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Abstract: Spectral methods have been actively developed in the last decades. The main advantage of these methods is that they yield
exponential order accuracy if the function is smooth enough. However, for discontinuous functions, their accuracy deteriorates to
low accuracy due to the Gibbs phenomenon. The main purpose ofthis paper is to show that high order accuracy can be recovered
from spectral approximation contaminated with the Gibbs phenomenon if proper workarounds are applied. In this paper, we review
some spectral method convergence remedies including spectral collocation grid stretching method (SCGSM), spectral collocation
discontinuity inclusion method (SCDIM), and spectral collocation domain decomposition method (SCDDM) in pricing options. We
first perform barycentric interpolations on European vanilla, bull spread, and butterfly option payoffs, solve numerically the Black
Scholes partial differential equation (PDE) with the proposed workarounds of barycentric spectral methods and then perform numerical
comparisons. In this paper, the SDDM appears to be the most accurate workaround when solving a Black Scholes PDE with different
payoffs
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1 Introduction

The application and the investigation of spectral methods
in interpolation and approximation theory [5,7,11],
numerical integration [6,8,23], special function theory
[16], and computational fluid dynamics are important in
the study of orthogonal polynomials sequences. They are
powerful tools to approximate functions that are difficult
to compute and form part of the essential elements of
numerical integration and approximation of solutions in
differential, integral equations theories [26]. One can also
consult [21,22] for the spectral method applications in
quantum optics and electrical engineering.

Smooth functions are often approximated by using
polynomial interpolations since they provide a strong and
rapid convergence. However, for functions having
discontinuities in the domain of interest, polynomial
interpolants are unable to produce a high accuracy [17].
In the presence of such phenomenon the accuracy of high
order methods deteriorates. This is due to the well-known
Gibbs phenomenon that states that the pointwise
convergence of global approximations of discontinuous
functions is at most first order [12,20]. Thus, it is often

perceived that spectral methods are too sensitive and lack
robustness to allow the modelling of problems of realistic
complexity. These, by nature, are often non-smooth.

It is well-known that option prices and their
derivatives usually change dramatically near slope
discontinuities of the payoff functions due to the Gibbs
phenomena. The phenomenon affects the convergence
and solution of financial PDEs. This explains why the
application of spectral methods to the field of
computational finance is still limited. Several
workarounds exist and are commonly used to suppress or
avoid the phenomenon and then restore the exponential
accuracy of these methods [20]. These include filtering
[25], Gegenbauer reconstruction [9], grid stretching [3],
and domain decomposition [27,15] methods. The method,
which is mostly accurate, should have the exact location
of all discontinuities. Recently, the workarounds, with
regained robustness, have received considerable attention
in the field of finance, due to their effectiveness [18].

In this paper, we proposed other methodologies that
contribute in restoring higher convergence of spectral
methods and thus alleviate the Gibbs phenomenon in
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pricing options. These are SCGSM, SCDIM, and
SCDDM. The methodologies are not entirely new, only
the application, combination, and comparison of these
methodologies are quite novel in the field of finance.

The paper is structured as follows. Section2 describes
the mathematical model of the problem in consideration.
Section 3 reviews spectral collocation interpolation, in
barycentric form, and its enhancements, i.e., SCGSM,
SCDIM and SCDDM in pricing options. We apply these
interpolation methods on the payoffs of European call,
bull spread call, and butterfly spread options; and
thereafter perform numerical experiments. Section4 deals
with the application of these methodologies in the
financial options. Conclusions are drawn in Section5.

2 Problem descriptions and applications

To calculate or estimate the fair value of an option, we use
mathematical models. Under the assumption of the
geometric Brownian motion (GBM),the asset price is
given by

dS(t)
S(t)

= µdt+σdW(t), (1)

whereµ is the drift of the stock,σ is the volatility, and
W(t) is the standard Brownian motion (Wiener process).
The stock dynamics lead to the following PDE,
representing a standard European call and put option or
simply a Black-Scholes (BS) PDE [4],

1
2

σ2S2(t)
∂ 2V
∂S2 + rS(t)

∂V
∂S

+
∂V
∂ t

− rV = 0 (2)

whereV represents the call or put option price, with certain
final payoff at maturity, and (2) is valid if S> 0, 0≤ t ≤ T.
In both equations (1) and (2). The volatilityσ , is one of the
most important parameters. It is a statistical measure of the
market’s behaviour or the guarantee for the market to rise
or fall within a period of time. Its computation is done by
using the variance of the price or return. A high value of
volatility in the market indicates that prices change rapidly
in a short period of time.

