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1 Introduction

In recent years several extensions and generalizations
have been considered for classical convexity, and the
theory of inequalities has made essential contributions to
many areas of Mathematics. In this paper we shall deal
with an important and useful class of functions called
operator convex functions. We use the new class of
generalized convex functions, namely the class of
operator h-convex function(see [?]). The theory of
operator/matrix monotone functions was initiated by the
celebrated paper of C. Löwner [43], which was soon
followed by F. Kraus [40] on operator/matrix convex
functions. After further developments due to some
authors (for instance, J. Bendat and S. Sherman [14]), A.
Korányi [39], and U. Franz [26]), in their seminal paper
[32] F.Hansen and G.K. Pedersen established a modern
treatment of operator monotone and convex functions. In
[2,10,18,34] are found comprehensive expositions on the
subject matter.
Inequalities are one of the most important instrument in
many branches of Mathematics such as Functional
Analysis, Theory of Differential and Integral Equations,
Probability Theory, etc. They are also useful in

mechanics, physics and other sciences. A systematic
study of inequalities was started in the classical book [33]
and continued in [7]. Nowadays the theory of inequalities
is still being intensively developed. This fact is confirmed
by a great number of recent published books [6,55]and a
huge number of articles on inequalities [3,4,5,13,15,16,
23,27,42,51,52,54]. Thus, the theory of inequalities may
be regarded as an independent area of mathematics.
The convexity of functions plays a significant role in
many fields, for example, in biological system, economy,
optimization and so on [29,49]. And many important
inequalities are established for the class of convex
functions. The Hermite-Hadamard inequality (1) have
been the subject of intensive research, and many
applications, generalizations and improvements of them
can be found in the literature (see, for instance [9,22,41,
47,48] and the references therein).
From the results founded by Hadamard in [30], the
Hermite-Hadamard (double) inequality for convex
functions on an interval of the real line is usually stated as
follows. This classical inequality provides estimates of
the mean value of a continuous functionf : [a,b]→R.

Theorem 1. Hermite-Hadamard’s Inequality [45]. Let f
be a convex function on[a,b] , with a < b.If f is
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integrable on[a,b] , then

f

(

a+b
2

)

≤
1

b−a

∫ b

a
f (x)dx≤

f (a)+ f (b)
2

. (1)

In [25], Leopold Fejér generalized the inequality1
using a symmetric function.

Theorem 2. Let f : I ⊂ R→ R be a convex function and
let a,b∈ I with a< b. Then

f

(

a+b
2

)

∫ b

a
g(x)dx≤

1
b−a

∫ b

a
f (x)g(x)dx

≤
f (a)+ f (b)

2

∫ b

a
g(x)dx, (2)

where g : [a,b] → R is non-negative, integrable and
symmetric function about (a+b)/2, that is
g(a+b− x) = g(x).

The interested reader can find the history of the
Hermite-Hadamard inequality in the historical note by
D.S.Mitrinovic and I.B. Lackovic [45] and [44]. Both has
been studied widely and in recent years they have found
generalizations thereof using generalized convex
functions. In particular, for operator functions of positive
self-adjoint operators in a Hilbert spaceH.

Inspired and motivate by the work of Dragomir [21],
Ghazanfari in [27], Erdas et al. [23], Horváth et al. [36],
T. Ando in [1], L. Horvath [36], I. Kim [ 38], S. Salas [50],
in this paper, we use a novel class of convex functions
called operator h-convex function, introduced by Vivas
and Hernández in [?]. We establish some new generalized
Hermite-Hadamard-Fejér inequalities for operator
h-convex functions. This paper is organized as follows: In
Section 2 we provide some notations, definitions and
recall well known fundamental theorems. In section 3, we
establish the main results of the article: generalized
Hermite-Hadamard-Fejér inequalities foroperator
h-convex functions.

