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Abstract: Spectral methods have been actively developed in the laatés. The main advantage of these methods is that they yield
exponential order accuracy if the function is smooth enoudwever, for discontinuous functions, their accuracyedetates to

low accuracy due to the Gibbs phenomenon. The main purpot@sopaper is to show that high order accuracy can be recdvere
from spectral approximation contaminated with the Gibber@menon if proper workarounds are applied. In this papereview
some spectral method convergence remedies includingrapeocilocation grid stretching method (SCGSM), spectralacation
discontinuity inclusion method (SCDIM), and spectral oodtion domain decomposition method (SCDDM) in pricingiamp. We

first perform barycentric interpolations on European Vanibull spread, and butterfly option payoffs, solve nunalycthe Black
Scholes partial differential equation (PDE) with the prego workarounds of barycentric spectral methods and théorpenumerical
comparisons. In this paper, the SDDM appears to be the mostate workaround when solving a Black Scholes PDE witledkfifit
payoffs

Keywords: Spectral methods, Gibbs phenomenon, Grid stretching, Doimalusion, Domain decomposition, Payoff, Financial
options.

1 Introduction perceived that spectral methods are too sensitive and lack
robustness to allow the modelling of problems of realistic

The application and the inVestigation of SpeCtral method%omp|exity_ These’ by naturE, are often non-smooth.
in interpolation and approximation theorys,¥,11],

numerical integration d,8,23], special function theory
[16], and computational fluid dynamics are important in

the study of orthogonal polynomials sequences. They ar h The ph e h
powerful tools to approximate functions that are difficult P"€nomena. The phenomenon affects the convergence

to compute and form part of the essential elements 01"’“10".30'9“On ?(f fmanmall PDESh' gh's explﬁlns f\.NTg th?
numerical integration and approximation of solutions in @PPlication of - spectral methods to the field o

differential, integral equations theorie2f]. One can also  computational - finance is still limited. Several
consult 1,22 for the spectral method applications in Workarounds exist and are commonly used to suppress or
quantum optics and electrical engineering avoid the phenomenon and then restore the exponential

Smooth functions are often approximated by usingaccuracy of these method2(]. These include filtering

polynomial interpolations since they provide a strong and[2): Gegenbauer reconstructiof][ grid stretching §],
rapid convergence. However, for functions having 2nd domain decompositio@], 15 methods. The method,
discontinuities in the domain of interest, polynomial which IS mostlly accurate, should have the exact Iocafuon
interpolants are unable to produce a high accurady. [ of aI.I discontinuities. Recently,_ the workarounds, W|th_
In the presence of such phenomenon the accuracy of higF?gam?d robugtness, have rece'lved cop3|derable attentio
order methods deteriorates. This is due to the weli-knowr|" the field of finance, due to their effectivenessj|

Gibbs phenomenon that states that the pointwise In this paper, we proposed other methodologies that
convergence of global approximations of discontinuouscontribute in restoring higher convergence of spectral
functions is at most first ordedp,20]. Thus, it is often  methods and thus alleviate the Gibbs phenomenon in

It is well-known that option prices and their
derivatives usually change dramatically near slope
iscontinuities of the payoff functions due to the Gibbs
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pricing options. These are SCGSM, SCDIM, and of a European call option has one discontinuity in the first
SCDDM. The methodologies are not entirely new, only derivative and is given by
the application, combination, and comparison of these
methgdpologies are quite novel in the fieldpof finance. f(8) =max(S-K,0), )
The paper is structured as follows. Sectibdescribes  whereSis the stock price anH is the strike price.
the mathematical model of the problem in consideration. A bull spread is a neutral strategy that is a
Section 3 reviews spectral collocation interpolation, in combination of two call options. There are two strike
barycentric form, and its enhancements, i.e., SCGSMprices (two discontinuities in the first derivative of the
SCDIM and SCDDM in pricing options. We apply these payoff) involved in the payoff function of a bull spread
interpolation methods on the payoffs of European call,option. The payoff function of a bull spread option is
bull spread call, and butterfly spread options; andgiven by
thereafter perform numerical experiments. Sectiaieals
with the application of these methodologies in the 9(S) = max(S—Ky,0) —maxS—Kz,0), K1 <Kz, (3)
financial options. Conclusions are drawn in Section whereSis the stock price, ankl; andK; are strike prices.
A butterfly spread is a neutral strategy that is a
combination of a bull spread and a bear spread. It is a
2 Problem descriptions and applications limited profit, _Iimiteq risk .op_ti_ons_strategy._ There are
three strike prices (discontinuities) involved in a butter