The general boundary values condition of (2) are







V(S,0) = V0,
V(0, t) = f (t)

V(S, t)limS→∞ = g(t).
(3)

The initial and boundary condition determine the type of
financial option in consideration. For instance, a European
call option gives the holder the right to exercise the option
at maturity timeT. To buy the underlying asset at maturity
time T, it makes sense if the asset price is higher than the
exercise price(S> K), because one can buy the asset for
K and sell it immediately on the market forS. If this is not
the case, then the option is worthless. The payoff function

of a European call option has one discontinuity in the first
derivative and is given by

f (S) = max(S−K,0), (4)

whereS is the stock price andK is the strike price.
A bull spread is a neutral strategy that is a

combination of two call options. There are two strike
prices (two discontinuities in the first derivative of the
payoff) involved in the payoff function of a bull spread
option. The payoff function of a bull spread option is
given by

g(S) = max(S−K1,0)−max(S−K2,0), K1 < K2, (5)

whereS is the stock price, andK1 andK2 are strike prices.
A butterfly spread is a neutral strategy that is a

combination of a bull spread and a bear spread. It is a
limited profit, limited risk options strategy. There are
three strike prices (discontinuities) involved in a butterfly
spread and it can be constructed using calls or puts. The
payoff function of a butterfly spread option is expressed
as

h(S)=max(S−K1,0)−2max(S−K2,0)+max(S−K3,0),
(6)

whereK2 = (K1 +K3)/2, S is the stock price,K1, K2 and
K3 are three distinct strike prices such that
0 < K1 < K2 < K3. Figure 2.1 shows the payoffs of a
European call option, a bull spread call option, and a
butterfly spread option. For all tests performed in this
section, the parameters are chosen such that,K = 50 for
the European call,K1 = 40,K2 = 60 for a bull spread call,
andK1 = 30,K2 = 50,K3 = 70 for a butterfly call option.

3 Numerical interpolations and applications

In practice, we are often confronted with situations where
only a limited amount of data is accessible and it is
necessary to estimate values between two consecutive
data points. We can construct new points between known
data points by interpolation or smoothing techniques. In
finance, only a finite set of securities are traded in the
financial markets, therefore it is very important to
construct a sensible curve or surface from discrete
observable quantities using interpolation methods.

In this section, we describe spectral methods used to
interpolate the payoffs for European call, bull spread call,
and butterfly spread options and we review SCGSM,
SCDIM, and SCDDM in barycentric form.

To show the efficiency of present methods in
comparison with the exact solution we report the
maximum error which is defined by

L∞ = ||u−U ||∞ = max
16i6N

|u(xi)−U(xi)|, (7)

where u and U represent the exact and approximate
solutions, respectively. We refer byerror the absolute
value of the difference between the exact and the
numerical solution.
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Fig. 2.1: Payoff of a European call, bull spread call, and a butterfly call option. Left: K = 50. Middle:K1 = 40 andK2 = 60. Right:
K1 = 30,K2 = 50, andK3 = 70.

3.1 Spectral barycentric interpolation

The review done by [14] on the Lagrange interpolation
and the barycentric formula shows the importance of
discretisation in space with spectral methods. At first, a
polynomial uN(x) is considered to be found among the
vector space of all polynomials of degreeN such that
uN(x j) = u j with j = 0, .....,N. The result can be written
in the Lagrange form as ([10])

uN(x) =
N

∑
j=0

u jγ j (x), γ j =
N

∏
k=0,k6= j

x− xk

x j − xk
(8)

with the Lagrange polynomialγ j corresponding to the
nodex j with the property

γ j(xk) =

{

1 when j = k
0 otherwise . (9)

The disadvantages of (8) are
1. The evaluation of eachuN(x) needs anO(N2) additions
and multiplications.
2. The addition of a new pair of data(xN+1,uN+1) leads to
a completely new computation.
3. The presence of instability in the numerical computation
is certain.

For that reason, (8) requires modifications to overcome
these disadvantages. Berrut and Trefethen [3] modified (8)
such thatuN(x) can be computed inO(N) operations. This
yields the barycentric formulauN(x) as

uN(x) =
∑N

j=0
w j

x−xj
u j

∑N
j=0

w j
x−xj

, (10)

wherew0,w1, . . . ,wN are called barycentric weights. For
every set of points{xk}, there is a unique set of
barycentric weights{wk}. In this paper, we only consider
the Chebyshev pointsxk = cos( kπ

N ), k = 0,1,2, ....,N.,
with a set of barycentric weightsw0 = c/2,

wk = (−1)kc,k = 1, . . . ,N− 1, andwN = (−1)Nc/2 for
some non-zero constantc [2]. More details are given in
[3] to obtain (10).

The barycentric interpolation method is used to
approximate the solutions of a differential equation by a
polynomial which interpolates datauk = u(xk) at the
Chebyshev pointsxk = cos( kπ

N ), k = 0,1,2, ....,N. The
data uk must be determined by the polynomial
interpolants that satisfy the differential equation exactly at
the points xk. Depending on the smoothness of the
solution, the error will decline at a different rate asN
increases [24].