2 Preliminaries.

Our purpose in this section is to establish some basic
terminology, we review briefly and without proofs some
elementary results from the continuous functional
calculus. The functional calculus is defined by the
spectral theorem.
The notion of a convex function plays a fundamental role
in modern mathematics. The theory of convex functions
has been studied mostly due to its usefulness and
applicability in Optimization. We recall some concepts of
convexity that are well known in the literature.

Definition 1. A function f : I → R is said to be convex
function over I if for any x,y∈ I and for any t∈ [0,1] we
have the following inequality

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y). (3)

Definition 2. [28] We shall say that a function f: I ⊂R→
R is a Godunova-Levin function or f∈ Q(I) if f is non
negative and for each x,y∈ I and t∈ (0,1) we have

f (tx+(1− t)y)≤
f (x)

t
+

f (y)
1− t

.

Definition 3. [20]We say that f: I → R is a P-function,
or that f belongs to the class P(I), if f is a non-negative
function and for all x,y∈∈ I , t ∈ [0,1] we have

f (tx+(1− t)y)≤ f (x)+ f (y).

Definition 4. [13] Let s∈ (0,1]. A function f : [0,∞) →
[0,∞) is nameds-convex (in the second sense), or f∈ K2

s
if

f (λx+(1−λ )y)≤ λ s f (x)+ (1−λ )s f (y)

for each x,y∈ (0,∞) andλ ∈ [0,1].

It can be easily seen that fors= 1, s−convexity reduces to
ordinary convexity function.
A significant generalization of convex functions is that of
h-convex functionsintroduced by S.Varosanec in [53].

Definition 5. [53] Let h : J → R be a non negative
function and h6≡ 0, defined on an interval J⊂ R, with
(0,1)⊂ J. We shall say that a function f: I → R , defined
on an interval I⊂ R, is h-convex if f is non negative and
the following inequality holds

f (tx+(1− t)y)≤ h(t) f (x)+h(1− t) f (y)

for any x,y∈ I and for all t ∈ (0,1) .

For some results concerning this class of functions see [11,
42,51].
We can see, from this definition, that this class of
functions contains the class of Godunova-Levin
functions. It also contains the class ofP−functions:

1. If h(t) = 1 then an h−convex function f is a
P−function.

2. If h(t) = ts,s∈ (0,1] then anh−convex functionf is
ans−function.

3. If h(t) = ts, with s=−1 then anh−convex function
f is a Godunova-Levin function.

In order to achieve our results we need the following
definitions and preliminary. WithB(H) we shall denote
the C∗−algebra commutative of all bounded operators
over a Hilbert spaceH with inner product〈,〉 . Let A be a
subalgebra ofB(H). An operatorA ∈ A is positive if
〈Ax,x〉 ≥ 0 for all x ∈ H. Over A there exists an order
relation by means

A≤ B if 〈Ax,x〉 ≤ 〈Bx,x〉

or
B≥ A if 〈Bx,x〉 ≥ 〈Ax,x〉

for A,B∈ A selfadjoint operators and for allx∈ H.
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The Gelfand map established a∗−isometrically
isomorphism Φ between the setC(σ(A)) of all
continuous functions defined over the spectrum ofA,
denoted byσ(A), and theC∗−algebraC∗(A) generated by
A and the identity operator1H overH as follows:
For any f ,g∈C(σ(A)) andα,β ∈ C (Complex numbers)
we have

1. Φ (α f +βg) = αΦ (A)+β Φ(B)
2. Φ ( f g) = Φ (A)Φ(B) and Φ

(

f
)

= Φ ( f )∗

3. ‖Φ ( f )‖= ‖ f‖ := sup
t∈σ(A)

| f (t)|

4. Φ ( f0) = 1H and Φ ( f1) = A, where f0(t) = 1 y
f1(t) = t for all t ∈ σ(A)

With this notation we define

f (A) = Φ ( f )

and we call it the continuous functional calculus for a
selfadjoint operatorA.
If A is a selfadjoint operator andf is a continuous real
valued function onσ(A) then

f (t)≥ 0 for all t ∈ σ(A)⇒ f (A) ≥ 0

that is to sayf (A) is a positive operator overH. Moreover,
if both functionsf ,g are continuous real valued functions
on σ(A) then

f (t)≥ g(t) for all t ∈ σ(A)⇒ f (A) ≥ g(A)

respect to the order inB(H).

