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1 Introduction mechanics, physics and other sciences. A systematic
study of inequalities was started in the classical b@&$ [
ngnd continued inq]. Nowadays the theory of inequalities
s still being intensively developed. This fact is confirmed
y a great number of recent published bodk$pland a
uge number of articles on inequaliti€}4,5,13 15,16,
3,27,42,51,52,54]. Thus, the theory of inequalities may
be regarded as an independent area of mathematics.
fThe convexity of functions plays a significant role in
many fields, for example, in biological system, economy,
optimization and so on2@,49]. And many important
inequalities are established for the class of convex

In recent years several extensions and generalizatio
have been considered for classical convexity, and th
theory of inequalities has made essential contributions t
many areas of Mathematics. In this paper we shall dea
with an important and useful class of functions called
operator convex functionsWe use the new class of
generalized convex functions, namely the class o
operator h-convex functior(see P]). The theory of
operator/matrix monotone functions was initiated by the
celebrated paper of C. Lownedd, which was soon . . . ;
followed bprP Kraus 40| on op?é]rator/matrix convex functions. The_Hermﬂe-_Hadamard inequality) (have
functions. After further developments due to somebeer.‘ the subject C.)f Intensive _research, and many
authors (for instance, J. Bendat and S. Sherrid}),[A. applications, generalizations and improvements of them

Koranyi [39], and U. Franz 26]), in their seminal paper can be found in the literature (see, for instan@ep, 41,

. 7,48 and the references therein).
[32] F.Hansen and G.K. Pedersen established a mode:Erom the results founded by Hadamard id] the

treatment of operator monotone and convex functions. | ite-Had 4 (doubl . ity f
[2,10,18,34] are found comprehensive expositions on the ermite-radamar (double) Ineéquaiity for —convex
functions on an interval of the real line is usually stated as

subject matter. follows. This classical inequality provides estimates of
Inequalities are one of the most important instrument in ﬁeomzén vaslu(é%?zcca:)ntisggl?sf)l/mpct(i)bn[:sb]ei Ra €s o
many branches of Mathematics such as Functionaf T '

Analysis, Theory of Differential and Integral Equations, Theorem 1. Hermite-Hadamard’s Inequality4[]. Letf
Probability Theory, etc. They are also useful in be a convex function ora,b], with a < blIf f is

* Corresponding author e-marhvivas@ucla.edu.ve

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/110405

984 N S 2 M. Vivas, J. Hernandez: Hermite-Hadamard-Fejér indtjealfor product...

integrable onja, b], then Definition 2. [28] We shall say thata function:fi C R —
R is a Godunova-Levin function or fe Q(I) if f is non
¢ <a+ b) <t 1 a/b F(dx < f(a)+f(b) (1)  negativeand foreachye I andte (0,1) we have
- a

2 2

f(x) f
In [25], Leopold Fejér generalized the inequality fltx+(1-t)y) < ¥+£

using a symmetric function.

Definition 3. [20]We say that f: | — R is a P-function,

or that f belongs to the class(P), if f is a non-negative

function and for all xy €€ I, t € [0,1] we have

b b
(25 [ awaxs o [ 9amo fltx (1Y) < R+ F ().

f(a)+f(b) [P q ) Definition 4. [13] Let s € (0,1]. A function f: [0,c0) —
< 2 /a g(x)dx () [0,e0) is nameds-convex (in the second sense), oref K2

Theorem 2. Let f:1 C R — R be a convex function and
leta,be |l witha<b. Then

if
where g: [a,b] — R is non-negative, integrable and (A 1 AW) < ASf 1— A)Sf
symmetric  function about (a+b)/2, that is (Ax+( W) S AT+ )
g(a+b—x)=g(x). for each xy € (0,0) andA € [0, 1].

The interested reader can find the history of theltcan be easily seen that fee= 1, s—convexity reduces to
Hermite-Hadamard inequality in the historical note by ordinary convexity function.

D.S.Mitrinovic and |.B. Lackovic45] and [44]. Both has A significant generalization of convex functions is that of
been studied widely and in recent years they have foundh-convex functionmtroduced by S.Varosanec i&3].
generalizations thereof using generalized convex ]
functions. In particular, for operator functions of pogiti ~ Definition 5. [53] Let h:J — R be a non negative

Se|f-adjoint operators in a Hilbert Spabb function and h;_é 0, defined on an interval & R, with
Inspired and motivate by the work of Dragomg], ~ (0,1) C J. We shall say that a function:f — R , defined
Ghazanfari in 27], Erdas et al. 23, Horvath et al. g, ~ On an interval IC R, is h-convex if f is non negative and

T. Ando in [1], L. Horvath [36], I. Kim [38], S. Salas$0],  the following inequality holds

in this paper, we use a novel class of convex functions

called operator h-convex functigrintroduced by Vivas Ftx+(1-t)y) <h(t) f(x)+h(1-1)f(y)
and Hernandez ir?]. We establish some new generalized
Hermite-Hadamard-Fejér inequalities for operator
h-convex functionsThis paper is organized as follows: In - For some results concerning this class of functions se [
Section 2 we provide some notations, definitions and42 51).

recall well known fundamental theorems. In section 3, wewe can see, from this definition, that this class of
establish the main results of the article: generalizediynctions contains the class of Godunova-Levin

Hermite-Hadamard-Fejér  inequalities  foroperator  functions. It also contains the class# functions:
h-convex functions

forany xy el andforallte (0,1).