spread and it can be constructed using calls or puts. The

To calcula;e or estimate the fair value of an opt.ion, We USeavoff function of a butterfly spread option is expressed
mathematical models. Under the assumption of the,q

geometric Brownian motion (GBM),the asset price is

given by h(S) = maxS—Kj,0) —2maxS—Kjz,0) + maxS—Ks, 0),
dSt (6)
% = pdt+ odW(t), (1) whereK; = (K1 +K3)/2, Sis the stock pricek, Ko and

Kz are three distinct strike prices such that
where u is the drift of the stockg is the volatility, and 0 < K; < Kz < Ks. Figure 2.1 shows the payoffs of a
W(t) is the standard Brownian motion (Wiener process).European call option, a bull spread call option, and a
The stock dynamics lead to the following PDE, butterfly spread option. For all tests performed in this
representing a standard European call and put option osection, the parameters are chosen such Kat,50 for
simply a Black-Scholes (BS) PDE][ the European calK; = 40, Kz = 60 for a bull spread call,

andK; = 30,K; = 50,K3 = 70 for a butterfly call option.

1 v VvV oV
—UZSZ(t)a— + rS(t)a— + N _w-o 2
2 0F Js ot . . . L
3 Numerical interpolations and applications
whereV represents the call or put option price, with certain ) L
final payoff at maturity, and) is valid if S> 0, 0< t < T. In practice, we are often confronted with situations where

In both equationsl) and @). The volatility o, is one of the only a limited amount of data is accessible and it is
most important parameters. It is a statistical measureeof th€cessary to estimate values between two consecutive
market’s behaviour or the guarantee for the market to risél@t@ points. We can construct new points between known
or fall within a period of time. Its computation is done by dat& points by interpolation or smoothing techniques. In
using the variance of the price or return. A high value of finance, only a finite set of securities are traded in the

volatility in the market indicates that prices change rgpid inancial markets, therefore it is very important to
in a short period of time. construct a sensible curve or surface from discrete

The general boundary values condition 2 ére observable quantities using interpolation methods.
In this section, we describe spectral methods used to
V(S,0) = interpolate the payoffs for European call, bull spread, call
V(0,t) _ f(()i) 3) and butterfly spread options and we review SCGSM,
V(St)i o () SCDIM, and SCDDM in barycentric form.
ims o = O)- To show the efficiency of present methods in

- . . comparison with the exact solution we report the
The initial and boundary condition determine the type Ofmaximum error which is defined by

financial option in consideration. For instance, a European
call option gives the holder the right to exercise the option Leo = [Ju—U|le = max|u(x)—U(x)], @)

at maturity imeT . To buy the underlying asset at maturity 1<i<N

time T, it makes sense if the asset price is higher than thevhere u and U represent the exact and approximate
exercise pricéS > K), because one can buy the asset forsolutions, respectively. We refer bgrror the absolute

K and sell it immediately on the market f8rif thisisnot  value of the difference between the exact and the
the case, then the option is worthless. The payoff functiomumerical solution.
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(a) European call option (b) Bull spread call option (c) Butterfly call option

Fig. 2.1: Payoff of a European call, bull spread call, and a butterflyagation. Left: K = 50. Middle: K; = 40 andK, = 60. Right:
K1 =30,K, =50, anng =70.

3.1 Spectral barycentric interpolation W = (—1*c,k=1,...,N—1, andwy = (-1)Nc/2 for
some non-zero constant[2]. More details are given in
The review done byJ4] on the Lagrange interpolation [3] to obtain (L0).
and the barycentric formula shows the importance of The barycentric interpolation method is used to
discretisation in space with spectral methods. At first, aapproximate the solutions of a differential equation by a
polynomial un(x) is considered to be found among the polynomial which interpolates datey = u(xc) at the
vector space of all polynomials of degréesuch that  Chebyshev points, = cos(kﬁﬂ), k=0,1,2,...,N. The
un(xj) = uj with j = 0,.....,N. The result can be written data u, must be determined by the polynomial

in the Lagrange form as1fJ) interpolants that satisfy the differential equation ekeat
N N the points x,. Depending on the smoothness of the
X— Xk ; . . .
Un(X) = Z)ujyj(x), yj = : (8 solution, the error will decline at a different rate Bis
i= k=0k£] Xi — % increases?4].

