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Abstract: This paper deals with fractal aesthetics and proposes a new fractal analysis method for the perceptual study of architecture.
The authors believe in the universality of formulas and aim to complement the architectural description in terms of proportion. Although
a well established fractal analysis method to describe the complexity of facades across different scales already exists, box-counting is
imprecise because of too many influences coming along with the method itself. The authors consider the self-similarity as an important
part of aesthetic quality in architecture. This is due to thefact that it describes a concept of consistency that holds everything together
from the whole to the smallest detail which refers to the classical meaning of the word symmetry. Hence, a new fractal analysis method
is introduced which so far has been applied to quantitative linguistics. Basically, elements of different order, called construct/constituent
pairs, are counted and related in a formula. In architecturethe pairing consists of likewise elements belonging to different orders, from
the overview, the fundamental elements to the smaller details. As a conjecture, some preferable fractal dimensions (from the aesthetical
point of view) are proposed for architectural structures.

Keywords: Architectural analysis, design analysis, fractal geometry, complexity, harmonic proportion, construct/constituent pairing,
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1 Introduction

1.1 Symmetry

The classical meaning of symmetry dates back to Greek
times and was described by Vitruvius Pollio (1914) as
“. . . a proper agreement between the members of the
work itself, and relation between the different parts and
the whole general scheme, in accordance with a certain
part selected as standard”. This understanding of the
word symmetry was common to Gothic Master Builders
and architects of the Renaissance (Ghyka 1977). It
describes the harmonic arrangement of elements which is
achieved by a certain relation between each (important)
part and between (important) parts and the whole. The
linking element is a common measure, the proportion.
Hence symmetry is measurement and can be calculated
from an even smaller part like the thickness of a column
or a modulus (Vitruvius 1914, Ghyka 1977).

1.2 Self-similarity as a factor of quality in
architecture

The classical notion of symmetry strongly reminds us of
Benot Mandelbrot’s (1983) term ‘self-similarity’. In fact,
unlike mathematicians, physicists still understand by
symmetry the invariantness under transformations and, in
particular, under scaling.

Architectural quality includes many different factors.
One of them concerns the linkage of architectural
components across different scales. This aspect is linked
to a specific property of fractals, known as
‘self-similarity’ or, more generally, ‘self-affinity’. With
theoretical (mathematical) fractals, even an infinitely
small part can represent an exact or at least a somehow
similar copy of the whole. This property is common in
nature (Mandelbrot 1981), but only for a limited range of
scales. That means from a certain scale onwards no more
copies of the whole can be identified. The same is true in
architecture. Moreover, in nature and architecture, each
part usually includes some variation. Nevertheless, there
are many situations when these parts are similar to each
other and to the whole. Thus, because of its definition as a
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structure with infinitely small and self-similar parts, a
fractal is only a product of theory. As a consequence, the
authors recommend calling objects that exhibit fractal
characteristics for a limited range of scales, fractal-like
objects (Lorenz 2013b). What these objects have in
common is their high complexity, whereas the underlying
laws are very simple.

In architecture, self-similarity equals the concept that
holds the building together, across many different scales;
from the whole to a very small detail (e.g. a
window-frame or an ornament). This is achieved e.g. by
the application of the same proportion ratio (a : b; e.g.
ratio between width and height) for each (important)
element, from the overview and main structures (e.g. bays
and main edges) to openings and even to the interior.
Finally, if a whole range of characteristic ratios of a
building are linked together by a modulus, the term
proportion describes the classical meaning of symmetry.

2 Motivation

This paper aims to develop further the application of
fractal analysis methods in order to measure both the
complexity of facades and the organising depth of similar
architectural elements (Jencks 1995). The authors’
opinion is that this will open up the possibility to describe
aesthetics in architecture by a number or a set of numbers.
The concept is linked to Pythagoras of Samos’ axiom
“Everything is arranged according to number and
mathematical shape” (Ghyka 1977), which was taken up
by Plato and their followers. In this context, proportion
becomes the fundament of order which is finally
perceived as harmony.