1. If h(t) =1 then anh—convex functionf is a
P—function.
2 Preliminaries. 2. Ifh(t) =t3se (0,1] then arh—convex functionf is
ans—function.
Our purpose in this section is to establish some basic 3. Ifh(t) =t% with s= —1 then arh—convex function
terminology, we review briefly and without proofs some  f is @ Godunova-Levin function.
elementary results from the continuous functional
calculus. The functional calculus is defined by the
spectral theorem.
The notion of a convex function plays a fundamental role
in modern mathematics. The theory of convex functions
has been studied mostly due to its usefulness an
applicability in Optimization. We recall some concepts of
convexity that are well known in the literature.

Definition 1. A function f: 1 — R is said to be convex A<B if (Axx) < (BxX)
function over | if for any xy € | and for any te [0,1] we
have the following inequality

In order to achieve our results we need the following
definitions and preliminary. WitB(H) we shall denote
the C*—algebra commutative of all bounded operators
over a Hilbert spacel with inner product,) . Let < be a
ubalgebra oB(H). An operatorA € 7 is positive if
Ax,x) > 0 for all x € H. Over <7 there exists an order
relation by means

or
B> A if (BxX) > (AX X)

ftx+ (1-t)y) <tf(x)+ (1-t)f(y). (3)  for A, B e « selfadjoint operators and for alle H.
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The Gelfand map established a—isometrically Theorem 4. (F. Hansen and G.K. Pederser3q) A
isomorphism @ between the setC(og(A)) of all continuous function f defined on an interval | is operator
continuous functions defined over the spectrumAof  convexif and only if

denoted byo (A), and theC*—algebreC* (A) generated by

A and the identity operatdfy overH as follows: TIPS Ky \a

For anyf,g € C(o(A)) anda, 3 € C (Complex numbers) f <J;aJX‘a‘> = J;al F(x)a;

we have

1. @(af+pg)=a®(A)+pP(B)
2. ®(fg)=®(A)®(B) and @ (T) = @ (f)*

for every finite family{x; : j € J} of bounded, self-adjoint
operators on a separable Hilbert space H, with spectra
contained in I, and every family of operato{aj rje J}

3. [le(M)l=fl:= o [f(0)] in B(H) with 5 j; aja; = 1, wherel € B(H) is the identity
4. @ (fg) =14 and @ (fy) = A, wherefp(t) =1y operator.
fi(t) =tforallt € o(A) Theorem 5. (D.R. Farenick and F Zhou 24]) Let
, , , , (Q, 2, 1) be a probability measure space, and suppose f
With this notation we define is an operator convex function defined on an open interval
| CR. Ifg: Q — B(C")?is a measurable function for
f(A) =@ (1) whicho(g(w)) C [a,B] C | forall w e Q, then
and we call it the continuous functional calculus for a
selfadjoint operatoA. f ( /Q gdu) < /Q fogdy.
If Ais a selfadjoint operator antlis a continuous real
valued function oro(A) then Some other references about this topic are 34,35).
Dragomir in R1] has proved a Hermite-Hadamard type
f(t)>0forallte o(A) = f(A) >0 inequality for operator convex functions.

thatis to sayf (A) is a positive operator ovét. Moreover, 1 heorem6. ([19,Theorem 1) Let f:1 — R be an

if both functionsf, g are continuous real valued functions OP€rator convex function on the interval I. Then for any
ono(A) then selfadjoint operators A and B with spectra in | we have

the inequality

respeclc i:;egc()tr)d:)rri:(l:l)e. e (f (A%B) S) % [f <3A: B) o (AZBBH

1
s/ F((L—t)A+tB)dt
Definition 6. Let H be a Hilbert space and € R an 0
interval. A continuous function f| — R is called 21 [f (A+ B) LA+ f(B)] << f(A) + f('—”))
operator convex with respect to H if -2 2 2 - 2

FIAAL (1—AVB) < Af(A) L (1-A)f(B The definition of operatog—convex function is proposed
(AA+ JB) S AT+ )1(B) by Ghazanfari in27).

for all A,B € B(H)>* with o(A)Uc(B) Clandforall  pefinition 7. Let | be an interval in0,0) y K a convex
scalarsA € [0,1]. f is called operator convex of order ¢ pset of BH)*. A continuous function fI — R is said

n e N if it is operator convex with respect to H C". 4 e gperator s-convex on | for operators in K if
Finally, f is simply called operator convex if there is an

infinite dimensional Hilbert space H such that f is f((L1-A)A+AB) < (1-A)*f(A)+A%f(B)
operator convex with respect to.H

in the operator order in BH), for all A € [0,1] and for
Here B(H)S2 is the set of self-adjoint bounded operators €Very positive operator A and B in K whose spectra are
on the Hilbert space Hy(A), o(B), denotes the spectrum contained in I and for some fixedss(0, 1.
of A and B, and f(A) and f(B) are defined by the The following Hermite-Hadamard inequality for operator
continuous fgnchona} calculus. We refer the reader tog_convex functions holds.
[46] for undefined notions o@&*—algebra theory.
As illustration below we state some classical theorems onfheorem 7. ([27], Theorem 6) Let f: | — R be an
operator inequalities. operator s-convex function on the intervald [0,) for