To represent the payoff of a European call, a bull
with the Lagrange polynomiay; corresponding to the spread call, and a butterfly call option in the Chebyshev

nodex; with the property interpolation form, we transformed the Chebyshev
domain[—1,1] to a physical domaifiSmin, Snay. We use,
Vi (%) = lwhen j=k ) without loss of generality,
J 0 otherwise S = 2(Smax— Smin)X + 3(Smax+ Smin), Wherex is the

The disadvantages dB)are Chebyshev point. The graphs in FiguBel are obtained

. 2 s for Smin = 0, Smax= 100 andN = 200
;ﬁ;hnfuﬁgg:;?;%%gf eadin (x) needs aw(N7) additions The error between the original payoff and the

2. The addition of a new pair of dafay1,uUn-1) leads to approxi_mated Cheb_y_shev interpolated payoff of ‘h¢ three
a completely new computation ’ call options is significantly lower, away from the jump

3. The presence of instability in the numerical computationd'scommu'w pointsk, Ky, Ko, Kg) while it is very high at

is certain. the discontinuity points. Th_|s ponflrnjs the problem of
For that reasong) requires modifications to overcome accglracy ?tl these d|scont;n;1h|ty pomltst. To solve the

these disadvantages. Berrut and Trefeti@mpdified @) ~ PrOPI€M 0 low accuracy at those points, one can use

such thatiy (x) can be computed irf(N) operations. This _methqu such as the grid ”stretching, discontinuity
yields the barycentric formulay (x) as inclusion, or domain decomposition methods.

NoOW
_ 2j=05x Yj

SN ok
: In the most common barycentric pseudospectral methods,
wherewp, wy,...,wy are called barycentric weights. For the interpolation points in the intervdl-1,1] are the
every set of points{x}, there is a unique set of Chebyshev collocation pointg,, k = 0,...,N. The
barycentric weight§wy}. In this paper, we only consider Chebyshev points are clustered near the boundaries of
the Chebyshev pointg, = cos(kW"), k=0,12,..,N., [—1,1]. However, we need to accumulate these points in
with a set of barycentric weightswg = ¢/2, the vicinity of the region of rapid change. One way to do

, (10) 3.2 Grid stretching

Un (X)
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Fig. 3.1: Correspondingd.,-Error between the numerical payoff and the Chebyshevpnotated payoff of a European call, bull spread
call, and butterfly call option witiN = 200.

this is to use adaptive grids via coordinate 3.3 Discontinuity inclusion

transformations. In Pindzat al. [14], to overcome the ] ) o
problem of discontinuity and differentiability in a payoff Often the computation of certain problems with jump
condition at a strike price, grid refinement is one of the discontinuity, involving piecewise analytic functiongre
best tools to retain a satisfactory accuracy of the spectrdpe performed easily. However, it is difficult to
method applied on those payoffs. The local grid @Pproximate functions with a single polynomial
refinement is known to improve the accuracy of accurately. A higher order of accuracy can be achieved by
numerical methods. In this paper, we use the ConformamOdlfylng the Spatlal discretisation. A alternative is g®u

mapg given in Pindzaet al.[14] spectral discretisation based on the discontinuity
inclusion approach. We divide the domaih= [a, b] into
- - 1. .= M sub-domains 2 = (xO9xY) 2, =
x=9g(y)=B+ asmh[)\ (y—u)], (11) XV @), ..., Dy = (xXM-D xM)) wherex® = a and
where xM) = b. The domainZ is covered byM sub-domains as
2= y+9 [ = y—0 (12) 2 = U)_1%y. The collocation points<§”) on %, are
2’ y+9o’ defined by
with X(n)_;(n—l) COS(kWn) + x(n)+§((n*1) ’0 g k g N,
n=1
=sinh Ya(1+B)], d=sinhYa(1—B)], (@13 A .
y [a(1+B)] [a(1-B), (13) X K00 gk 4 VY )y,
wherea andf determine the location and the magnitude 2<n<M.
of the region of rapid change. The conformal mays o (15)
constructed from The approximation ofi uses the formulalQ), where the