Definition 6. Let H be a Hilbert space and I⊆ R an
interval. A continuous function f: I → R is called
operator convex with respect to H if

f (λA+(1−λ )B)≤ λ f (A)+ (1−λ ) f (B)

for all A,B ∈ B(H)sa with σ(A)∪σ(B) ⊂ I and for all
scalars λ ∈ [0,1]. f is called operator convex of order
n ∈ N if it is operator convex with respect to H= Cn.
Finally, f is simply called operator convex if there is an
infinite dimensional Hilbert space H such that f is
operator convex with respect to H.

HereB(H)sa is the set of self-adjoint bounded operators
on the Hilbert space H,σ(A),σ(B), denotes the spectrum
of A and B, and f (A) and f (B) are defined by the
continuous functional calculus. We refer the reader to
[46] for undefined notions onC∗−algebra theory.
As illustration below we state some classical theorems on
operator inequalities.

Theorem 3. (Bendat and Sherman [14]) f is operator
convex if and only if it is operator convex of every order n∈
N, and this last property holds if and only if it is operator
convex with respect to the Hilbert spaceℓ2(C).

Theorem 4. (F. Hansen and G.K. Pedersen [32]) A
continuous function f defined on an interval I is operator
convex if and only if

f

(

∑
j∈J

a∗j x ja j

)

≤ ∑
j∈J

a∗j f (x j )a j

for every finite family
{

x j : j ∈ J
}

of bounded, self-adjoint
operators on a separable Hilbert space H, with spectra
contained in I, and every family of operators

{

a j : j ∈ J
}

in B(H) with ∑ j∈J a∗j a j = 1, where1∈B(H) is the identity
operator.

Theorem 5. (D.R. Farenick and F. Zhou [24]) Let
(Ω ,Σ ,µ) be a probability measure space, and suppose f
is an operator convex function defined on an open interval
I ⊆ R. If g : Ω → B(Cn)sa is a measurable function for
whichσ(g(ω))⊂ [α,β ]⊂ I for all ω ∈ Ω , then

f

(

∫

Ω
gdµ

)

≤

∫

Ω
f ◦gdµ .

Some other references about this topic are in [34,35].
Dragomir in [21] has proved a Hermite-Hadamard type
inequality for operator convex functions.

Theorem 6. ([19],Theorem 1) Let f: I → R be an
operator convex function on the interval I. Then for any
selfadjoint operators A and B with spectra in I we have
the inequality
(

f

(

A+B
2

)

≤

)

1
2

[

f

(

3A+B
4

)

+ f

(

A+3B
4

)]

≤
∫ 1

0
f ((1− t)A+ tB)dt

≤
1
2

[

f

(

A+B
2

)

+
f (A)+ f (B)

2

](

≤
f (A)+ f (B)

2

)

The definition of operators−convex function is proposed
by Ghazanfari in [27].

Definition 7. Let I be an interval in[0,∞) y K a convex
subset of B(H)+. A continuous function f: I → R is said
to be operator s−convex on I for operators in K if

f ((1−λ )A+λB)≤ (1−λ )s f (A)+λ s f (B)

in the operator order in B(H), for all λ ∈ [0,1] and for
every positive operator A and B in K whose spectra are
contained in I and for some fixed s∈ (0,1] .

The following Hermite-Hadamard inequality for operator
s-convex functions holds.

Theorem 7. ([27],Theorem 6) Let f: I → R be an
operator s−convex function on the interval I⊆ [0,∞) for
operators in K⊂ B(H)+. Then for all positive operators
A and B in K with spectra in I, we have the inequality

2s−1 f

(

A+B
2

)

≤

∫ 1

0
f ((1− t)A+ tB)dt ≤

f (A)+ f (B)
s+1
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Dragomir in [52] introduced an even more general
definition ofoperator h-convex functions.