To represent the payoff of a European call, a bull
spread call, and a butterfly call option in the Chebyshev
interpolation form, we transformed the Chebyshev
domain[−1,1] to a physical domain[Smin,Smax]. We use,
without loss of generality,
S = 1

2(Smax− Smin)x + 1
2(Smax+ Smin), where x is the

Chebyshev point. The graphs in Figure3.1 are obtained
for Smin = 0, Smax= 100 andN = 200.

The error between the original payoff and the
approximated Chebyshev interpolated payoff of the three
call options is significantly lower, away from the jump
discontinuity points (K,K1,K2,K3) while it is very high at
the discontinuity points. This confirms the problem of
accuracy at these discontinuity points. To solve the
problem of low accuracy at those points, one can use
methods such as the grid stretching, discontinuity
inclusion, or domain decomposition methods.

3.2 Grid stretching

In the most common barycentric pseudospectral methods,
the interpolation points in the interval[−1,1] are the
Chebyshev collocation pointsyk, k = 0, . . . ,N. The
Chebyshev points are clustered near the boundaries of
[−1,1]. However, we need to accumulate these points in
the vicinity of the region of rapid change. One way to do
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Fig. 3.1: CorrespondingL2-Error between the numerical payoff and the Chebyshev interpolated payoff of a European call, bull spread
call, and butterfly call option withN = 200.

this is to use adaptive grids via coordinate
transformations. In Pindzaet al. [14], to overcome the
problem of discontinuity and differentiability in a payoff
condition at a strike price, grid refinement is one of the
best tools to retain a satisfactory accuracy of the spectral
method applied on those payoffs. The local grid
refinement is known to improve the accuracy of
numerical methods. In this paper, we use the conformal
mapg given in Pindzaet al. [14]

x= g(y) = β +
1
α

sinh
[

λ̄ (y− µ)
]

, (11)

where

λ̄ =
γ + δ

2
, µ =

γ − δ
γ + δ

, (12)

with

γ = sinh−1[α(1+β )], δ = sinh−1[α(1−β )], (13)

whereα andβ determine the location and the magnitude
of the region of rapid change. The conformal mapg is
constructed from

y= g−1(x) = µ +
1

λ̄
sinh−1[α(x− δ )]. (14)

A significant advantage of the rational collocation
method based on rational interpolation in barycentric
form is that tedious transformations using the chain rule
to approximate the derivatives ofu are not required, as it
is usual in other spectral collocation methods.

The method shows a significant improvement of the
approximation away from, and at the discontinuity points.
As represented in Figure3.2, the grid stretching method
(SCGM) recovers the approximation very well at all
levels. In all three cases, the error obtained using the
SCGM is of magnitude 10−14, as opposed to the error
obtained using a naive spectral collocation method with
an order of magnitude 10−2.

3.3 Discontinuity inclusion

Often the computation of certain problems with jump
discontinuity, involving piecewise analytic functions, can
be performed easily. However, it is difficult to
approximate functions with a single polynomial
accurately. A higher order of accuracy can be achieved by
modifying the spatial discretisation. A alternative is to use
spectral discretisation based on the discontinuity
inclusion approach. We divide the domainD = [a,b] into
M sub-domains D1 = (x(0),x(1)),D2 =

(x(1),x(2)), .....,DM = (x(M−1),x(M)), wherex(0) = a and
x(M) = b. The domainD is covered byM sub-domains as

D =
⋃M

µ=1Dµ . The collocation pointsx(n)j on Dn are
defined by

x(n)k =















x(n)−x(n−1)

2 cos
(

kπ
N

)

+ x(n)+x(n−1)

2 ,06 k6 N,
n= 1,
x(n)−x(n−1)

2 cos
(

kπ
N

)

+ x(n)+x(n−1)

2 ,16 k6 N,
26 n6 M.

(15)
The approximation ofu uses the formula (10), where the
barycentric weights{wk} are evaluated numerically. This
strategy will cluster grid nodes not only at the boundaries
located atSmin andSmax, but also at the singularity, which
is located at the strike price for European options. This
strategy is necessary to reduce the error caused by the
non-smooth kink in the payoff function of most options.
Note that this methodology is different from the domain
decomposition method in the sense that the continuation
condition is not needed here. In addition, all the matrices
are full matrices, whereas in the case of the domain
decomposition method the matrices are block diagonal
matrices.