. operators in KC B(H)*. Then for all positive operators
Theorem 3. (Bendat and Shermarifl]) f is operator A and B in K with spectra in,lwe have the inequality
convex if and only if it is operator convex of every order n
N, and this last property holds if and only if it is operator ,s-1 <A+ B) - /1 F(1— A+ tB)dt < f(A)+f(B)
convex with respect to the Hilbert spa&C). 2 ~—Jo - s+1
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Dragomir in b2 introduced an even more general f((1—t)A+tB)g(tA+(1—1t)B)

definition ofoperator h-convex functions < (h(1—t)f(A)+h(t)f(B))g((1—t)A+B).
Definition 8. Let J be an interval include iR with After adding and integrate both inequalities we get
(0,1) ¢ J. Let h: J — R be a non negative and identically

non-zero function. We shall say that a continuous function/ f(tA + (1-t)B)g(tA+ (1—1t)B)dt

f:1 = R, defined on an interval € R, is an operator

h—convex for operators in K if + / (1—t)A+tB)g((1—t)A+tB)dt
f(tA+(1-t)B) <h(t)f (A)+h(1-t)f(B)

< /O (h(t) f (A)Q(tA+(1—1)B)
forallt € (0,1)and ABe K C B(H)™ suchthat SpA) C

+h(1—-t)f(B)g(tA+ (1—t)B)

dspgB) Cl.
and SB) ¢ +h(1 t)f(A)g((1—t)A+tB)
With this concept Dragomir obtained some results + h(t) f(B)g((1—t)A+tB))dt
involving operatordi-convex functionsThe first of them )
is located as Lemma 2.3 in5% and it involves the  _ FOA) ThOAA L (1— DB+ h(1—t)a((1— 1AL tB
associated functiogp. The second is the Theorem 2.4 in / (FAMOgA+(1-1B)+h(1-1)g((1-DA+B)

[52], which establishes the Hermite-Hadamard type + f(B)[h(1—t)g(tA+ (1—t)B)+h(t)g((1—-t)A+tB)])dt
inequality foroperator h-convex functions sinceg is symmetric respect + b) /2 we have

Lemma 1. If f is an operator h-convex function then
Pxa(t) = ((f(tA+ (1-1)B)x,X))
for x e H with ||x|| = 1is an h-convex function ove0,1).  and therefore

/olh(l—t)g((l—t)A—HB)dt: /Olh(t)g(tAJr (1-t)B)dt

1
Theorem 8. Let f be an operator hconvex function. /o f(tA + (1-1)B)g(tA+ (1—t)B)dt
Then

1
1 A+B + [ f((1-t)A+tB)g((1—t)A+tB)dt
T2 ( ) /ftB+ 1-t)A)dt /o

B)) /0 htdt (4 / h(t) g (tA+(1-t)B)dt

+ 2f(B)/O h(t)g(tA+ (1—t)B)dt
3 Main Results.

1
:2(f(A)+f(B))/ h(t)g(tA-+ (1—1)B)dt
Theorem 9. Let J be an interval include in R with 0

(0,1) c J. Let h: J — R be a non negative and identically and with an appropriate substitution in the left hand term
non-zero and integrable function. Let fa,b] — R be an

operator h-convex function on the intervald [0, ) for / f(tA+ (1—-1)B)g(tA+ (1—t)B)dt

operators in KC B(H)™ and g: [a,b] — R be a 1

non-negative and symmetric function respect to < (f(A)+ f(B))/ h(t)g(tA+ (1—1t)B)dt.
(a+b)/2. Then 0

1 Theorem 10. Let h: [0,max{1,b—a}] — R be a non
/ f (tA+(1-1)B)g(tA+ (1—t)B)dt negative and identically non-zero and integrable function
0 1 Let f: [a,b] — R be an operator h convex function on the
B))/ h(t)g(tA+ (1—t)B)dt interval | C [0,e0) for operators in KC B(H)* and
0 g: [a,b] — R be a non-negative and symmetric operator
for all operators AB € K with spectra ina, b] . function respect t¢a+b) /2. Then
Proof. For anyA,B € K let consider f <A_‘2L B)

[AB|={ZeX:Z=tA+(1-t)B,te[0,1]}.
2h(1/2)

fo (tA+(1—-t)B)dt

Lett € [0,1]. We can see that
f(tA+(1—-t)B)g(tA+(1—1)B)

1
O A (L0 (B gltA (1_08). x /O [f (tA+ (1—t)B)g(tA+ (L—t)B) dt.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 4, 983-992 (2017)www.naturalspublishing.com/Journals.asp

Proof. Using theh—convexity off, we have

¢ (%) g <tA+(1—t)A—2HB—|—(1—t)B>

<h(1/2)[f (tA+ (1—t)B)+ f (tB+ (1 —1)A)]
Sinceg is positive and symmetric respg&+ B) /2

gtA+ (1—t)B)f (ALZB>

<h(1/2)[f (tA+ (1-t)B)g(tA+ (1—1)B)
+f(tB+ (1—-t)A)g(tB+ (1 —t)A)]
and integrating

(%)
2h(1/2)

T J3g(tA+ (1—-1t)B)dt

></ol[f(tA+(1—t)B)g(tA+(1—t)B)]dt.