Definition 8. Let J be an interval include inR with
(0,1)⊂ J. Let h: J →R be a non negative and identically
non-zero function. We shall say that a continuous function
f : I → R , defined on an interval I⊂ R, is an operator
h−convex for operators in K if

f (tA+(1− t)B)≤ h(t) f (A)+h(1− t) f (B)

for all t ∈ (0,1) and A,B∈K ⊆B(H)+ such that Sp(A)⊂ I
and Sp(B)⊂ I .

With this concept Dragomir obtained some results
involving operatorsh-convex functions. The first of them
is located as Lemma 2.3 in [52] and it involves the
associated functionϕ . The second is the Theorem 2.4 in
[52], which establishes the Hermite-Hadamard type
inequality foroperator h-convex functions.

Lemma 1. If f is an operator h−convex function then

ϕx,A,B(t) = 〈( f (tA+(1− t)B)x,x)〉

for x∈H with‖x‖=1 is an h−convex function over(0,1) .

Theorem 8. Let f be an operator h−convex function.
Then

1
2h(1/2)

f

(

A+B
2

)

≤

∫ 1

0
f (tB+(1− t)A)dt

≤ ( f (A)+ f (B))
∫ 1

0
h(t)dt (4)

3 Main Results.

Theorem 9. Let J be an interval include in R with
(0,1)⊂ J. Let h: J → R be a non negative and identically
non-zero and integrable function. Let f: [a,b]→ R be an
operator h−convex function on the interval I⊆ [0,∞) for
operators in K⊆ B(H)+ and g : [a,b] → R be a
non-negative and symmetric function respect to
(a+b)/2. Then
∫ 1

0
f (tA+(1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
h(t)g(tA+(1− t)B)dt

for all operators A,B∈ K with spectra in[a,b] .

Proof. For anyA,B∈ K let consider

[A,B] = {Z ∈ X : Z = tA+(1− t)B, t ∈ [0,1]} .

Let t ∈ [0,1]. We can see that

f (tA+(1−t)B)g(tA+(1−t)B)

≤ (h(t) f (A)+h(1− t) f (B))g(tA+(1− t)B),

f ((1−t)A+tB)g(tA+(1−t)B)

≤ (h(1− t) f (A)+h(t) f (B))g((1− t)A+ tB).

After adding and integrate both inequalities we get
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

+

∫ 1

0
f ((1− t)A+ tB)g((1− t)A+ tB)dt

≤
∫ 1

0
(h(t) f (A)g(tA+(1− t)B)

+h(1− t) f (B)g(tA+(1− t)B)

+h(1− t) f (A)g((1− t)A+ tB)

+ h(t) f (B)g((1− t)A+ tB))dt

=

∫ 1

0
( f (A) [h(t)g(tA+(1− t)B)+h(1− t)g((1− t)A+ tB)]

+ f (B) [h(1− t)g(tA+(1− t)B)+h(t)g((1− t)A+ tB)])dt

sinceg is symmetric respect(a+b)/2 we have
∫ 1

0
h(1− t)g((1− t)A+ tB)dt=

∫ 1

0
h(t)g(tA+(1− t)B)dt

and therefore
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

+

∫ 1

0
f ((1− t)A+ tB)g((1− t)A+ tB)dt

≤ 2 f (A)
∫ 1

0
h(t) g (tA+(1− t)B)dt

+ 2 f (B)
∫ 1

0
h(t)g(tA+(1− t)B)dt

= 2( f (A)+ f (B))
∫ 1

0
h(t)g(tA+(1− t)B)dt

and with an appropriate substitution in the left hand term
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
h(t)g(tA+(1− t)B)dt.