Currently, a well established fractal analysis method
introduced by Mandelbrot (1983) exists in form of
‘box-counting’, an approach which measures roughness
(density of lines). In architecture, the method was first
time used in the 1990s (Batty and Longley 1994, Bovill
1996; for more recent references see Eglash 2005, Gullet
2012, Harris 2012, Ostwald 2009, Ostwald and Vaughan
2008, Ostwald et al. 2008, Sala 2012, Wen and Kao
2005). Since then researchers have continued to apply
box-counting to facades of various architects (Bovill
1996, Ostwald and Vaughan 2008, Lorenz 2012).
However, only a few researchers have dealt with
architecture-specific influence factors of the method itself
(Ostwald et al. 2008, Lorenz 2009). Nonetheless, the big
advantages of the technique are:

–it is a simple algorithm, which is easily implemented,
and

–it offers a possibility to measure ‘self-similar’ as well
as ‘non-self-similar’ (or even non-fractal) objects
which is the reason why the method is called
universal.

The latter aspect is important, because architecture
will never produce pure fractals but only fractal-like

structures. However, due to various inadequacies (detailed
out later in this paper) box-counting only serves as a
comparison for another fractal analysis method.
Continuing the linguistic fractal analysis of texts by the
second author (Andres 2009, 2010, 2014), this paper
discusses its application to architecture. The idea behind
the method is to define construct/constituent pairs whose
lengths can be easily counted, and subsequently brought
into a formula. In linguistic terms, the first set of pairs
consists of semantic constructs and their constituents,
which are sentences/clauses. In the next step, words are,
in turn, the constituents of sentences/clauses, etc. The
paper will discuss architectural analogies of text
segmentations into different units of length. That means
the main focus lies on how a facade subdivision into
elements looks like to get a similar construct/constituent
to linguistic analysis. An advantage of using this method
is the minimization of influences and its universality. One
can therefore speak with this respect about thelanguage
of architecture.

2.1 Universality of formulas

Although the formulas are universal, they are not
sufficient in architecture. One exception is the usage of
proportion ratios, representing an attempt to establish the
order. In connection with aesthetics in architecture, the
authors are convinced of the importance of proportion
systems and especially about the specific significance of
the so-called metallic means such as the golden, silver
and bronze ratio (see equation 1). Basically, a metallic
mean expresses a continued fraction of the form (Andres
2015, Andres and Fišer 2005, de Spinadel 1998):

λ = k+
1

k+
1

k+
1
. . .

. (1)

with k= 1 for the golden ratio (λ = 1.6180),k= 2 for the
silver ratio (λ = 2.4142) andk = 3 for the bronze ratio
(λ = 3.3028). Because of its significance the authors will
relate the proportion ratio with the results of their
measurements using the construct/constituent pairing.
Finally and as a result, a formula will be established that
characterises the considered building. This may lead, in
turn, to specific formulas of architectural styles. In short,
the authors focus on formalism for architecture, as was
done in quantitative linguistics. Therein lies the key
difference between the two measurement methods: While
box-counting dimension describes the structure, the
formalism of construct/constituent pairing expresses a
statement about the style.
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3 Background

3.1 Self-similarity dimension

Each part of mathematical self-similar fractals like the
Koch curve represents the exactly same structure as the
whole. Thus, a precise relation exists between the number
of single parts and the considered scale. It is the
instruction rule that provides information about this
relation: In order to generate the Koch curve a line is
divided into three parts, whereby the middle part is
replaced by an equilateral triangle without its base (see
Figure 2). Hence, for the first iteration, the number (N) of
single parts is 4 and its scale (s) is 1/3rd. Finally, the
relation between number and scale defines the self-similar
dimension (Ds):

Ds =
logN

log
1
s

, (2)

provided the single parts are totally disconnected or, at
least, just touching.