Theorem 11. Let J be an interval include in R with
(0,1) c J. Let h,hy : J — R be two non negative,
identically non-zero(hy,hy) € L1(J). Let f: 1 — R be an
operator h—convex and g | — R be an operator
h,—convex functions for operators in K B(H)™ with
spectrain | Then

/01 ((f(tB+ (L —1t)A))x,x) ((g(tB+ (1 —t)A))x,x) dt

<M(AB) /Olhl(t)hz(t)dt+ N(A, B)/Olhl(t)hz(l—t)dt
where

M(A,B) = (F(AXX) (gA)XX) + (F(B)x,X) (g(B)X,X)
and

N(A,B) = (F(AX,X) (g(B)X,X) + (F(B)x,X) (G(A)X.X).
Proof. Forx e H with x| = 1 andt € [0, 1] we have

(tA+(1-1)B)x,x) =t (AxX) + (1 —t) (Bx,x) € |

Since (Ax,x) € Sp(A) C | and (Bxx) € Sp(B) C I .

Continuity of f,g and the previous equality imply that the
following operator valued integrals exists

/01 F(tB+ (1— t)A)d,

/Olg(tB—k(l—t)A)dt and

/01 F(tB+ (1—)A)g(tB + (1—t)A)dt.

Fort € [0,1], by theh convexity property of each one,
we have

((F(tB+(1=1)A))x,x) <hy (t) (F(A)x X) +hy (1-1) (f(B)x,X),

((9(tB+ (1 =1)A)) %, %) < ha(t) (9(A)X,X) +ha(1 1) (9(B)X, X)
thus

((f(tB4+ (1 —1)A))x,X) x {(g(tB+ (1 —1)A))x,X)
<l (®)ha( t) (F(AXX) (9(A)XX)
+ hy(1-Hhg(1—1) (F(B)x,X) (9(B)x.X)
+ M (t)ha(1—t) (F(A)%,%) (9(B)X,X)
+ m(1-t)ha(t) (f(B)x, %) (9(A)X,X)

integrating both sides of the last inequality
/01<(f(tB+ (1A XX) (tB+ (1—1)A))x X) dt
< (F(AXX) (9(A)XX) /0 "ha(0)ha(t)dlt
+{F(B)XX) (g(B)X,X) /01 hy(1— t)ha(1— t)dt
(A% X) (9(B)X,X) /O “hu(Oha(1— t)dt

+(FB)XX) (GAXX) /O “ha(1—Oho(t)dt
but
1 1
/hl(l—t)hz(l—t)dt:/ hi(9)ha(s)ds
0 0
and
1 1
/ hy(1—t)hy(t)dt = / hy()ha(1— s)dt
0 0
thus we obtain

/01<(f(tB+ (1—1)A)XX) ((9tB+ (1—t)A))x, ) dt

< ((F(A)XX) (9(A)x %) + <f(B)x,i<> (9(B)x,x))
X /O ha (t)ha(t)dt
+ ({(F(A)X %) (9(B)x,X) + (F(B)X,X) (G(A)X,X))
x/olhl(t)hz(l—t)dt

which can be written like

/01<(f(tB+ (1—1)A)XX) ((9tB+ (1—t)A))x, ) dt
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1 1
< M(A,B)/O ha(t)ha(t)dt + N(A,B)/O hy(t)ha(1 — t)dt

where

M(A,B) = (f(A)X,x) (9(A)X,X) + (f(B)x,x) (g(B)x,x)
and
N(A,B) = (f(A)x,X) (9(B)x,X) + (f(B)x,X) (J(A)X,X) -

Theorem 12. Let J be an interval include in R with
(0,1) c J. Let h,hy : J — R be two non negative,
identically non-zero(hy,h) € L1(J). Let f: | — R be an
operator h convex and g | — R be an operator h
convex functions for operators in K& B(H)" with
spectrain | Then for all operators with spectrain |

1

2 (3) P2 (3) (13500 (o(%57) )

g/ol<f(tA+(1—t)B)x,x> QA+ (1—D)B)X,X)

+2 <M(a7 b) /01 h(t)ha(1—t)dt + N(a,b) /01 hl(t)hz(t)dt)

where

M(a, b) = (f(A)x,x) (9(A)X,X) + (f(B)x,x) (g(B)x,x)
and
N(a,b) = (f(A)x,X) (9(B)x,X) + (F(B)x,x) (g(A)X,X)

for for any xe H with ||x|| = 1.