barycentric weight§wy} are evaluated numerically. This
strategy will cluster grid nodes not only at the boundaries
located atSyin andSnax but also at the singularity, which
is located at the strike price for European options. This
A significant advantage of the rational collocation strategy is necessary to reduce the error caused by the
method based on rational interpolation in barycentricnon-smooth kink in the payoff function of most options.
form is that tedious transformations using the chain ruleNote that this methodology is different from the domain
to approximate the derivatives afare not required, as it decomposition method in the sense that the continuation
is usual in other spectral collocation methods. condition is not needed here. In addition, all the matrices
The method shows a significant improvement of theare full matrices, whereas in the case of the domain
approximation away from, and at the discontinuity points. decomposition method the matrices are block diagonal
As represented in Figure.2, the grid stretching method matrices.
(SCGM) recovers the approximation very well at all The approximation of the different call options is also
levels. In all three cases, the error obtained using thémproved at the discontinuity points when we use the grid
SCGM is of magnitude 10", as opposed to the error stretching method, but the method does not give absolute
obtained using a naive spectral collocation method withaccuracy for the solution. FiguBe3shows the superiority
an order of magnitude 18. of this method over the use of the Chebyshev interpolation

y=g X)) =u+ /\1 sinh Y[a(x— 3)). (14)
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Fig. 3.3: Correspondingerror between the original payoff and the interpolated payofingishe discontinuity inclusion method with
N = 200.

method. The method is @nore accurate than the original not continuous on the domaiz [15].
Chebyshev method. Let 2 = [a,b], be broken into M sub-domains

= (X9 XY, g, = (xV x), .. gy = (xM-D xM)y,

3.4 Domain decomposition with x© = a,xM) = b, In general,Z is covered byNy,
sub-domains as

Challenges arise when we want to approximate a function N

with a jump discontinuity by using a high order spectral 7= U an (16)

or finite difference methods. More often, the jumps and p=t

derivatives at discontinuity points of a function are known where each sub-domains has its own set of basis functions

and the derivatives can be easily computed. However, it issnd expansion coefficients

difficult to accurately approximate a jump continuity in a

X ; L . N
function, or its derivatives, when we use a single (W) vy — o (1) (1) B

polynomial. This is the case in option pricing problems. Ut (x) = kzouk A0 XETy, p=1 Ng
To alleviate the problem, the use of some methods comes a (17)

at a cost to accuracy near the discontinuities or in therne notatioru(® represents the approximation in thien
computational cost, or in the implementation of the qomain, and the different sub-domaif, can touch or

method. Nevertheless, a simple approach such as thgyerjap each other. For example, solving a second order
spectral domain decomposition method can be used tQon-linear elliptic PDE or system of equation,

recover the accuracy at discontinuity pointg][
The application is often done when the basis function is (AU)(X)=0, xe€ 9, (18)
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in the domainz c RY with boundary conditions expand the solution of PDEs in basis functions. However,
the difference is that finite element methods use many
gu)(x) =0 x€d7, sub-domains and expand the solution to low order in each

. sub-domain. On the other hand, to obtain the solution to a
where .#" and d denote the elliptic operator and ppe the spectral method uses few sub-domains with
mappings, the matching conditions must satisfy. high expansion orders compared to the finite elements

Therefore, each functionst) defined only on the single approach. The method offers a fast convergence and
sub-domainZ,, must fit together to form a smooth ccyrate solution.

solution of (L8) over the full domainZ. For infinite o
resolution, the following conditions at the limit must hold ~ The work of the German mathematician, Hermann
[15): Schwarz, is one of the fundamental beginnings of the

domain decomposition method (DDM). It was first

designed to solve PDEs on parallel computers. The
method solves boundary value problems by dividing the
interval into smaller boundaries called sub-domains and

1.When two sub-domaing;, and %, touch each other
on the intersection surface, the function and its
derivative must be smooth, hence

UH(X) = U’ (x) recapitulates the solution between adjacent sub-domains.
AUk o DDM offers several advantages in mathematics, as
G (X) = =%y (X) (19) mention by P7]

x€ 0N 09,. Y eo

Orszag 13| introduced the DDM in spectral method. His
h Wwork produced the multi-domain spectral method which
consists of matching the solution across different
sub-domain.