3.2 Box-counting dimension

Since the self-similarity dimension cannot be calculated
for structures which are not self-similar, certain
alternative fractal analysis methods have become
established, including box-counting. With box-counting,
so to speak, pixelated representations of different
resolutions replace the analyzed object. For doing so a
mesh is placed over the object (see Figure 3 right). The
mesh size equals the reciprocal number of lattice boxes
across one row or the absolute size of a single box. The
number of boxes that completely covers the object is
counted. In order to minimize influences coming along
with the method, the position of the mesh in relation to
the measured object changes several times; Foroutan-pour
et al. (1999) recommend 100 grid offsets. Subsequently,
for a certain mesh-size only the smallest number of
covering boxes is taken into account. This is in
accordance with the fact that the box-counting dimension
demands the smallest number of covered boxes for a
certain grid-size (Peitgen et al. 1992). In the next step the
grid-size is reduced and measurement starts again. The
box-counting dimension between two mesh-sizes
(mesh-size 1 and mesh-size 2) is given as follows:

DB12
=

log
Ns2

Ns1

log
s1

s2

(3)

The repeated reduction of the mesh-size results in
several data points that are the product of the number of
covering boxes (N) and the particular mesh-size (s). With
normalizing the results in a double logarithmic graph

(logN versus logs), three different characteristics of the
data curve are possible: First, a clear trend becomes
apparent. In this case all points (at least within a limited
range of scales) approximately follow a straight line. That
indicates a clear connection between the number of
covering boxes and the mesh-size. It displays a specific
range of coherence where the whole and all elements
demonstrate similar roughness. The lower limit of the
range in architecture depends on the limited scale of
perception and can be derived from the smallest size of
used individual components. Visually in the graph, from a
certain grid-size onwards the data curve approximates to a
45 degree incline. This identifies the turnaround where
only single (one-dimensional) curves of the object are
measured. Since the slope equals the box-counting
dimension of the specific range this is supported by the
calculation of the 45 degrees slope withDs = 1 (see
Figure 4). The second characteristic, which is similar to
the first, displays two clearly separate trends before the
data curve approximates to a 45 degree incline (e.g.
south-east elevation of Le Corbusiers Villa Savoye,
Lorenz 2013b). Finally, the last case concerns fluctuating
data points, which means no connection exists between
number of covering boxes and grid-size.

As a consequence of the above, the curve progression
is of a great importance. The coefficient of determination
provides quantifiable information. A value close to one
indicates a high correlation of the data points and,
consequently, a similar roughness across the considered
range of mesh-sizes (as described in the first two cases).
Vice versa a value close to zero indicates no correlation
(as described in the last case of fluctuating data points).
According to Bovill (1996), the box-counting dimension
– which is equivalent to the fractal Hausdorff dimension
(Mandelbrot 1983)- is a characteristic value of how much
texture an object has (e.g. a facade). It is also equivalent
to the complexity of the whole structure for a specific
range of mesh-sizes – the higher the value, the more
twisted the curve is or the more texture an object has
(Bovill 1996). Consequently, the range of mesh-sizes, the
box-counting dimension (the slope of the regression line)
and the coefficient of determination provides significant
values of the composition and a possible comparison for
architecture in terms of roughness across scales. If, in
particular, the single parts of self-similar structures are
totally disconnected or, at least, just touching (like those
of the Koch curve), the box-counting dimension coincides
with the self-similarity dimension (Falconer 2003).

3.3 Influences on the method

Box-counting depends on several influences. The first
influence concerns the choice of elements. In architecture,
it is the selection of edges that defines the 2-dimensional
representation of a facade (the contour, projections and
recesses, changes of material or the differentiation
between various architectural elements). The selection is
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either a question of the scale of perception (distance of
the observer) or of the level of design (overall main idea
versus detail including cornices and ornaments). In
addition, the specific selection changes when coming
closer or when considering design elements on smaller
scales (see Figure 5). Door handles or window frames
will not be included in an overview but at smaller scales
of detail. Moreover, when analysing the furthest location
of an observer (i.e. the closed silhouette), box-counting is
no more an adequate method. The authors recommend the
structured walk method for closed curves instead
(measured dimension). The second influence concerns
line thickness of the representation. This aspect can be
avoided by using the vector graphics instead of pixel
graphics (Lorenz 2013b). The third influence relates to
the range of grid-sizes. The largest grid-size is
recommended as one fourth of the smallest side of the
object under consideration. If the object is of less
complexity, the value increases to one third
(Foroutan-pour et al. 1999). The smallest grid-size in turn
depends on the smallest detail and is reflected in the
double logarithmic graph by the point where the data
curve approximates to a 45 degree incline. Fourth, both
the position and the orientation of the mesh influence the
result. These influences can be countered by repeatedly
changing the starting position for one and the same
mesh-size. Finally, the reduction factor of the grid has to
be considered as well. Usually the grid-size is reduced by
one half, which implies larger steps between larger
mesh-sizes. With smaller reduction ratios, in turn, the
influence by the position of the mesh increases.
Therefore, different starting positions for each mesh-size
are recommended (Foroutan-pour et al. 1999, Lorenz
2013b).