Proof. First we note that

<f(¥)x’x> _ <f <tA+(1—t)A—2|—tB+(1—t)B)X’X>

and
<g(A;B)x,x> _ <g (tA—i—(l—t)A—zHB—k(l—t)B) x,x>

then we can observe that

() (o(557) %)

_ <f (tA+ (1-t)A+tB+ (1—t)B) X7X> y

2

<g (tA+ (1-t)A+tB+ (1—t)B) X’X>

n(n(2)-

((f tA+(1-1)B)x,x) + (f ((L—t)A+tB)X,X))

X ((g(tA+ (1—t)B)x,x) +

n(n ()

{[{f (tA+(1—1)B)x,x) (g (tA+ (1—1)B)x,X)

Q((1-t)A+tB)x, X))

{[{f tA+(1—1)B)x,x) (g(tA+ (1—1)B)X,X)
+(fF(1-t)A+tB)x,x) (g((1 —t)A+tB)x,X)]
+ (h1()h2(1—1) + (1 —t)ha(t)) x
((F(AXX) (9(A)X,x) + (F(B)X,
+ (ha(t)ha(t) +hy (1 —t)ha(1—t)) x
((F(AXx) (9(B)x,x) + (F(B)x,
Now integrating ovef0, 1] we have
(F(A58)x) (9 (442) xx)
2hy (3)h2 (3)

x) (9(B)x, %))

X) (9(A)%, ) }

§/01<f(tA+(1—t)B)x,x> (9(tA+ (L—t)B)x X dt

1 1
+2M(a,b)/0 hl(t)hz(l—t)dt+2N(a,b)/O ha(t)ha(t)dt

where

M(a,b) = (f(A)x,x) (9(A)x,X) + (f(B)x,X) (9(B)x,X)
and

N(a,b) = (f(A)x,x) (9(B)x,) + (f(B)x,) (9(A)%,%)

This complete the proof.

Theorem 13. Let J be an interval include in R with
(0,1) C J. Let h,hy : J — R be two non negative,
identically non-zero(hy,hy) € L1(J). Let f: 1 — R be an
operator h—convex and g | — R be an operator
h,—convex functions for operators in K B(H)™ with
spectra in | Then for all operators with spectrain |

e o( )

< 2(M(A,B) +N(A,B)) x
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(fmGme()er [r(3)

where

(1))

M(A,B) = (f(A)x,x) (9(A)X,x) + (f(B)x,X) (g(B)x,x)
and

N(A,B) = (f(A)xX) (9(B)x, %) + (f(B)X,X) (G(A)%,%) .

Proof. First we note that applyinig; —convexity

<f(A—;B)X7X> _ <f (tA+(1—t)A—£tB+(l—t)B) X7X>

<((m(3) fm+m (35 ) 1
h (5) 1 )+h1(12t)f(8))x,x>

—(m(3)+m (5 ) crmmn + trem)

and using thén, —convexity

<g(A-12-B)X7X> _ <g (tA+(1—t)A-2HB+(1—t)B) X7X>

<< () +h2( )g(A)
+h2(% 9(B )+hz(12t>g(8)>X7X>

()

and with these

.

(%2
(1500 (9(557) )

SN

+ (F(A%,x) (9(B)x,%) + (f(B)x, X) (G(A)X, X))
integrating over0, 1] we have

(9 (o(%) )

< (M(A,B)+N(A,B)) x

/o1 <hl(2)+h1(12t>> (hz( )+h2<12t)>dt

=2(M(A, B) N(A B)) x

( / )t + / h (5 ( )dt)
where

M(A,B) = (f(A)xX) (g(A)XX) + (f (B)x,X) (g(B)x,X)
and

N(A,B) = (F(A)xx) (9(B)x,x) + (f(B)x,X) (9(A)x,%)

and this complete the proof.

4 Applications
Corollary 1. Letse (0,1}, f: [a,b] — R be an operator
s—convex function on the interv@,«) for operators in

K C B(H)" and g: [a,b] = R be a non-negative,
symmetric function respect ta+ b)/2. Then

/01 f(tA + (L—t)B)g(tA+ (1—t)B)dt

1
< (F(A) + f(B))/ tSg(tA+ (1—t)B)dt,
0
for all operators AB € K with spectra infa, b].

Proof. An application of Theorer, lettingh(t) =t5,s€e
(0,1], we have

/01 f(tA + (L—t)B)g(tA+ (1—t)B)dt
< (F(A) + f(B))/Oltsg(tA—k(l—t)B)dt,

Corollary 2. Let f: [a,b] — R be an operator P convex
function on the interval0, «) for operators in KC B(H)™

and g: [a,b] — R be a non-negative, symmetric function
respecttola+b)/2. Then

/01 f(tA + (L—t)B)g(tA+ (1—t)B)dt
< (F(A) +f B))/Olg(tA+(1—t)B)dt
for all operators AB € K with spectra infa,by.

Proof. An application of Theorerf, lettingh(t) = 1,t €
[0,1] we have

/01 f(tA + (L—t)B)g(tA+ (1—t)B)dt

1
< (F(A) + f B))/O gtA+ (1—t)B)dt
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Corollary 3. Let f:1 — R and g: | — R be operator
convex functions for operators in K B(H)™ with
spectrain | Then

/01 (fIB+ (1 —1)A))x,Xx) ((g(tB+ (1L —1)A))x,x) dt

< SM(AB)+ EN(AB),

Proof. With an application of Theorerhl, doingh; (t) =
ha(t) =t,t € [0, 1] we obtain the desired result.