2.When two sub-domainsz, and 2,, overlap eac

other, the functionsi®) andu(v) must be identical in
Pu N 2y. Since the solution of a PDE is unique, we
must prove that, at the boundary of the overlapping In the next subsection, we show the space
domain, discretisation of Black Scholes PDE by means of the
domain decomposition method. Note that the domain
UMW) =u¥(x) x€d(ZyN2). (20)  decomposition method is a generalisation of other

methods discussed in this paper.
An application of this approach on the different call seu 'n s pap

options leads to the results obtained in Fig8i4

We compare the results obtained with the SCM to
those of the SCDDM. The results are shown in Figure
3.4 In all the cases Figur8.4 shows highly accurate
results are obtained with the SCDDM, while poor . . . .
accuracy in recorded with SCM. It is noted that for 4.1 Space _d_lscretlsatlon using the domain
N = 200, the magnitude of absolute error isthfor ~decomposition method
SCDDM and 102 for SCM. The SCDDM allows the
removal of the Gibbs phenomenon and restores spectral
accuracy for discontinuous problems.

Lastly, we investigate the numerical convergence of
the interpolation methods used in this section. We varySuppose the domait¥” = [0, Snay Of (2) is broken into
the number of grid points and record the maximal error.M sub-domains .1z = (S9.8Y) . =
All the results are shown is Figu®e5. It can be observed (s<1)75(2>), ,,,,, = (S(M—l),sﬁ\/l)), whereS©® = 0 and
that SCM has very poor convergence. Other methodssM) — g .. On the interval#’, the solution of(2) will
detain a very fast convergence as compared to the SCMpe represented by and on its decomposed domain
The SCDDM shows the best convergence as the numbefz — (-1 S by V,,. All approximated solutions of

of grid points are increased. ¢ will be represented byN andV)N. Meanwhile,
In the next section, we employ these methods t0i,e collocation points on % are denoted by

numerically solve the Black Scholes PDE. Moo | <N.1<n<M, with N as a known integer
] 7 ~ ~ b ~ ~ 1 .

Therefore, we denolﬁ}”), 0<j<N,1<n<M,as
4 Numerical discretisation and application

PDEs are commonly solved by using basic approaches o _ g _gn-1) o (jn) . sm 4 gn-1)
- - N > T

such as finite difference, finite elements and spectral i > >
method. Among these methods, finite difference method
appears to be the easiest to code. Since the method
converges only algebraically, a large number of grid,
points and memory are needed. The other two approaches
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A patching method for the BS equation is written as  with the boundary conditions