The approximation of the different call options is also
improved at the discontinuity points when we use the grid
stretching method, but the method does not give absolute
accuracy for the solution. Figure3.3shows the superiority
of this method over the use of the Chebyshev interpolation

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 3, 939-950 (2017) /www.naturalspublishing.com/Journals.asp 943

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

S

lo
g

|e
rr

o
r|

 

 
u

N
(S)

v
N
λ,θ(S)

(a) European call options

0 20 40 60 80 100

10
−15

10
−10

10
−5

10
0

S

lo
g

|e
rr

o
r|

 

 
u

N
(S)

v
N
λ,θ(S)
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Fig. 3.2: Correspondingerror between the original payoff and the interpolated payoff, byusing the grid stretching method withN= 200
andα = 108.
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Fig. 3.3: Correspondingerror between the original payoff and the interpolated payoff, using the discontinuity inclusion method with
N = 200.

method. The method is 104 more accurate than the original
Chebyshev method.

3.4 Domain decomposition

Challenges arise when we want to approximate a function
with a jump discontinuity by using a high order spectral
or finite difference methods. More often, the jumps and
derivatives at discontinuity points of a function are known
and the derivatives can be easily computed. However, it is
difficult to accurately approximate a jump continuity in a
function, or its derivatives, when we use a single
polynomial. This is the case in option pricing problems.
To alleviate the problem, the use of some methods comes
at a cost to accuracy near the discontinuities or in the
computational cost, or in the implementation of the
method. Nevertheless, a simple approach such as the
spectral domain decomposition method can be used to
recover the accuracy at discontinuity points [12].
The application is often done when the basis function is

not continuous on the domainD [15].
Let D = [a,b], be broken into M sub-domains

D1 =(x(0),x(1)),D2 =(x(1),x(2)), .....,DM =(x(M−1),x(M)),

with x(0) = a,x(M) = b. In general,D is covered byND

sub-domains as

D =
ND
⋃

µ=1

Dµ , (16)

where each sub-domains has its own set of basis functions
and expansion coefficients

u(µ)(x) =
Nµ

∑
k=0

ũ(µ)k φ (µ)
k (x), x∈ Dµ , µ = 1, .......ND

(17)
The notationu(µ) represents the approximation in theµ th
domain, and the different sub-domainsDµ can touch or
overlap each other. For example, solving a second order
non-linear elliptic PDE or system of equation,

(N u)(x) = 0, x∈ D , (18)
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in the domainD ⊂ R
d with boundary conditions

g(u)(x) = 0 x∈ ∂D ,

where N and d denote the elliptic operator and
mappings, the matching conditions must satisfy.
Therefore, each functionsu(µ) defined only on the single
sub-domainDµ must fit together to form a smooth
solution of (18) over the full domainD . For infinite
resolution, the following conditions at the limit must hold
[15]:

1.When two sub-domains,Dµ andDν , touch each other
on the intersection surface, the function and its
derivative must be smooth, hence







uµ(x) = uν(x)
∂uµ

∂n (x) = − ∂uν

∂n (x)
x ∈ ∂Dµ ∩∂Dν .

(19)

2.When two sub-domains,Dµ and Dν , overlap each
other, the functionsu(µ) andu(ν) must be identical in
Dµ ∩Dν . Since the solution of a PDE is unique, we
must prove that, at the boundary of the overlapping
domain,

u(µ)(x) = u(ν)(x) x∈ ∂ (Dµ ∩Dν). (20)

An application of this approach on the different call
options leads to the results obtained in Figure3.4.

We compare the results obtained with the SCM to
those of the SCDDM. The results are shown in Figure
3.4. In all the cases Figure3.4 shows highly accurate
results are obtained with the SCDDM, while poor
accuracy in recorded with SCM. It is noted that for
N = 200, the magnitude of absolute error is 10−14 for
SCDDM and 10−2 for SCM. The SCDDM allows the
removal of the Gibbs phenomenon and restores spectral
accuracy for discontinuous problems.

Lastly, we investigate the numerical convergence of
the interpolation methods used in this section. We vary
the number of grid points and record the maximal error.
All the results are shown is Figure3.5. It can be observed
that SCM has very poor convergence. Other methods
detain a very fast convergence as compared to the SCM.
The SCDDM shows the best convergence as the number
of grid points are increased.

In the next section, we employ these methods to
numerically solve the Black Scholes PDE.

4 Numerical discretisation and application

PDEs are commonly solved by using basic approaches
such as finite difference, finite elements and spectral
method. Among these methods, finite difference method
appears to be the easiest to code. Since the method
converges only algebraically, a large number of grid
points and memory are needed. The other two approaches

expand the solution of PDEs in basis functions. However,
the difference is that finite element methods use many
sub-domains and expand the solution to low order in each
sub-domain. On the other hand, to obtain the solution to a
PDE, the spectral method uses few sub-domains with
high expansion orders compared to the finite elements
approach. The method offers a fast convergence and
accurate solution.