Theorem 10. Let h : [0,max{1,b−a}] → R be a non
negative and identically non-zero and integrable function.
Let f : [a,b]→ R be an operator h convex function on the
interval I ⊆ [0,∞) for operators in K⊆ B(H)+ and
g : [a,b] → R be a non-negative and symmetric operator
function respect to(a+b)/2. Then

f

(

A+B
2

)

≤
2h(1/2)

∫ 1
0 g(tA+(1− t)B)dt

×
∫ 1

0
[ f (tA+(1− t)B)g(tA+(1− t)B)]dt.
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Proof. Using theh−convexity of f , we have

f

(

A+B
2

)

= f

(

tA+(1− t)A+ tB+(1− t)B
2

)

≤ h(1/2) [ f (tA+(1− t)B)+ f (tB+(1− t)A)]

Sinceg is positive and symmetric respect(A+B)/2

g(tA+(1− t)B) f

(

A+B
2

)

≤ h(1/2) [ f (tA+(1− t)B)g(tA+(1− t)B)

+ f (tB+(1− t)A)g(tB+(1− t)A)]

and integrating

f

(

A+B
2

)

≤
2h(1/2)

∫ 1
0 g(tA+(1− t)B)dt

×

∫ 1

0
[ f (tA+(1− t)B)g(tA+(1− t)B)]dt.

Theorem 11. Let J be an interval include in R with
(0,1) ⊂ J. Let h1,h2 : J → R be two non negative,
identically non-zero,(h1,h2) ∈ L1(J). Let f : I → R be an
operator h1−convex and g: I → R be an operator
h2−convex functions for operators in K⊆ B(H)+ with
spectra in I. Then

∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤ M(A,B)
∫ 1

0
h1(t)h2(t)dt+N(A,B)

∫ 1

0
h1(t)h2(1− t)dt

where

M(A,B) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(A,B) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉 .

Proof. Forx∈ H with ‖x‖= 1 andt ∈ [0,1] we have

〈(tA+(1− t)B)x,x〉= t 〈Ax,x〉+(1− t)〈Bx,x〉 ∈ I

Since 〈Ax,x〉 ∈ Sp(A) ⊆ I and 〈Bx,x〉 ∈ Sp(B) ⊆ I .
Continuity of f ,g and the previous equality imply that the
following operator valued integrals exists

∫ 1

0
f (tB+(1− t)A)dt,

∫ 1

0
g(tB+(1− t)A)dt and

∫ 1

0
f (tB+(1− t)A)g(tB+(1− t)A)dt.

For t ∈ [0,1] , by theh convexity property of each one,
we have

〈( f (tB+(1− t)A))x,x〉 ≤ h1(t)〈 f (A)x,x〉+h1(1−t)〈 f (B)x,x〉 ,

〈(g(tB+(1− t)A))x,x〉 ≤ h2(t)〈g(A)x,x〉+h2(1− t)〈g(B)x,x〉

thus

〈( f (tB+(1− t)A))x,x〉× 〈(g(tB+(1− t)A))x,x〉

≤ h1(t)h2( t )〈 f (A)x,x〉 〈g(A)x,x〉

+ h1(1− t)h2(1− t)〈 f (B)x,x〉 〈g(B)x,x〉

+ h1(t)h2(1− t)〈 f (A)x,x〉 〈g(B)x,x〉

+ h1(1− t)h2(t)〈 f (B)x,x〉 〈g(A)x,x〉

integrating both sides of the last inequality
∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤〈 f (A)x,x〉 〈g(A)x,x〉
∫ 1

0
h1(t)h2(t)dt

+〈 f (B)x,x〉 〈g(B)x,x〉
∫ 1

0
h1(1− t)h2(1− t)dt

+〈 f (A)x,x〉 〈g(B)x,x〉
∫ 1

0
h1(t)h2(1− t)dt

+〈 f (B)x,x〉 〈g(A)x,x〉
∫ 1

0
h1(1− t)h2(t)dt

but
∫ 1

0
h1(1− t)h2(1− t)dt =

∫ 1

0
h1(s)h2(s)ds

and
∫ 1

0
h1(1− t)h2(t)dt =

∫ 1

0
h1(s)h2(1− s)dt

thus we obtain
∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤ (〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉)

×
∫ 1

0
h1(t)h2(t)dt

+(〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉)

×
∫ 1

0
h1(t)h2(1− t)dt

which can be written like
∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt
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≤ M(A,B)
∫ 1

0
h1(t)h2(t)dt+N(A,B)

∫ 1

0
h1(t)h2(1− t)dt

where

M(A,B) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(A,B) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉 .

Theorem 12. Let J be an interval include in R with
(0,1) ⊂ J. Let h1,h2 : J → R be two non negative,
identically non-zero,(h1,h2) ∈ L1(J). Let f : I → R be an
operator h1 convex and g: I → R be an operator h2
convex functions for operators in K⊆ B(H)+ with
spectra in I. Then for all operators with spectra in I

1

2h1
(

1
2

)

h2
(

1
2

)

〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤
∫ 1

0
〈 f (tA+(1− t)B)x,x〉 〈g(tA+(1− t)B)x,x〉

+2

(

M(a,b)
∫ 1

0
h1(t)h2(1− t)dt+N(a,b)

∫ 1

0
h1(t)h2(t)dt

)

where

M(a,b) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(a,b) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉

for for any x∈ H with ‖x‖= 1.

Proof. First we note that
〈

f (
A+B

2
)x,x

〉

=

〈

f

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

and
〈

g(
A+B

2
)x,x

〉

=

〈

g

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

then we can observe that
〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

=

〈

f

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

×

〈

g

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

≤ h1

(

1
2

)

h2

(

1
2

)

×

(〈 f (tA+(1− t)B)x,x〉+ 〈 f ((1− t)A+ tB)x,x〉)

× (〈g(tA+(1− t)B)x,x〉+ 〈g((1− t)A+ tB)x,x〉)

≤ h1

(

1
2

)

h2

(

1
2

)

×

{[〈 f (tA+(1− t)B)x,x〉 〈g(tA+(1− t)B)x,x〉

+ 〈 f ((1− t)A+ tB)x,x〉 〈g((1− t)A+ tB)x,x〉]

+(h1(t)〈 f (A)x,x〉+h1(1− t)〈 f (B)x,x〉)×

(h2(1− t)〈g(A)x,x〉+h2(t)〈g(B)x,x〉)

+(h1(1− t)〈 f (A)x,x〉+h1(t)〈 f (B)x,x〉)×

(h2(t)〈g(A)x,x〉+h2(1− t)〈g(B)x,x〉)}

≤ h1

(

1
2

)

h2

(

1
2

)

×

{[〈 f (tA+(1− t)B)x,x〉 〈g(tA+(1− t)B)x,x〉

+ 〈 f ((1− t)A+ tB)x,x〉 〈g((1− t)A+ tB)x,x〉]

+(h1(t)h2(1− t)+h1(1− t)h2(t))×

(〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉)

+(h1(t)h2(t)+h1(1− t)h2(1− t))×

(〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉)}

Now integrating over[0,1] we have
〈

f (A+B
2 )x,x

〉〈

g
(

A+B
2

)

x,x
〉

2h1
(

1
2

)

h2
(

1
2

)

≤
∫ 1

0
〈 f (tA+(1− t)B)x,x〉 〈g(tA+(1− t)B)x,x〉dt

+2M(a,b)
∫ 1

0
h1(t)h2(1−t)dt+2N(a,b)

∫ 1

0
h1(t)h2(t)dt

where

M(a,b) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(a,b) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉

This complete the proof.

Theorem 13. Let J be an interval include in R with
(0,1) ⊂ J. Let h1,h2 : J → R be two non negative,
identically non-zero,(h1,h2) ∈ L1(J). Let f : I → R be an
operator h1−convex and g: I → R be an operator
h2−convex functions for operators in K⊆ B(H)+ with
spectra in I. Then for all operators with spectra in I
〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤ 2(M(A,B)+N(A,B))×
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(

∫ 1

0
h1

( t
2

)

h2

( t
2

)

dt+
∫ 1

0
h1

( t
2

)

h2

(

1− t
2

)

dt

)

where

M(A,B) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(A,B) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉 .

Proof. First we note that applyingh1−convexity
〈

f (
A+B

2
)x,x

〉

=

〈

f

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

≤

〈(

h1

( t
2

)

f (A)+h1

(

1− t
2

)

f (A)

+h1

( t
2

)

f (B)+h1

(

1− t
2

)

f (B)

)

x,x

〉

=

(

h1

( t
2

)

+h1

(

1− t
2

))

(〈 f (A)x,x〉+ 〈 f (B)x,x〉)

and using theh2−convexity
〈

g(
A+B

2
)x,x

〉

=

〈

g

(

tA+(1− t)A+ tB+(1− t)B
2

)

x,x

〉

≤

〈(

h2

( t
2

)

g(A)+h2

(

1− t
2

)

g(A)

+h2

( t
2

)

g(B)+h2

(

1− t
2

)

g(B)

)

x,x

〉

=

(

h2

( t
2

)

+h2

(

1− t
2

))

(〈g(A)x,x〉+ 〈g(B)x,x〉)

and with these
〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

=

(

h1

( t
2

)

+h1

(

1− t
2

))(

h2

( t
2

)

+h2

(

1− t
2

))

× (〈 f (A)x,x〉+ 〈 f (B)x,x〉)(〈g(A)x,x〉+ 〈g(B)x,x〉)

=

(

h1

( t
2

)

+h1

(

1− t
2

))(

h2

( t
2

)

+h2

(

1− t
2

))

×(〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

+〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉)

integrating over[0,1] we have

〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤ (M(A,B)+N(A,B))×

∫ 1

0

(

h1

( t
2

)

+h1

(

1− t
2

))(

h2

( t
2

)

+h2

(

1− t
2

))

dt

= 2(M(A,B)+N(A,B))×
(

∫ 1

0
h1

( t
2

)

h2

( t
2

)

dt+
∫ 1

0
h1

( t
2

)

h2

(

1− t
2

)

dt

)

where

M(A,B) = 〈 f (A)x,x〉 〈g(A)x,x〉+ 〈 f (B)x,x〉 〈g(B)x,x〉

and

N(A,B) = 〈 f (A)x,x〉 〈g(B)x,x〉+ 〈 f (B)x,x〉 〈g(A)x,x〉

and this complete the proof.

4 Applications

Corollary 1. Let s∈ (0,1], f : [a,b]→ R be an operator
s−convex function on the interval[0,∞) for operators in
K ⊆ B(H)+ and g : [a,b] → R be a non-negative,
symmetric function respect to(a+b)/2. Then
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
tsg(tA+(1− t)B)dt,

for all operators A,B∈ K with spectra in[a,b] .

Proof. An application of Theorem9, lettingh(t) = ts,s∈
(0,1] , we have
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
tsg(tA+(1− t)B)dt,

Corollary 2. Let f : [a,b]→ R be an operator P−convex
function on the interval[0,∞) for operators in K⊆ B(H)+

and g: [a,b] → R be a non-negative, symmetric function
respect to(a+b)/2. Then
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
g(tA+(1− t)B)dt

for all operators A,B∈ K with spectra in[a,b] .

Proof. An application of Theorem9, lettingh(t) = 1, t ∈
[0,1] we have
∫ 1

0
f (tA + (1− t)B)g(tA+(1− t)B)dt

≤ ( f (A)+ f (B))
∫ 1

0
g(tA+(1− t)B)dt
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Corollary 3. Let f : I → R and g: I → R be operator
convex functions for operators in K⊆ B(H)+ with
spectra in I. Then

∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤
1
3

M(A,B)+
1
6

N(A,B),

Proof. With an application of Theorem11, doingh1(t) =
h2(t) = t, t ∈ [0,1] we obtain the desired result.