N
Tast (SMt) = SE (s" ), n=2:m,
VA4 (SO.0) = 10
o s VaLi(S™.0) = g(t)
ot stl+ %UZSZT&%_ s-gl +
| i N
ov! N _ To discretise Equatior2(Q) in space, we re Iacg\/‘—’
S5 S:S}_Nl |szsjl =0 ! ise Equatiore() in space, we replaces 5=
2N
0‘\3/_5“‘ 3=52+ %azsza;VZN o + and % od by the following pseudo-spectral
i i . o
VN N approximations
auN ShoDy (VNS -y
N 2y N |
I 1 1229 4 FN Sh_gi-1) ’
S| N g =0 p=1..N-1
S &gjw M S:S'J‘/I ’ IR
j=0:N, (22)
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and Equations26) and @7) can be approximated by usin2g)
aZViN B zlp\)l=0 Dg?) (VIN(S<PI)7t) _VIN (Sﬁl),t)) and @3) as
0F |sg (S —gi-1)? | 57257 ) Sh-oDop (UN(® —UN(D)) = 7,
p=1..N-1 so2sr ) Ih-oDop (UN () —U(D)) = 2,
(23) :
whereD{" are the entries of the differentiation matrix of (W) 5N-0Dgp (Un')ll—l,p(t) - Ul\’)ll—l,o(t)) T (ia
orderm=12. 28
By setting with
. N
U =W"(S5),0), Ul (1) = £(0),Ullo(®) = g(1) of = (gaf%) > Dp (U1 ~UR(D).
and substitutingd2), (23) into (21) we get p;
2 m
dull () =0, B = (5(3) —S<2>> DZODM (U3Np(t) Ul ())
dUZ'() 7/2 = and
(24)
dU,\th(t) +WM _ 0 (g: (W) Z DNp UNN(t))
where Therefore Equation2d) and @8) can be rewritten as a
902 system of differential algebric equations (DAESs) of the
Vi e Dok (VO -UR®) = form, .
'(t) = F(t,Y(1)),
g 200 (U0 ~UN ) —Ufjo Qut.Y() = 0,
o Qa(t,Y(t)) =0, (29)
#a= (5 gy hoP (VO - U0 + Qi(t,YY<(t(>)§ -0
%Ep oDip (UZp( ) —Uy (t)) — U () with -
Y(t) = [U]'.\IO(t)vull.\ll(t)a 7U]'.\IN(t)7---aUI\,>|IO( ) 7U|\'>IIN(t)]Ta
Win =207 (SW - gM-1) "N (2% + B, o . .
(25) Yo = [VO(S)) VO(Sl)v" 7V0(S\l)7' 7V0($A)7"'7V0(S$)] )
" ’ FEY () = R (€Y O)) s 1) (v 1)
B=2rS (S“V') sM 1) > DipZ — U (1), Qu(t,Y (1) = [Qua(t, Y (1)), ..., Qum-1(t,Y(1))],
| = Q(t,Y (1)) = [Qaa(t,Y (1)), Q-1 (t, Y ()],
an
U{\“?(t — U%N ), Qs(t,Y(t)) = [Qsa(t, Y (1)), ..., Qa2(L, Y (1))],
Ugo(t) = Ugy (1), and
5 (26) Ri(t.Y(t) = —Q+1UlN()
Um 1,o(t) = Ul\')llN(t)a o- 0282 N (t)) e
UN(1) = £(1), UNo(t) = g(t) 7 K ’
N
2 (500) = 2 (s2.). &g 2,0 UBO L)
VN (2 )\ _ oV ((3)
% (87) == ()., Ql,i Ly >> ~ [UR) - U 10
: N
a\gg‘s,l( M—1)7t) _ % (S<NM)7,[) Qui(t,Y (1)) = pzo(al,—az),
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-2
a; = ( ) Dop (U Ui'g(t)) , {V1,V2,...,Vm,Vmy1} is an orthonormal basis &y (A, b),
. Vin= [V1V2...Vm] € RN*™M and

ap = (S(I+1 S(I) DNp(U|+1 p() Uil-\‘i-LN(t))’
Q331(t’Y(t)):UON(t)_f(t)’ is an upper Hessenberg matrix calculated as a side

Q32(t,Y(t)) = UNo(t) — g(t). product of the iteration. Matri® = ViV, is a projector
’ ontoKm(A,v), thus¢ (A)v is approximated as a projection

Hm = V] AVin, (33)

The above discretisatior?9) leads to the semi-discrete
linear system ¢ (A)b = ViV,T & (AVimV,! b (34)

Y =AY +b(t), b(t) =e1+ee", (30)  Recalling 83) and observing that; = v/||v, we make

whereA is either a block dense diagonal matrix or a dense the final approximation through

matrix depending on the number of domains in AW~ [[VI[-Vimd (H 35
consideration. The parametersande, are given by the oA V12V (Him) 1. (35)
boundary conditions. The advantage of this formulation is thif, is am x m

matrix of smaller sizém < N) and and is therefore much
o . . cheaper to evaluaig(Hm) thang (A).
4.2 Exponential time differencing schemes

The above discretisatior29) leads to the semi-discrete 4.3 Numerical results
linear system

We apply the spectral approximation methods to value the
Black Scholes PDE 2) using the SCM, SCGSM,

whereA is either a block dense diagonal matrix oradenseS‘CD”VI and SCDDM. We use three different payoffs,

matrix depending on the number of domains in namelly a European call4] and bull spread3) and

consideration. The parametersand&; are given by the buttgrgly spread optcljons fHenée bounda:ly V?Iue
boundary conditions. Integrating the system of OH) ( condilions are expressed as, for a Europe€an call option