The work of the German mathematician, Hermann
Schwarz, is one of the fundamental beginnings of the
domain decomposition method (DDM). It was first
designed to solve PDEs on parallel computers. The
method solves boundary value problems by dividing the
interval into smaller boundaries called sub-domains and
recapitulates the solution between adjacent sub-domains.
DDM offers several advantages in mathematics, as
mention by [27].
Orszag [13] introduced the DDM in spectral method. His
work produced the multi-domain spectral method which
consists of matching the solution across different
sub-domain.

In the next subsection, we show the space
discretisation of Black Scholes PDE by means of the
domain decomposition method. Note that the domain
decomposition method is a generalisation of other
methods discussed in this paper.

4.1 Space discretisation using the domain
decomposition method

Suppose the domainK = [0,Smax] of (2) is broken into
M sub-domains K1 = (S(0),S(1)),K2 =

(S(1),S(2)), .....,KM = (S(M−1),S(M)), whereS(0) = 0 and
S(M) = Smax. On the intervalK , the solution of(2) will
be represented byV and on its decomposed domain
K̃n = [Sn−1,Sn] by Vn. All approximated solutions of
K , ˜K will be represented byVN andVN

n . Meanwhile,
the collocation points on Kn are denoted by

S(n)j ,0 6 j 6 N,1 6 n 6 M, with N as a known integer.

Therefore, we denoteS(n)j , 06 j 6 N,16 n6 M, as

S(n)j =
S(n)−S(n−1)

2
cos

(

jπ
N

)

+
S(n)+S(n−1)

2

,
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Fig. 3.4: Corresponding Log-Error when using the domain decomposition method on a European call (µ = 3, D1 = 0,D2 = 50,D3 =
100), bull spread call (µ = 4, D1 = 0,D2 = 40,D3 = 60,D4 = 100), and butterfly spread call (µ = 5, D1 = 0,D2 = 30,D3 = 50,D4 =
70,D5 = 100) option withN = 200
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Fig. 3.5: Numerical convergence of SCM, SCDIM,SCGSM and SCDDM

A patching method for the BS equation is written as































































































∂VN
1

∂ t

∣

∣

∣

S=S1
j

+ 1
2σ2S2 ∂ 2VN

1
∂S2

∣

∣

∣

S=S1
j

+

rS
∂VN

1
∂S

∣

∣

∣

S=S1
j

− rV N
1

∣

∣

S=S1
j
= 0

∂VN
2

∂ t

∣

∣

∣

S=S2
j

+ 1
2σ2S2 ∂ 2VN

2
∂S2

∣

∣

∣

S=S2
j

+

rS
∂VN

2
∂S

∣

∣

∣

S=S2
j

− rV N
2

∣

∣

S=S2
j
= 0

...
∂VN

M
∂ t

∣

∣

∣

S=SM
j

+ 1
2σ2S2 ∂ 2VN

M
∂S2

∣

∣

∣

S=SM
j

+

rS
∂VN

M
∂S

∣

∣

∣

S=SM
j

− rV N
M

∣

∣

S=SM
j
= 0,

j = 0 : N,

(21)

with the boundary conditions

VN
n−1

(

S(n−1), t
)

= VN
n

(

S(n−1), t
)

, n= 2 : M,

∂VN
n−1

∂S

(

S(n−1), t
)

= ∂VN
n

∂S

(

S(n−1), t
)

, n= 2 : M,

VN
n−1(S

(0), t) = f (t)
VN

n−1(S
(M), t) = g(t)

To discretise Equation (21) in space, we replace
∂VN

i
∂S

∣

∣

∣

S=Si
j

and
∂ 2VN

i
∂S2

∣

∣

∣

S=Si
j

by the following pseudo-spectral

approximations

∂VN
i

∂S

∣

∣

∣

∣

S=Si
j

= 2
∑N

p=0D(m)
jp

(

VN
i (S(i)p , t)−VN

i (S(i)j , t)
)

S(i)−S(i−1)
,

p= 1, ...,N−1

(22)
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and

∂ 2VN
i

∂S2

∣

∣

∣

∣

S=Si
j

= 4
∑N

p=0D(m)
jp

(

VN
i (S(i)p , t)−VN

i (S(i)j , t)
)

(

S(i)−S(i−1)
)2 ,

p= 1, ...,N−1

(23)

whereD(m)
jp are the entries of the differentiation matrix of

orderm= 1,2.
By setting

UN
ip(t) =VN

i (S(i)p , t),UN
1N(t) = f (t),UN

M0(t) = g(t)

and substituting (22), (23) into (21) we get

dUN
1 j (t)

dt +W1 = 0,
dUN

2 j (t)

dt +W2 = 0,
...

dUN
M j (t)

dt +WM = 0

(24)

where






























































W1 =
2σ2S2

(S(1)−S(0))
2 ∑N

p=0D2
jp

(

UN
1p(t)−UN

1 j(t)
)

+

2rS

(S(1)−S(0))
2 ∑N

p=0D jp

(

UN
1p(t)−UN

1 j(t)
)

− rU N
1 j(t)

W2 =
2σ2S2

(S(2)−S(1))
2 ∑N

p=0D2
jp

(

UN
2p(t)−UN

2 j(t)
)

+

2rS

(S(2)−S(1))
2 ∑N

p=0D jp

(

UN
2p(t)−UN

2 j(t)
)

− rU N
2 j(t)

...