The following result is showed by Ghazanfari 2],
and here is obtained by an application of Theofeim

Corollary4. Let f:1 — R and g: | — R be operator
convex functions for operators in KK B(H)" with
spectrain | Then

/01 (F(tB+ (L—1)A))x,X) ((Q(tB+ (1 —t)A))x,X) dt
_ _M@AB)
Tsi+5+1

Proof. Doing hy(t) = t and hy(t)
51, € (0,1) we get the desired result.

+B(s1+1,%+1)N(A,B).

= t2 with

Corollary 5. Let se (0,1), f : 1 — R be an operator
convex function and gl — R be an operator -sconvex
function for operators in KC B(H)* with spectra in |
Then

/Ol<(f(tB+ (1—1)A)XX) ((gtB+ (1—)A))x,x) dt

M(A.B)
S+2

N(A,B)
(s+1)(s+2)’

Proof. An application of Theorer1 with hy(t) =t,t €
[0,1] andhy(t) =t5,t € [0,1] we get the desired result.

The next Corollary show a result obtained by
Ghazanfari in 27]. Here is got by an application of

Theoreml2.

Corollary 6. Letsg,s, €(0,1), f:1 — R be an operator
sy—convex function and gl — R be an operator
s;—convex functions for operators in K B(H)* with
spectrain | Then

o (14580 (3457

§/01<f(tA+(1—t)B)x,x> (g(tA+ (L—1)B)x,X) dt

N(a,b)

+M(a,b)B(s;+1,5+1) +—22
(a,b)B(s1+1 )sl+sQ+1

Proof. An application of Theorem2 with If hy(t) =t
andhy(t) =t2 with 51,5, € (0,1) we get the desired result.

Corollary 7. Let f:1 — R and g: | — R be operators
convex functions for operators in € B(H)™ with spectra
inl. Then

<f(%3)x,x> <g (#) x,x> < % (M(A,B)+N(A,B))

Proof. An application of Theorem 13 with
hi(t) = hy(t) =t,t in[0,1] we get the desired result.

Corollary 8. Lets,s; € (0,1), f:1 — R be an operator
s1—convex function in second sense andig—+ R be an
operator $—convex function in second sense for operators
in K C B(H)* with spectrain | Then

(520 (252)e)

< 217512 (M(A,B) + N(A,B)) x
1
——— +B(s1+15+1
<(1+51+52) @tls )>
where Bs; + 1,5, + 1) is the beta function.
Proof. With an application of Theorenl3, letting

hi(t) = tand hy(t) = t%2 with 51,5 € (0,1) we get the
desired result.

Corollary9. Let se (0,1), f : 1 — R be an operator
convex function and gl — R be an operator -sconvex
function in second sense for operators inkB(H)* with
spectrain | Then

(18520 o (45%) )

273
<
~s+1

(M(A,B)+N(A,B)),

Proof. ~ An application of Theorem 13, letting
hi(t) =t,t € [0,1] andhy(t) =15t € [0,1] with s€ (0,1)
then we get the desired result.

5 Conclusion.

In this work, we used the concept operator h-convex
functions and we have presented some
Hadamard-Hermite-Fejér type inequalities for the
products ofoperator h-convex functiongn addition, we
have presented some remarks that show how the main
theorems generalize other results demonstrated in cited
references. We hope that everything established here will
stimulate further research in this area.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 4, 983-992 (2017)www.naturalspublishing.com/Journals.asp

N SS ¥

991

Acknowledgement

The authors acknowledges to the Consejo de Desarrollo

[19] S.S. Dragomir. Hermite Hadamard's type inequalities
for operator convex functionsJournal of Mathematical
Inequalities. 4(4), 2010, 587 - 591

Cientifico, Humanistico y Tecnologico (CDCHT) from [20] S.S. Dragomir, J. Petaric, L.E Perssome inequalities of

Universidad Centroccidental

Lisandro Alvarado and

Hadamard typeSoochow J. Math. 21(1995) 335 - 341

Centro de Investigacion en Matematicas Aplicadas d21]S.S. Dragomir. Some Inequalities of Jensen type for

Ciencia e Ingenieria (CIMACI - FCMN) from Escuela

Superior Politécnica del Litoral, for the thecnical sugpo

References

[1] T. Ando, F. Hiai. Operator log-Convex Functions and
Operator MeansarXiv: 0911.5267v5, 2014

[2] T. Ando, Topics on Operator Inequalities Lecture Notes
(mimeographed). Hokkaido Univ. Sapporo, 1978.

[3] J.L. Aujla, H. L. VasudevaConvex and monotone operator
functions. Annales Polonici Mathematici. Vol. LXII (1).
1995.

[4] A. Azbcar, K. Nikodem, G. RoaFejér-Type Inequalities
for Strongly Convex FunctionsAnnales Mathematicae
Silesianae \ol. 26 , pp 43?754, 2012.

[5] V. Bacak., R. TurkmenNew Inequalities for operator convex

functions Journal of Inequalities and Applications. 2013. 191

[6] H.H. Bauschke, P.L. CombettesConvex Analysis and
Monotone Operator Theory in Hilbert Spac&pringer New
York Dordrecht Heidelberg London. 2010.