Y =AY +b(t), b(t) =&+ e, (31)

on the interva[0 T] leads to the scheme V(0,t) =0, and V(Snaxt) = Snax— Ke ™. (36)
T
Y(T) = €'TY(0) + €T [y e A'b(t)dt For a European bull spread call option we have
=e\Y(0)+¥
V(0,t) =0, and V (Snaxt) = Snax— (K2 — K1) e—rt7

where (37)

1 T T T W|th Kj_ < K2

(T =Nea—(A-m) 7 -eMe, For a European butterfly spread call option

andl is the identity matrix. Note that computation of the (0.)
price of European options using3) requires forming the

matrix functionsf; (A) = eAT, fo(A) = A (eAT 1) and We solve the PDEZ) using the parameters= 0.05,
f3(A) = (A—rl)"1(eAT—e"T1). In order to overcome g =0.2,K = 50, Syin = 0, Smax = 4K for a European call
the numerical difficulties encountered in computing option 36), r = 0.05,0 = 0.2,K; = 60,K, = 80 Syin =0
matrix functions, we employ the Krylov projection S, .= 4K; for a European bull spread call optio87,
algorithm [L9]. The key idea behind this method is to andr =0.05,0 = 0.2, K; = 90,K, = (K1 +Kz)/2,Kz =
approximate the product of a matrix functigiiA) (Aisa  110,Syin = 0, Smax= 4Ky for a European butterfly spread
N x N matrix) and a vectow, using projection of the call option 38). In each case, the number of grid points is
matrix and the vector onto the Krylov subspace chosen to b&\l = 100.

Km(A,v) = span{v.Au...,A™1v}. The orthonormal We display the numerical and analytical solutions for
basis{vi,Va,...,vm} of Km(A,v) is constructed using the the above mentioned options in Figutel The numerical
modified Arnoldi iteration 1,19] which can be written in  solutions are in good agreement with the analytical ones.

=0, andV(Snaxt) =0, Ki <Ky <Ks. (38)

matrix form as However, we only show numerical results obtained with
— T the domain decomposition method for clarity. Although
AV = VinHm + Pmy1 mVim+- 16m, (32)  numerical solutions are in good agreement with the

— , . analytical solutions, we would like to investigate how
wherehm.1m is an entry of the Hessenberg mattn,  cjose these solutions are. We plot the absolute difference
em=(0,...,0,1,0,...,0)" is the unit vector with 1 as the  petween numerical and analytical solutions in Figé/2
mth coordinate, To avoid a huge truncation error, we uSgax = 4K for
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Fig. 4.1: Solution errors between the analytical and numerical gmigtobtained using SCM, SCGSM, SCDIM, and SCDDM with
N =100r =0.05T =0.5,0 = 0.2, Snax = 200, Syin = O for all options K = 50 for a European calk; = 30,K, = 70 for a bull spread
call andK; = 30,K, = 50,K3 = 70 for a butterfly call option.
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Fig. 4.2: Solutions of the Black Scholes equation under SMBS Witk 150,r = 0.05,T = 0.5,0 = 0.2, Snax = 200 Syin = 0 for all
options,K = 50 for European calK; = 30,K, = 70 for a bull spread call anid; = 30,K, = 50,K3 = 70 for a butterfly call option.
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Fig. 4.3: Numerical convergence of SCM, SCDIM,SCGSM and SCDDM Witk 150,r = 0.05; T =0.5,0 = 0.2, Snax = 200, Syjin =
0,a = 10* for all options,K = 50 for European callk; = 30,K, = 70 for a bull spread call ank; = 30,K, = 50,Kz = 70 for a
butterfly call option.
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call options andSnax = 4K; for bull and butterfly spread [2] R. Baltensperger, J. P. Berrut, and B. No&l, Exponéntia
options. For the SCGSM, an additional parameter, the convergence of a linear rational interpolant between
grid stretching parameter, was chosen such fhat 104 transformed Chebyshev poindathematics of Computation

It is observed that the SCDDM has the smallest error of 68 (1999) 1109-1120.

magnitude 101, followed by the SCGSM with an error [3]J. P. Berrut and L. N. Trefethen, Barycentric Lagrange

of magnitude 108’ the SCDIM with an error of Interpolation,SIAM Review46 (3), (2004) 501-517.
magnitude 105 and finally SCM with an error of [4] T. Bjork, Arbitrage theory in continuous timeSrd edition,
magnitude 102. Oxford Finance University Press, New York, (2009).

