie [15], [16], which is an
iterative finite difference method, with variable time
steps. In this approach the time step sizeτn+1 is variable
and at the(n+1)-th temporal level it is determined so
that the ice thickness increased on constant valueh during
this time step. The valueh is the space grid step size. The
convergence of this numerical method was proved for a
Stefan-type problem in [15], [16].
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3 Numerical algorithm

We calculate indicated problem in a dimensional form. A
uniform spatial grid with the step sizeh (in meters), ri =
R+ ih, i= 0,1, . . . ,N is introduced. We denoteτs andτn+1
time steps size at the(n+ 1)-th temporal level in thes-
th iteration and after iteration process end, respectively;
tn+1 = τ1+ τ2+ . . .+ τn+1 is the overall process time (all
time values are expressed in seconds);T s

i , T n+1
i are the

ice temperature in thei-th node at the(n+1)-th temporal
level in thes-th iteration and after iteration process end,
respectively. The valuesT n

i and τn are assumed known.
New valuesT n+1

i andτn+1 are calculated as follows.
The time step sizeτs is set. Eq. (1) is approximated

by an implicit finite difference method and it is solved by
sweep method at the regionr ∈ (R, R + (n+ 1)h) using
boundary condition (3), (4). Using found sequenceT s

i , i =
0, . . . ,n+1 the heat flux vectorq2 is calculated

q2 = λ (T s
n+1−T s

n )/h, T s
n+1 = T∗.

The heat flux vectorq1 is calculated using the sequence
T n

i
q1 = λ (T n

1 −T n
0 )/h.

The time new step sizeτs+1 in the(s+1)-th iteration
is defined using the valueτs and heat fluxesq1, q2, q as
follows

τs+1 = τs +Q(h− hs)/(q1− q), hs = τs(q2− q)/Q.

Here q is a given heat flux from seawater to glaciation
front. The iterative process is terminated if the inequality
∣

∣τs+1− τs
∣

∣≤ ε holds for a specified small quantityε. The
first time step size in the zeroth approximation can be
found, for example, using the known analytical Stefan
problem solution [19]. Further the step value is refined
according to the presented algorithm. For the following
stepsτ as a zeroth approximation can choose previous
step sizeτn. The ice layer thickness at time momenttn is
equal tonh.

Using the Douglas-Gallie scheme, we calculated a
particular test case using the boundary value
T0(t) = m1/(m2 + t) + m3, with q = 31 W/m2, and
parameter values:

R = 0.67m, λ = 2.3W/m.K, ρ = 928kg/m3,

Q̃ = 335kJ/kg, c̃ = 2.1kJ/kg.K, T∗ = 271K,

m1 = 15120K/sec, m2 = 5040sec, m3 = 268K,

h = 0.001m, ε = 0.1sec,

t0 = 0sec, y0 = 0m.

(7)

As an example, in Table 1 we present the numerical
solution of the pipeline glaciation dynamics in seawater
with parameter values (7). In the table first line the values
of ice thicknessyn (in centimetres) at the time momenttn

Table 1: Numerical solution of the pipeline glaciation dynamics.
yn, cm. 0.1 1 2 3 4 5 6

tn, h. 0.14 1.89 4.98 9.52 15.74 23.93 34.36

τn, min. 8.6 14.3 20.2 31.5 42.4 54.9 69.5

are presented,tn is shown in hours. The bottom line
contains the time step sizesτn (in minutes).

In this example the ice layer thickness increases to 6
cm over about 35 hours. The calculations show Model 1
is sensitive to change of the valueq. In calculations we
applied the dimensional quantities, soε was equal to 0.1
that corresponded to 0.1 sec. With this precision the
number of iterations at every time moment was not more
than 4. The obtained results show the ice temperature
distributionsT (r, t) are close to linear distributions. This
conclusion is in qualitative agreement with the measured
data on temperature distribution in growing sea ice [5].

The calculation of all pipeline glaciation process up to
achieve steady-state regime with a unchanged
temperature and a unchanged ice thickness advisable to
perform in two stages. At the first stage Eqs. (1)(6) are
solved using the Douglas-Gallie scheme described above.
Here, we define the moment of timet0, after which the
pipeline temperature can be assumed constant equal tom3
and the temperature distribution in ice layer can be
considered close to quasi-stationary logarithmic
distribution (which under smally and majorR is almost
linear).