3.4 Usability of box-counting

Although box-counting can be applied to fractals as well
as non-fractal objects and is therefore universal, the
method is not optimal for measuring aesthetics in
architecture. The method does not distinguish between
overlaps and collisions. In particular, overlapping
elements and subsequently hidden architectural elements
are not taken into account (e.g. doors or other
architectural elements that are hidden by a balcony
parapet wall). However, for analysis of the design
intention overlapping is important. In this case all relevant
parts have to be considered, including all hidden elements
(edges). One possible solution is a 3-dimensional version
of box-counting that uses cubes in a 3-dimensional lattice
instead of boxes. In this case the difficulties mainly
concern the lack of required 3-dimensional digital plans,
especially in a detailed form on smaller scale. If the focus
is on perception, in turn, the analysis of elevations (plans)
conforms only partly to perception: an observer typically
looks at an elevation from street level, a fact that

demonstrates the need of a perspective instead of
perpendicular representations (Ostwald and Tucker 2007).

Nevertheless, box-counting applies for several usages.
Above all, it analyses the development of elements
(density of lines) from the whole to the smallest detail.
The data curve indicates whether or not the design
provides similar distribution on every scale. However,
box-counting does not identify the kind of connection
between these elements of different scales; it just shows
that a connection exists. One possibility of holding all
elements of different size together is the application of a
certain proportion ratio. As shown elsewhere (Lorenz
2013a), box-counting also serves as a method for
comparison between predecessor and successor.
Regardless of whether or not the interpretation is just a
copy of the original design, similar characteristics reflect
that the new building implements the underlying idea.
Such characteristics include the same detail richness
across scales and by that the same distribution of edges
(similar slope of data curve and similarDB). Furthermore,
box-counting is also a good method to evaluate
architectural compositions in their context. That is the
fitness of the characteristics in relation to the
environment. In this way, not only facades, but also
mountain ridges or city maps can be analyzed and
compared (Bovill 1996, Lorenz 2003).

4 Fractal language of architecture

4.1 Construct/constituent pairing

Fractal language of architecture must not be confused
with language of architecture in the traditional sense
(Jencks 2002). It is similar to the language developed for
quantitative linguistics. The fractal analysis method
applied to quantitative linguistics uses the idea of
deconstruction. It is based on three binarisms (Andres
2009, 2010, 2014, Andres and Rypka 2012), listed as a
construct/constituent pairing. The pairing includes a
language unit on a higher level versus a language unit of a
lower level:

–semantic constructs (their length is calculated in the
integer number of sentences resp. clauses) / sentences
resp. clauses (their length is calculated in the average
number of words),

–sentences resp. clauses (in the integer number of
words) / words (in the average number of syllables),

–words (in the integer number of syllables) / syllables
(in the average number of phonemes).

The method counts the element lengths of pairing (x . . .
the integer length of constructs;y . . . the average length of
constituents) and puts them into perspective:

y= A∗ x−b, (4)

whereA, b are real parameters, characterising the given
structure under our consideration, to be specified.
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Since this (truncated) formula was verified to hold
statistically in quantitative linguistics, it is nowadays
called theMenzerath–Altmann law(shortly, MAL). The
heuristic version of MAL says that the longer a language
construct, the shorter its components (constituents) are.
Mathematically, it means that the parametersA, b should
be positive,A> 0, b> 0.