In the last experiment, we investigate numerical [S]E. W. Cheney, Introduction to Approximation Theory

McGraw-Hill, New York, (1966).
convergence on these 'method's. We record the valugs %] G. Dahlquist and A. BjorckNumerical Methods in Scientific
the_ maximal error while varying the_ number of grid Computing Volume 1. SIAM, Philadelphia, (2007).
pointsN. The results are shown in Figure3 In each 7]1P. J. Davis, Interpolation and Approximatign Dover

case, one can observe that the SCDDM detains the best Publications Inc., New York, (1975).

convergence compared to the other methods. Thegip j pavis and P. RabinowitzMethods of Numerical
convergence rate Is exponential. The second b‘?s Integration Second Edition, Academic Press, (1984).
convergence is achieved by the SCGSM. This[g]D. Gottlieb and C. -W. Shu, On the Gibbs phenomenon
convergence depends on the choice of the grid stretching  |v: Recovering exponential accuracy in a subinterval from
parameter3. One can use this parameter adaptively in  a Gegenbauer partial sum of a piecewise analytic function,
order to achieve exponential convergencel]] The Journal of Computational and Applied Mathematict
SCDIM is the third best performing method. This method  (1995) 1081-1095.

only improves the convergence of the spectral method10] J. L. Lagrange, Legons élémentaires sur les madiigpnes,
without achieving exponential convergence. The SCM données I'Ecole Normal en 1795, in Oeuvres VII, Gauthier-
has a very bad convergence due to the Gibbs phenomenon Villars, Paris, 7 (1877) 183-287.

at strike prices. In the presence of such a phenomenor1] J. C. Mason and D. C. Handscon@®hebyshev Polynomial

the accuracy of high order methods deteriorat@s70]. CRC Press, New York, (2003). _
[12] C. Markakis, and L. Barack, High-order difference and

pseudospectral methods for discontinuous problemsiv:
; 1406.4865v1 [maths.NA{2014) 1-9.
ncl n
5 Conclusio [13] S. A. Orszag, Spectral methods for problems in complex

In this paper, we proposed a number of techniques to geometrieSJOUrnal of Computational PhyS|p§7(1) (1980)
remove the Gibbs phenomenon encountered in 3770 _ o
interpolating non-smooth  functions with  spectral [14]PE'§'TdZEé K. Ct. Patli/(liatrhagd E(.:Ngggndda, \'/(/T?S]“C'lt'Em“ g
methods. We shown that high order accuracy can be Sre Itc olr-Mortrﬁcdor e € S.S. O'E' ine ISt lm;i/rovlclel
- : ; ectral Methods For Pricing European e Vanilla
recovered from spectral app.rOXImatlon contaminated with Aﬁd Exotic Options,Electronic EIJ'ransac‘t)ion on l\)llumerical
the Gibbs phenomenon if proper workarounds are Analysis 40 (2013) é68-293
applied. These include grid stretching (SCGM), (511, "5 "preiffer, L. E. Kidder, M. A. Scheel, and S. A.
dlscontlnu[ty inclusion (SCDIM)’. anq df’”?a'” Teukolsky, A multidomain spectral method for solving
decomposition (SCDDM) methods in pricing options.

! - elliptic equations,Computer Physics Communicatiods2
Numerical tests are performed on a European vanilla, bull - 5003), 253-273.

spread and butterfly option payoffs shown that the[ig] E. D. Rainville, Special FunctionsMacmillan, New York,
SCGSM, SCDIM, and SCDDM provide an efficient way (1960).
to remove the Gibbs phenomenon. In the case of thg17] M. Richardson, Chebyshev interpolation for functions
SCDDM, the exponential convergence was achieved in  with endpoint singularities via exponential and double-
pricing financial options. We are currently testing the  exponential transformsOxford University, Mathematical
performance of these techniques on Levy models for Institute, UK, (2012).
financial derivatives. [18] M. J. Ruijter, M. Versteegh, C. W. Oosterlee, On the
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technique Journal of Computational Finan¢el9(1) (2015)
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