From this momentt0 the solution of non stationary
problem (1)(6) is approximated by the solution stationary
problem (Model 1′).

Model 1′

T (r, t) = A(t)+B(t) lnr, r ∈ [R, R+ y], t ≥ t0;

T (R, t) = m3, t ≥ t0;

T (R+ y, t) = T∗, t ≥ t0;

λ
B(t)
R+ y

− q = Q
dy
dt
, t > t0;

y
∣

∣

t0
= y0.

The valuest0, y0 are defined using Model 1. The solution
of Model 1′ convenient to search in non-dimensional form.
We introduce the dimensionless variables:

y′ = y/rx, t ′ = t/tx, R′ = R/Rx,

accepted characteristic valuesrx, tx are equalrx = 1 cm,
tx = 1 hour.

The problem reduces to the ODE fory′(t).

dy′

dt ′
=

a
(R′+ y′) ln(1+ y′/R′)

− b (8)
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with the initial condition

y′
∣

∣

t′0
= y′0. (9)

The dimensionless quantitiesa, b and the dimensionless
radiusR′ of the pipeline for parameters (7) are equal to:

a =
λ tx(T∗−m3)

r2
x Q

= 0.79902,

b =
qtx
Qrx

= 0.0359, R′ = 67.
(10)

The calculations using Model 1 show as thet ′0 can take
t ′0 = 34.36, then the dimensionless valuey is equal to 6 and
the temperature distribution in ice layer is logarithmic.

For the numerical solution of the ODE initial value
problem (8), (9) we used the Runge-Kutta method. The
value of the dimensionless time step size was equal to 0.1.
The calculation results of the pipeline glaciation at the
second stage are shown in Fig. 2. By the abscissa axis,
time in days is indicated, by the ordinate axis the ice
thickness in in centimeters is indicated. For this model
problem the maximum thickness of the ice layery∗ is
equal to 19.628 cm. For a real gas pipeline in steady-state
regime the steady ice thickness is less even under lower
temperatures. For example, steady ice thicknessy∗ is
equal to 4.4 cm under the gas temperatureT0= 266.5 K
[1]. This difference is related to the influence of the
heat-insulation layers of a real gas pipeline on the
glaciation its surface. The valuey∗ = 4.4 cm is calculated
in [1] for pipeline that has three heat-insulation layers.
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Fig. 2: Dynamic of ice growth during 70 days.

4 Simplified versions of Model 1

As mentioned in the introduction, calculation of
glaciation dynamic of pipeline part, in which the gas
temperature cools down below the freezing point of
sea-water, is inseparable from calculation of temperature,

density and gas pressure. The general complete model of
the processes is a considerably complicated. In numerical
solving the gas temperature is assumed either constant or
varying linearly during every time step. Of interest is
estimation the admissibility of replacement of non
stationary glaciation model by quasi-stationary one, under
the linear temperature distribution at every time step. For
this purpose we consider two quasi-stationary variants of
Model 1 with linear temperature distribution of pipeline
T (R, t) = α +β t, (α [K], β [K/sec]).

Model 2

T (r, t) = A(t)+B(t) lnr, r ∈ [R, R+ y], t ≥ t0;

T (R, t) = α +β t, t ≥ t0;

T (R+ y, t) = T∗, t ≥ t0;

λ
B(t)
R+ y

− q = Q
dy
dt
, t > t0;

y
∣

∣

t0
= y0.

As well as in Model 1′ the problem now reduces to the
dimensionless ODE

dy′

dt ′
=

a′− ct ′

(R′+ y′) ln(1+ y′/R′)
− b (11)

with the initial condition

y′
∣

∣

t′0
= y′0. (12)

The dimensionless quantitiesa′,b,c in Model 2 are

a′ =
λ tx(T∗−α)

r2
x Q

, b =
qtx
Qrx

, c =
λ txβ
r2

x Q
. (13)

The numerical solution of the ODE (11) with initial
condition (12) presents no difficulty. In our calculation we
used the Runge-Kutta method. The results of test
calculations are presented below (Table 2).