With the correspondence

Ds ∼
1
b

and
1
b
=

lnx

ln
A
y

=
logx

log
A
y

(5)

this allows us the calculation of the self-similarity
dimensionDs out of the construct/constituent pairing,
namely (cf. (2))

Ds ∼
logN

log
1
s

with N ∼ x and
1
s
∼

A
y
, (6)

because the formulas (4) and (5) are equivalent.
The method of deconstruction avoids overlapping of

single parts, and therefore ensures that all design elements
are included. Moreover, it employs self-similarity.
Although, in nature (and architecture) self-similarity
stops at a certain point, the method assures to be
continued. Therefore, although only a limited level of
binarisms is valid in nature, our assumption allows us to
handle with self-similar structures in a mathematical way.
Since a strict self-similarity can be rather restrictive inour
investigation in general, one can relax such a hypothesis
by a more literal presumption of a cyclic self-similarity,
when self-similarity is repeated in blocks of levels. For
more details, see Andres 2014, and Andres and Rypka
2012.

4.2 Elements of architecture

According to the construct/constituent pairing of
linguistic analysis the concept of different unit-lengthsin
architecture – the disconnection in major and minor parts
– is similar to the analogy of coming closer with
box-counting. First, the silhouette with its main parts of
design (in size and strong emergence) comes in the
observers focus. This includes several elements and their
division of the main composition: strong significant
changes of the material, projections and recesses on a
large scale. Roofs and walls are typical elements of this
category (see Figure 6). Areas are separated from each
other distinctly (primary design features). Minor parts of
this level are arches, windows and doors. The next
smaller level contains secondary design features
including chimneys, horizontal banding features,
handrails and gutters. Categorizing is not only a question
of size, but also of the clarity of the difference.

In architecture a large number of elements are
connected together to a smaller number of larger units

that are, again, linked with each other and the whole and,
finally, form the whole building (Meiss 1990). This
characteristic is the prerequisite of an architectural
parallel to the construct/constituent pairing of linguistic
analysis. Parts may then concern volumes, spaces or
elements. Following from above, a first classification
includes:

–major parts of primary design features (solid parts such
as roof, walls, columns, beams, significant changes of
material) and minor parts of primary design features
(openings such as arches, windows and doors);

–minor parts of primary design features and secondary
design features (chimneys, horizontal banding
features, handrails, gutters, frames, cornices and
rustication);

–secondary design features and tertiary design features
(doorknobs, components of a cornice).

As an example the following description gives a
possible hierarchy of elements recognised in an antic
Greek temple (Ionic order). According to figure 7 (also
compare Gibbs 1732, Rattner et al. 1998, Chitham 1987)
the front elevation of the temple consists of (from top to
down) gable, entablature, column and basement. The
entablature, for example, in turn, consists of cornice,
frieze and architrave, while a single column can be
separated into capital, shaft (with flute and fillet) and
base. The cornice, again, consists of sima, corona,
(egg-and-dart, bead-and-reel) dentil band and bed mold,
while the capitals’ subparts are volute, abacus, echinus
and cincture. But even the dentil band is not the smallest
part as it can still be divided into smaller elements (the
single dentil). The point is that all parts of greek temples
such as columns or their flutes (20-24) are not only in an
hierarchical order but are also clearly distinguishable and
therefore countable.

4.3 Usability

As described earlier, construct/constituent pairing
considers self-similarity, which is (resp. whose
consequences are) a possible approach to describe quality
in architecture (see Introduction). Herein lies, compared
with box-counting, the main advantage of this method.
However, a couple of aspects have still to be considered.
The first one concerns the right definition of
construct/constituent pairing. Furthermore, in order to
retain comparability, facades should be similar. This
mainly concerns the same ratio between width and height
rather than same absolute size. In addition for compared
buildings an index of significance (or of change) should
be defined. Another aspect concerns the plan to apply the
method to simple photographs. This includes identifying
automatically overlapping elements. Finally, with
construct/constituent pairing symmetry is not taken into
account. Consequently, a proportion analysis should be
used as supplement (Kulcke et al. 2015). On the other
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Fig. 1: Metallic means: a) golden ratio, b) silver ratio, c) bronze ratio.