WM = 2σ2S2
(

S(M)−S(M−1)
)−2

∑N
p=0D2

jpU + β ,
(25)

with
U =

(

UN
Mp(t)−UN

M j(t)
)

,

β = 2rS
(

S(M)−S(M−1)
)−2 N

∑
p=0

D jpU − rU N
M j(t),

and
UN

10(t) = UN
2N(t),

UN
20(t) = UN

3N(t),
...

UN
M−1,0(t) = UN

MN(t),

(26)

UN
1N(t) = f (t), UN

M0(t) = g(t).

∂VN
1

∂S

(

S(1)0 , t
)

=
∂VN

2
∂S

(

S(2)N , t
)

,

∂VN
2

∂S

(

S(2)0 , t
)

=
∂VN

3
∂S

(

S(3)N , t
)

,

...
∂VN

M−1
∂S

(

S(M−1)
0 , t

)

=
∂VN

M
∂S

(

S(M)
N , t

)

.

(27)

Equations (26) and (27) can be approximated by using (22)
and (23) as

(

2
S(1)−S(0)

)

∑N
p=0D(m)

0p

(

UN
1p(t)−UN

10(t)
)

= A ,
(

2
S(2)−S(2)

)

∑N
p=0D(m)

0p

(

UN
2p(t)−UN

20(t)
)

= B,

...
(

2
S(M−1)−S(M−2)

)

∑N
p=0D(m)

0p

(

UN
M−1,p(t)−UN

M−1,0(t)
)

= C ,

(28)
with

A =

(

2

S(2)−S(1)

) N

∑
p=0

D(m)
Np

(

UN
2p(t)−UN

2N(t)
)

,

B =

(

2

S(3)−S(2)

) N

∑
p=0

D(m)
Np

(

UN
3p(t)−UN

3N(t)
)

and

C =

(

2

S(M)−S(M−1)

) N

∑
p=0

D(m)
Np

(

UN
Mp(t)−UN

MN(t)
)

.

Therefore Equation (24) and (28) can be rewritten as a
system of differential algebric equations (DAEs) of the
form,



















Y′(t) = F(t,Y(t)),
Q1(t,Y(t)) = 0,
Q2(t,Y(t)) = 0,
Q3(t,Y(t)) = 0,

Y(0) = Y0,

(29)

with

Y(t) = [UN
10(t),U

N
11(t), ...,U

N
1N(t), ...,U

N
M0(t), ...,U

N
MN(t)]

T ,

Y0 = [V0(S
1
0),V0(S

1
1), ...,V0(S

1
N), ...,V0(S

M
0 ), ...,V0(S

M
N )]T ,

Y′(t)= [UN′

10(t),U
N′

11(t), ...,U
N′

1N(t), ...,U
N′

M0(t), ...,U
N′

MN(t)]
T

F(t,Y(t)) = [Fi j (t,Y(t))]{M×(N+1)}×{M×(N+1)},

Q1(t,Y(t)) = [Q11(t,Y(t)), ...,Q1,M−1(t,Y(t))],

Q2(t,Y(t)) = [Q21(t,Y(t)), ...,Q2,M−1(t,Y(t))],

Q3(t,Y(t)) = [Q31(t,Y(t)), ...,Q3,2(t,Y(t))],

and
Fi j (t,Y(t)) =−Ω + rU N

i j (t)

Ω =
2σ2S2

(

S(i)−S(i−1)
)2

N

∑
p=0

D2
jp

(

UN
ip(t)−UN

i j (t)
)

+E ,

E =
2rS

(

S(1)−S(0)
)2

N

∑
p=0

D jp
(

UN
ip(t)−UN

i j (t)
)

,

Q1,i(t,Y(t)) = [UN
i0(t)−UN

i+1,N(t)],

Q2,i(t,Y(t)) =
N

∑
p=0

(α1,−α2),
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α1 = 2
(

S(i)−S(i−1)
)−2

D0p
(

UN
ip(t)−UN

i0(t)
)

,

α2 = 2
(

S(i+1)−S(i)
)−2

DNp
(

UN
i+1,p(t)−UN

i+1,N(t)
)

,

Q3,1(t,Y(t)) =UN
0N(t)− f (t),

Q3,2(t,Y(t)) =UN
M0(t)−g(t).