Model 3

For relatively small ice thicknesses the logarithmic
temperature distributions in ice layer are close to the
linear distributions which are solution of a
quasi-stationary problem of plane glaciation process.
Model 3 can be written as

T (r, t) = A(t)+B(t)r, r ∈ [R, R+ y], t ≥ t0;

T (R, t) = α +β t, t ≥ t0;

T (R+ y, t) = T∗, t ≥ t0;

λ B(t)− q = Q
dy
dt
, t > t0;

y
∣

∣

t0
= y0.
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In non-dimensional variablesy′, t ′ the problem reduces to
the ODE:

dy′

dt ′
=

a′− ct ′

y′
− b, (14)

with the initial condition

y′
∣

∣

t′0
= y′0. (15)

where the dimensionless quantitiesa′, b, c are defined by
Eqs. (13). The Eq. (14) follows from Eq. (11), when
y′/R′ ≪ 1. In this case the approximate equality

(R′+ y′) ln(1+ y′/R′)≈ (R′+ y′)(y′/R′)≈ y′.

The ODE (14) can be analytically integrated. Under
the condition△ = 4c− b2 < 0 the solution is written in

terms of the new variablex =
a′− ct ′

y′
as follows:

ln

∣

∣

∣

∣

t ′0− d1

t ′− d1

∣

∣

∣

∣

=−
1
2

ln

(

(

x
x0

)2(x2
0− bx0+ c

x2− bx+ c

)

)

−

− d4 ln

((

2x− d2

2x0− d2

)(

2x0− d3

2x− d3

))

,

(16)

x0 =
a′− ct ′0

y′0
, d1 = a′/c,

d2 = b+
√

−△, d3 = b−
√

−△, d4 = b/(2
√

−△).

The Eq. (16) is converted to the transcendental equation
for x:

(

x
x0

)(

x2
0− bx0+ c
x2− bx+ c

)1/2

×

×

((

2x− d2

2x0− d2

)(

2x0− d3

2x− d3

))d4

=

∣

∣

∣

∣

t ′− d1

t ′0− d1

∣

∣

∣

∣

,

which is easy to solve. The ice thicknessy′(t) is found
from the expressiony′(t ′) = (a′− ct ′)/x(t ′).

The found algoritms of glaciation dynamics
calculation using presented models show admissibility of
using simplified Model 2 and Model 3 for considered
class of problem according to the aforesaid suggestions
about axial processes symmetry, about constancy of the
heat flux vector and about the invariability of thermal
characteristics of sea ice.

We now compare simulation results using models
considered above for the case of linear-in-time surface
temperature:

T (R′, t ′) = α +β ′ t ′

with t ′ dimensionless time and dimensionless pipeline
radius R′. The constantsα, β ′ expressed in units of
temperature are taken to be equal toα = 270.35 K,
β = −0.00331 K. In calculation the characteristic values
rx, tx are equal torx = 1 cm, tx = 60 sec. The other

Table 2: Comparison of simulation results using simplified
models.

t, h. 2.657 6.78 11.364 16.080 20.873 25.719 30.608

y1, cm. 1 2 3 4 5 6 7

y2, cm. 1.021 2.018 3.018 4.021 5.027 6.036 7.046

y3, cm. 1.023 2.028 3.042 4.065 5.095 6.130 7.178

parameters are as (7), exept initial conditions:t0 = 1641.6
sec, y0 = 0.003 m.

In Table 2,y1(t), y2(t), y3(t) are the dimensional ice
layer thicknesses at the corresponding timet on the first
line, obtained from Model 1,2,3, respectively with initial
valuesy1 = y2 = y3 = 0.3cm at timet0 = 0.456 h= 1641.6
sec. We see that the three models predict about the same
ice thickness, 7 cm, after 30.6 h.

5 Conclusion

In this paper the algorithms to the solution of the
homogeneous cylindrical gas pipeline glaciation dynamic
problem are presented. The performed calculations prove
admissibility of using simplified quasi-stationary models.
The considered algorithms allow to estimate the
admissibility using of simplified glaciation models for
many practical problems. In general model the capability
to use instead of the glaciation model 1 its simplified
models results in a significant decrease in the
computational time when calculating the gas
transportation by long sea gas-pipelines in the northern
seas. The generalization of presented mathematical
models and numerical algorithms of the pipeline with
heat insulating layers is not difficult.
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