Fig. 2: With N = 4 ands= 1/3rd the self-similar dimension of the Koch curve equals 1.2619.

Fig. 3: Analyzed object (left) and pixelated representation (right).

hand, if we are able to detect specific parametersA, b in
formulas (4) resp. (5), then formula (4) with those fixed
parameters might be applied for a reconstruction or for an
imitation of a given architectural style. Anyway, it is a
question whether or not the analogy of the
Menzerath–Altmann law is also valid for architectural
compositions. This question is quite legal and promissible
to be affirmatively answered, because formally the same
law was observed to hold under various names (Pareto’s
law, Zipf–Mandelbrot’s law) in nature and society.

5 Possible applications (fractal aesthetics)

Hence, the final idea of construct/constituent pairing is to
develop a formula out of the results. That may lead to a

specific characterization of a certain style, e.g. of an
outstanding architect such as Frank Lloyd Wright.
Furthermore, differences between styles may be deduced
(e.g. between Baroque and Renaissance, or between
Bauhaus and Adolf Loos).

If the single parts of fractal structures are not
overlapped, then even the box-counting dimensionDB
can be equivalently used instead of the self-similarity
dimension Ds in our modelling, when taking
b∼ 1/Ds= 1/DB in formula (4).

Last, but not least, an important aspect of the fractal
aesthetics in architecture (whence the title of our
contribution) must be still mentioned. There are not many
empirical studies about fractal aesthetics, i.e. whether
some fractal dimensions are preferable to others, and
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Fig. 4: Double logarithmic graph of number of counted boxes versus grid-size; two regression lines (red line: approximates to a45
degree incline).

Fig. 5: Changing in perception: In general, when coming closer to a building on every level of scale, there are elements that fit tothe
scale of the observer at the specific distance.

Fig. 6: Primary design features (major parts: roof and wall, minor parts: openings and smaller wall surfaces) and secondary design
features (major parts: openings and smaller wall surfaces,minor parts: window frames, stained glass and facing bricks).
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Fig. 7: Greek temple (Ionic order).
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eventually why. Moreover, the deduced criteria are rather
rough, and so not very convincing. For instance, in 2D
(like on the photos), the values of “nicest” fractal
dimensionsD were detected asD = 1.51± 0.43 (Sprott
1994), D = 1.52± 0.23 (Draves et al. 2008),D = 1.3
(Taylor 2006), etc. Since the tolerance is too big, the
inconsistency suggests that there is so far no universally
preferred fractal dimension.

Our first attempt is therefore to make a possible link
between the self-similarity dimension and metallic means
which are traditionally regarded as the most aesthetical
(but static) proportions. Thus, the dynamic (functional)
proportionality between constructs and their constituents
in architecture should be somehow taken into account
from such a point of view (cf. Figure 8). Taking, for
instance,1 y= 1 andA= 10, by which logA

y = 1, one can
normalize formula (5) in the sense that thenDs = logx. In
this way, we get forx equal to metallic meansλ (cf. (1),
and observe that the values ofx are no longer integers)
that:

Ds = log

√
5+1
2

.
= log1.61803

.
= 0.208987

(golden mean),

Ds = log(
√

2+1)
.
= log2.414213

.
= 0.382776

(silver mean),

Ds = log

√
13+3

2
.
= log3.302775

.
= 0.518879

(bronze mean).

Let us note that these calculations are conditioned by
the chosen parameter valueA = 10. In practice,A can be
put more naturally equal toy, for x= 1, becauseA= y for
x= 1 in formula (4). In particular, formula (4) might then
take the form

y= λ ∗ x
1

Ds , (7)

whereλ is a metallic number andDs is the “aesthetic”
self-similarity dimension.

Finally, let us try to indicate, by virtue of formula (4),
a possible relationship of the golden meanλ .