The following result is showed by Ghazanfari in [27],
and here is obtained by an application of Theorem11.

Corollary 4. Let f : I → R and g: I → R be operator
convex functions for operators in K⊆ B(H)+ with
spectra in I. Then

∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤
M(A,B)

s1+ s2+1
+B(s1+1,s2+1)N(A,B).

Proof. Doing h1(t) = ts1 and h2(t) = ts2 with
s1,s2 ∈ (0,1) we get the desired result.

Corollary 5. Let s∈ (0,1), f : I → R be an operator
convex function and g: I → R be an operator s−convex
function for operators in K⊆ B(H)+ with spectra in I.
Then
∫ 1

0
〈( f (tB+(1− t)A))x,x〉 〈(g(tB+(1− t)A))x,x〉dt

≤
M(A,B)

s+2
+

N(A,B)
(s+1)(s+2)

,

Proof. An application of Theorem11 with h1(t) = t, t ∈
[0,1] andh2(t) = ts, t ∈ [0,1] we get the desired result.

The next Corollary show a result obtained by
Ghazanfari in [27]. Here is got by an application of
Theorem12.

Corollary 6. Let s1,s2 ∈ (0,1), f : I → R be an operator
s1−convex function and g: I → R be an operator
s2−convex functions for operators in K⊆ B(H)+ with
spectra in I. Then

2s1+s2−1
〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤

∫ 1

0
〈 f (tA+(1− t)B)x,x〉 〈g(tA+(1− t)B)x,x〉dt

+M(a,b)B(s1+1,s2+1)+
N(a,b)

s1+ s2+1

Proof. An application of Theorem12 with If h1(t) = ts1

andh2(t) = ts2 with s1,s2 ∈ (0,1) we get the desired result.

Corollary 7. Let f : I → R and g: I → R be operators
convex functions for operators in K⊆ B(H)+ with spectra
in I . Then
〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤
1
4
(M(A,B)+N(A,B))

Proof. An application of Theorem 13 with
h1(t) = h2(t) = t, t in [0,1] we get the desired result.

Corollary 8. Let s1,s2 ∈ (0,1), f : I → R be an operator
s1−convex function in second sense and g: I → R be an
operator s2−convex function in second sense for operators
in K ⊆ B(H)+ with spectra in I. Then

〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤ 21−s1+s2 (M(A,B)+N(A,B))×
(

1
(1+ s1+ s2)

+B(s1+1,s2+1)

)

where B(s1+1,s2+1) is the beta function.

Proof. With an application of Theorem13, letting
h1(t) = ts1and h2(t) = ts2 with s1,s2 ∈ (0,1) we get the
desired result.

Corollary 9. Let s∈ (0,1), f : I → R be an operator
convex function and g: I → R be an operator s−convex
function in second sense for operators in K⊆ B(H)+ with
spectra in I. Then

〈

f (
A+B

2
)x,x

〉〈

g

(

A+B
2

)

x,x

〉

≤
2−s

s+1
(M(A,B)+N(A,B)) ,

Proof. An application of Theorem 13, letting
h1(t) = t, t ∈ [0,1] andh2(t) = ts, t ∈ [0,1] with s∈ (0,1)
then we get the desired result.

5 Conclusion.

In this work, we used the concept ofoperator h-convex
functions and we have presented some
Hadamard-Hermite-Fejér type inequalities for the
products ofoperator h-convex functions. In addition, we
have presented some remarks that show how the main
theorems generalize other results demonstrated in cited
references. We hope that everything established here will
stimulate further research in this area.
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et en particulier d’ une fontion considerer per Riemann, J.
Math. Pure and Appl. 58 (1893) 171- 215

[31] F. Hansen.Convex and Monotone Matrix Functions and
their Applications in Operator Theory.Kobenhavens
Universitet Matematisk Institut. Rapport Nro. 3. 1983

[32] F. Hansen and J.K. Pedersen.Jensen’s Inequality for
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