The above discretisation (29) leads to the semi-discrete
linear system

Y′ = AY+b(t), b(t) = ε1+ ε2e−rt , (30)

whereA is either a block dense diagonal matrix or a dense
matrix depending on the number of domains in
consideration. The parametersε1 andε2 are given by the
boundary conditions.

4.2 Exponential time differencing schemes

The above discretisation (29) leads to the semi-discrete
linear system

Y′ = AY+b(t), b(t) = ε1+ ε2e−rt , (31)

whereA is either a block dense diagonal matrix or a dense
matrix depending on the number of domains in
consideration. The parametersε1 andε2 are given by the
boundary conditions. Integrating the system of ODE (31)
on the interval[0 T] leads to the scheme

Y(T) = eATY(0)+eAT ∫ T
0 e−Atb(t)dt

= eATY(0)+G

where

G = A−1(eAT − I
)

ε1− (A− rI )−1(eAT −e−rT I
)

ε2,

andI is the identity matrix. Note that computation of the
price of European options using (32) requires forming the
matrix functionsf1(A) = eAT, f2(A) = A−1

(

eAT − I
)

and
f3(A) = (A− rI )−1

(

eAT −e−rT I
)

. In order to overcome
the numerical difficulties encountered in computing
matrix functions, we employ the Krylov projection
algorithm [19]. The key idea behind this method is to
approximate the product of a matrix functionϕ(A) (A is a
N × N matrix) and a vectorv, using projection of the
matrix and the vector onto the Krylov subspace
Km(A,v) = span{v,Av, . . . ,Am−1v}. The orthonormal
basis{v1,v2, . . . ,vm} of Km(A,v) is constructed using the
modified Arnoldi iteration [1,19] which can be written in
matrix form as

AVm =VmHm+ h̄m+1,mvm+1eT
m, (32)

where h̄m+1,m is an entry of the Hessenberg matrixHm,
em = (0, . . . ,0,1,0, . . . ,0)T is the unit vector with 1 as the

mth coordinate,

{v1,v2, . . . ,vm,vm+1} is an orthonormal basis ofKm(A,b),
Vm = [v1v2 . . .vm] ∈ R

N×m, and

Hm =VT
mAVm, (33)

is an upper Hessenberg matrix calculated as a side
product of the iteration. MatrixP = VmVT

m is a projector
ontoKm(A,v), thusϕ(A)v is approximated as a projection

ϕ(A)b≈VmVT
m ϕ(A)VmVT

mb. (34)

Recalling (33) and observing thatv1 = v/‖v‖2, we make
the final approximation through

ϕ(A)v≈ ‖v‖2Vmϕ(Hm)e1. (35)

The advantage of this formulation is thatHm is a m×m
matrix of smaller size(m≪ N) and and is therefore much
cheaper to evaluateϕ(Hm) thanϕ(A).

4.3 Numerical results

We apply the spectral approximation methods to value the
Black Scholes PDE (2) using the SCM, SCGSM,
SCDIM, and SCDDM. We use three different payoffs,
namelly a European call (4) and bull spread (5) and
butterfly spread (6) options. Hence, boundary value
conditions are expressed as, for a European call option

V(0, t) = 0, and V(Smax, t) = Smax−Ke−rt . (36)

For a European bull spread call option we have

V(0, t) = 0, and V(Smax, t) = Smax− (K2−K1)e−rt ,
(37)

with K1 < K2.
For a European butterfly spread call option

V(0, t) = 0, and V(Smax, t) = 0, K1 < K2 < K3. (38)

We solve the PDE (2) using the parametersr = 0.05,
σ = 0.2, K = 50,Smin = 0, Smax= 4K for a European call
option (36), r = 0.05,σ = 0.2,K1 = 60,K2 = 80Smin = 0,
Smax = 4K1 for a European bull spread call option (37),
andr = 0.05,σ = 0.2, K1 = 90,K2 = (K1+K3)/2, K3 =
110,Smin = 0, Smax= 4K1 for a European butterfly spread
call option (38). In each case, the number of grid points is
chosen to beN = 100.

We display the numerical and analytical solutions for
the above mentioned options in Figure4.1. The numerical
solutions are in good agreement with the analytical ones.
However, we only show numerical results obtained with
the domain decomposition method for clarity. Although
numerical solutions are in good agreement with the
analytical solutions, we would like to investigate how
close these solutions are. We plot the absolute difference
between numerical and analytical solutions in Figure4.2.
To avoid a huge truncation error, we useSmax = 4K for
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Fig. 4.1: Solution errors between the analytical and numerical solutions obtained using SCM, SCGSM, SCDIM, and SCDDM with
N = 100, r = 0.05,T = 0.5,σ = 0.2,Smax= 200,Smin = 0 for all options,K = 50 for a European call,K1 = 30,K2 = 70 for a bull spread
call andK1 = 30,K2 = 50,K3 = 70 for a butterfly call option.