[7] E.F. Beckenbach, R. Bellmamequalities.Springer-Verlag
Berlin Heidelberg. 1961.

[8] B.R Beesack, J. Petari@n Jensen’s inequality for convex

functions.Journal of Mathematical Analysis an Applications.

Vol. 110., pp 536-552, 1985.

[9] M. Bessenyei, Ples ZsCharacterization of convexity via
Hadamard inequalityMath. Inequal. Appl. 9 (2006), no. 1,
53762.

[10] R. Bhatia.Matrix Analysis Springer, New York, 1996.

[11] M. Bombardelli, S. VarosanecProperties of h-convex
functions related to the

Vol. 58, Issue 9, 2009, pp 1869-1877
[12] L. Bougoffa. New Inequalities about convex functions

Hermite?Hadamard-Fejér
inequalities Computers and Mathematics with Applications.

Operator Convex Function in Hilbert SpaceAdvances in
Inequlities and Applications. Vol 2, nro. 1, pp 105-123. 201

[22] S.S. Dragomir, Pearce C.E.M.Selected Topics on
Hermite-Hadamard  Inequalites and  Applications
RGMIA Monographs, Victoria University, 2002. (online:
http://rgmia.vu.edu.au/monographs/).

[23] V. Erdas, E. Unluyol,S. Sala¥he Hermite-Hadamard type
inequalities for operator m-convex functions in HilbereSp.
Journal of New Theory. Number 5. 2015. pp. 92-100

[24] D. R. Farenick, F. ZhouJensen'’s inequality relative to
matrix-valued measures). Math. Anal. Appl. 327 (2007)
9197929.

[25] L. Fejer. Uber die fourierreihen |, Math. Naturwiss. Anz
Ungar. Akad.Wiss., 369-390, 1906

[26] U. Franz, F. Hial, E. RicardHigher Order Exyension
of Lowner's Theory: Operator k-Tone FunctionarXiv:
1105.3881v4. 2014

[27]1A.G. Ghazanfari. The Hermite
inequalities for operator s-convex
ArXiv:1407.2561vIMath.FA] 2014

[28] E.Godunova, V. LevinNeravenstva dlja funkcii Sirokogo
klassa, soderzastego vypuklye, monotonnye,i neletory
drugie vidy funkcii, in : VyCislitel. Mat. i. Mat. Fiz.
Mezvuzov. Sh. Nau€. Trudov. MGPI. Moskva. 1985. pp 138-
142

[29] M. Grinalatt.,, J.T. Linnainmaa.Jensen’s Inequality,
parameter uncertainty, and multiperiod investmeRéview
of Asset Pricing Studies. Vol 1. nro. 1, pp 1-34. 2011

[30] J.S HadamardEtude sur les propietés des fonctions entieres
et en particulier d’ une fontion considerer per Riemadn
Math. Pure and Appl. 58 (1893) 171- 215

[31] F. Hansen.Convex and Monotone Matrix Functions and
their Applications in Operator TheoryKobenhavens
Universitet Matematisk Institut. Rapport Nro. 3. 1983

[32] F. Hansen and J.K. Pedersedensen’s Inequality for
Operators and Lowner Theorerilath. Ann. 258 (1982), pp
229-241.

Hadamard type
functions

Journal of Inequalities in Pure and Applied Mathematics, Vo [33] G.H. Hardy, J.E. Littlewood, G. Polyalnequalities.

7, Issue 4, Article148, 2006.
[13] W.W. Breckner. Stetigkeitsaussagen fiir

verallgemeinerter konvexer funktionen in topologischen

linearen RaumerPub. Inst. Math., 23 (1978) 13-20

[14] J. Bendat and S. Shermavionotone and Convex Operator
Functions Trans. Amer. Math. Soc. 79 (1955), pp 58-71.

[15] Y. Chang, J. Chen, S. Palsymmetric cone monotone
functions and symmatric cone convex functioNsnlinear
and Convex Analysis. Vol 17. Nro. 3. 2016.

[16] P. ChansangiamA Survey on Operator Monotonicity,
Operator convexity and Operator Meandnternational
Journal of Analysis. Vol. 2015. Article Id 649839. 8 pp.

[17] M.J. Cloud, B.C. Drachmarnequalities: With Applications
to Engineering Springer-Verlag, New York, Inc. 1998

[18] W.F. Donoghue,JMonotone Matrix Functions and Analitic
Continuation Springer, Berlin-Heildelberg.New York, 1974.

Cambidge University Press. London. 1934

eine Klasse [34] F. Hiai. Matrix Analysis: Matrix Monotone Functions,

Matrix Means and Majorization (GSIS selected lectures)
Interdisciplinary Information Sciences. 16 (2010), pp 139
248.

[35] F. Hiai, D. Petz.Introduction to Matrix Analysis and
Applications Springer Cham Heidelberg New York
Dordrecht London. 2014.

[36] L. Horvath., K.A. Khan., J. PecariRefinements of Jensen’s
Inequality for Operator Convex Functiongdv. Inequal.
Appl. 2014. 2014:26

[37] J.L.W JensenSur les fonctions convexes et le inequalities
entre les valeurs moyenneicta Math. 32(1906),175 - 193.