= 1.618033
with the above values deduced by Sprott, Taylor, Draves
et al. Hence, in order to getDs

.
= 1.3 or Ds

.
= 1.4 or Ds

.
=

1.5, the associated parameterA value should satisfyA
.
=

1.447960 orA
.
= 1.410186 orA

.
= 1.378239, respectively,

when takingy= 1 and logx= logλ = 0.208987. In other
words,

logA
.
=

0.208987
Ds

, resp.A
.
= 10

0.208987
Ds ,

1 Observe thaty = 1 is the only positive solution of the
equation xy = x/y = λ , where x/y = λ stands for a direct
proportion, whilexy= λ for an indirect one (cf. the heuristic
version of MAL). Thus, this seems to be the only reasonable way
how to match suitably a direct static metallic proportion with an
indirect dynamic (functional) proportions of MAL. Otherwise,
more precisely,y = (A/λ b)1/(b+1) which is rather cumbersome
for calculations.

whereDs is taken as hopefully the most “aesthetic” value.
Let us observe thatA does not differ much fromDs, for

A
.
= 1.410186 andDs

.
= 1.4. Moreover, 1.41 is the mean

value of 1.3 and 1.52 (see the calculations by Taylor 2006
and Draves et al. 2008), while 1.405 is the mean value of
1.3 and 1.51(see again the calculations by Taylor 2006 and
this time by Sprott 1994). Is it by chance? If not, then the
solutionA= Ds

.
= 1.407579814 of the equation

zlogz= log

√
5+1
2

could play an important role in the fractal aesthetics and,
in particular, in architectural compositions exhibiting the
golden proportion between the associated constructs and
their constituents whose normalized length isy= 1.

Since, forA= Ds =
√

2
.
= 1.414, we are not far from

the solution of the equationzlogz= log
√

5+1
2 , i.e. from the

value 1.407579814. . ., the form of MAL

y=
√

2x−
√

2
2

(whose graph cannot be practically distinguished from the
one ofy= 1.408x−

1
1.408 in Figure 8) could also determine

aesthetic architectural structures. Observe that, forx = 1,
we gety=

√
2 which is the number well known as a gate

of harmony. Furthermore, the coordinates of the points

[

1,
√

2
]

,

[

√
5+1
2

,1

]

,

[

2,
2√

2+1

]

,

[√
2+1,

2
√

2+2√
13+3

]

of–more or less–the same MAL exhibit the gate of
harmony, golden, silver and bronze proportions,
respectively. The first three are useful for our goal,
because one coordinate is an integer. The associated
fractal (self-similar) dimensionsDs of the second
(golden) and third (silver) proportions areDs

.
= 1.388 and

Ds
.
= 1.296 which slightly differ from an earlier

“aesthetic” valueDs
.
= 1.408, but it is still in accordance

with the estimates due to Sprott (1994), Taylor (2006) and
Draves et al. (2008).

By similar arguments, the values
A = Ds

.
= 1.686444370 andA = Ds

.
= 1.884883269, as

solutions of the equationzlogz = logλ , where

λ =
√

2+1 andλ =
√

13+3
2 are respectively the silver and

bronze numbers, could play some role in fractal
aesthetics, too. Nevertheless, since our arguments are
only speculative, they must be supported by experimental
investigations and checked statistically.

6 Conclusion/Outlook

Box-counting as a description of architecture is limited in
its functionality due to influences of parameters.
Furthermore, the result only displays whether or not a
similar distribution of architectural elements of different
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size exists; it neglects the kind and quality of the relation
between elements. Therefore, other methods have to be
investigated: Construct/constituent pairing uses clearly
distinguishable components of single elements
(potentially distinguished by height, width and depth).
This time elements of similar kind are counted. The key
benefit (but, at the same time, also a non-universality
restriction) is that self-similarity is taken into account.
The method consists of

–identifying the construct/constituent pairs,
–calculation of parametersA, b in formula (4),
–a possible application of formula (4) to reconstruction
or imitation of a given architectural style.

The applicability of this method will be checked by
ourselves elsewhere on specific architectures; in
particular with facades, which have been analyzed using
the box-counting method.

We have also formulated a conjecture to be tested that
the solutions of the equationzlogz = logλ , where λ
denotes the metallic means, can play an important role for
preferable values of fractal dimensions in architectural
aesthetics.
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