0 50 100 150 200
10

−20

10
−15

10
−10

10
−5

10
0

S

er
ro

r

 

 

SCM
SCGSM
SCDIM
SCDDM

(a) European call option

0 50 100 150 200
10

−15

10
−10

10
−5

10
0

S

er
ro

r

 

 

SCM
SCGSM
SCDIM
SCDDM

(b) Bull spread call option

0 50 100 150 200 250 300 350
10

−20

10
−15

10
−10

10
−5

10
0

S

er
ro

r
 

 

SCM
SCGSM
SCDIM
SCDDM

(c) Butterfly call option

Fig. 4.2: Solutions of the Black Scholes equation under SMBS withN = 150, r = 0.05,T = 0.5,σ = 0.2,Smax= 200,Smin = 0 for all
options,K = 50 for European call,K1 = 30,K2 = 70 for a bull spread call andK1 = 30,K2 = 50,K3 = 70 for a butterfly call option.
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Fig. 4.3: Numerical convergence of SCM, SCDIM,SCGSM and SCDDM withN = 150, r = 0.05,T = 0.5,σ = 0.2,Smax= 200,Smin =
0,α = 104 for all options,K = 50 for European call,K1 = 30,K2 = 70 for a bull spread call andK1 = 30,K2 = 50,K3 = 70 for a
butterfly call option.
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call options andSmax = 4K1 for bull and butterfly spread
options. For the SCGSM, an additional parameter, the
grid stretching parameter, was chosen such thatβ = 104.
It is observed that the SCDDM has the smallest error of
magnitude 10−11, followed by the SCGSM with an error
of magnitude 10−8, the SCDIM with an error of
magnitude 10−5 and finally SCM with an error of
magnitude 10−2.

In the last experiment, we investigate numerical
convergence on these methods. We record the values of
the maximal error while varying the number of grid
points N. The results are shown in Figure4.3. In each
case, one can observe that the SCDDM detains the best
convergence compared to the other methods. The
convergence rate is exponential. The second best
convergence is achieved by the SCGSM. This
convergence depends on the choice of the grid stretching
parameterβ . One can use this parameter adaptively in
order to achieve exponential convergence [14]. The
SCDIM is the third best performing method. This method
only improves the convergence of the spectral method
without achieving exponential convergence. The SCM
has a very bad convergence due to the Gibbs phenomenon
at strike prices. In the presence of such a phenomenon,
the accuracy of high order methods deteriorates [12,20].

5 Conclusion

In this paper, we proposed a number of techniques to
remove the Gibbs phenomenon encountered in
interpolating non-smooth functions with spectral
methods. We shown that high order accuracy can be
recovered from spectral approximation contaminated with
the Gibbs phenomenon if proper workarounds are
applied. These include grid stretching (SCGM),
discontinuity inclusion (SCDIM), and domain
decomposition (SCDDM) methods in pricing options.
Numerical tests are performed on a European vanilla, bull
spread and butterfly option payoffs shown that the
SCGSM, SCDIM, and SCDDM provide an efficient way
to remove the Gibbs phenomenon. In the case of the
SCDDM, the exponential convergence was achieved in
pricing financial options. We are currently testing the
performance of these techniques on Levy models for
financial derivatives.

Acknowledgement

E. Pindza and F. Youbi are thankful to Brad Welch for the
financial support through RidgeCape Capital.

References

[1] W. Arnoldi, The principle of minimized iteration in the
solution of the matrix eigenvalue problem,Quarterly of
Applied Mathematics, 9 (1951) 17-29.

[2] R. Baltensperger, J. P. Berrut, and B. Noël, Exponential
convergence of a linear rational interpolant between
transformed Chebyshev points,Mathematics of Computation,
68 (1999) 1109-1120.

[3] J. P. Berrut and L. N. Trefethen, Barycentric Lagrange
Interpolation,SIAM Review, 46 (3), (2004) 501-517.

[4] T. Björk, Arbitrage theory in continuous time, 3rd edition,
Oxford Finance University Press, New York, (2009).

[5] E. W. Cheney, Introduction to Approximation Theory,
McGraw-Hill, New York, (1966).

[6] G. Dahlquist and A. Björck,Numerical Methods in Scientific
Computing, Volume I. SIAM, Philadelphia, (2007).

[7] P. J. Davis, Interpolation and Approximation, Dover
Publications Inc., New York, (1975).

[8] P. J. Davis and P. Rabinowitz,Methods of Numerical
Integration, Second Edition, Academic Press, (1984).

[9] D. Gottlieb and C. -W. Shu, On the Gibbs phenomenon
IV: Recovering exponential accuracy in a subinterval from
a Gegenbauer partial sum of a piecewise analytic function,
Journal of Computational and Applied Mathematics, 64
(1995) 1081-1095.
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