[38] I. Kim. Modulus of convexity for operator convex functions
Journal of Mathemtical Physics. 55, 082201 (2014); doi:
10.1063/1.4890292

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

992 %N S\ M. Vivas, J. Hernandez: Hermite-Hadamard-Fejér indtjealfor product...

[39] A. Koranyi. On a Theorem of Lowner and its Connection Miguel J. Vivas
with of Resolvent of TransformationActa Sci. Math. C. earned his PhD degree
(Szeged) 17 (1956), pp 63-70. from Universidad Central

[40] P. Kraus.Uber Konvexe MatrixfunktionenMath. Z. 41 de Venezuela, Caracas,
(1936) pp 18-42. Distrito ~ Capital ~ (2014)

[41] M. Kuczma. An Introduction to the Theory of Functional in the field Pure Mathematics
Equations and Inequalities. Cauchy’s Equation and (Nonlinear Analysis),
Jensen’s Inequality PWN - Uniwersytet Slaski, and earned his Master Degree
Warszawa?Krakw?Katowice, . 1985. Second Edition: in Pure Mathematics in the
Birkhuser, Basel?Boston?Berlin, 2009. area of Differential Equations

[42] M. A. Latif, M. Alomari. On Hadmard-Type Inequalities . - .
for h-Convex Functions on the Co-ordinatést. Journal of (Ecological Models). He has vast experience of teaching

Math. Analysis, Vol. 3, 2009, no. 33, 1645 - 1656 and research at university levels. It covers many areas of
[43] K. waner.Uk;er Mor'lotone’ Matrixf’unktionen\/lath. Z.38 Mathgmatlcal SUCh, as Inequalltles, Bounded Variation

(1934) pp 177-216. Functions and Ordinary Differential Equations. He has
[44]D.S. Mitrinovie. Analitic Inequalities Springer-Verlag ~ Written gnd pgbllshed several research articles in reputed

Berlin Heidelberg. 1970. international journals of mathematical and textbooks. He

[45] D.S. Mitrinovi€, I.B. Lackovic. Hermite and Convexity. IS currently Titular Professor in Decanato de Ciencias y
Aequationes Mathematicae Vol 28, nro. 3, pp 229-232, 1985.Tecnologa of Universidad Centroccidental Lisandro
[46] G.J. Murphy. C*—Algebras and Operator Theory. Alvarado (UCLA), Barquisimeto, Lara state, Venezuela,
Academic Press, Inc. 1990 and invited professor in Facultad de Ciencias Naturales y

[47] C.P. Niculescu, Persson L.-EConvex Functions and their Matematicas from Escuela Superior Politécnica del
Applications. A Contemporary ApproachCMS Books in  Litoral (ESPOL), Guayaquil, Ecuador.

Mathematics, vol. 23, Springer, New York, 2006.

[48] J.E. Pecaric., F. Proschan, Y.L. Ton@onvex Functions,

Partial Orderings, and Statistical ApplicationsAcademic q
Press, Boston, 1992. -

[49] J.J. Ruel, M.P. AyresJensen’s inequality predicts effects
of environmental variatioffrends in Ecology and Evolution. e
Vol 14, nro. 9. pp 361-366.

[50] S. Salas, E. Unluyol, Y. Erdaghe Hermite-Hadamard type
Inequalities for Operator pConvex Functions in Hilbert
SpacesJournal of New Theory. Number 4. pp 74-79. 2015 . .

[51] M.Z. Sarikaya, A. Saglam, H. Yildirin.On Some vast experience of teaching

Hadamard-Inequalities for hconvex FunctionsJournal of _at university levels. Itlcoversl
Mathematical Inequalities. Vol 3. Nro. 3 (2008) pp 335-341 Many areas of Mathematical such as Mathematics applied

[52] A. Taghavi, V. Darvish, M. Nazar, S.S. Dragomir, {0 Economy, Functional Analysis, Harmonical Analysis
Some Inequalities Associated with the Hemite-Hadamard(Wavelets). He is currently Associated Professor in
Inequalities for Operator hconvex Functions.RGMIA Decanato de Ciencias Economicas y Empresariales of
Research Report Collection, 18(2015). Universidad Centroccidental Lisandro Alvarado (UCLA),

[53] S. VarosanecOn h-convexity]. Math. Anal. Appl. 326  Barquisimeto, Lara state, Venezuela.

(2007) 303 - 311

[54] S. Wang, X. Liu. Hermite-Hadamard Type Inequalities
for Operator s-Preinvex FunctionsJournal of Nonlinear
Science and Applications. Vol 8. pp. 1070-1081. 2015

[55] X. Zhan. Matrix Inequalities. Lectures Notes in
Mathematics. Springer-Verlag Berlin Heidelberg. 2002.

Jorge E. Hernandez
H. earned his M.Sc.
degree from Universidad
Centroccidental Lisandro
Alvarado, Barquisimeto,
Estado Lara (2001) in
the field Pure Mathematics
(Harmonic Analysis). He has

(@© 2017 NSP
Natural Sciences Publishing Cor.



	Introduction
	Preliminaries.
	Main Results.
	Applications
	Conclusion.

