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Abstract: Avian influenza, caused by influenza A viruses, has drawmttte from scientists worldwide to study its epidemic
dynamics. In this paper, we study the spread of bird flu orrainfluenza and optimal control theory for intervention gges from
SIR-based model. In addition, we divide human populatido five states; Susceptible (S), Vaccinated (V), ExposedI(Egctive (1)
and Recovered (R). Equilibrium analysis to investigatedjxeamics of the model is carefully derived. We further sttitly optimal
control to seek cost effective for control and treatmerdtetyies. Numerical results show that strategically deggloyaccination and
medical treatment can significantly reduce the numberspdsed and infectious persons.
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1 Introduction near future to humans. According to the data reported to
WHO from Azerbaijan, Bangladesh, Cambodia, Canada,
China, Djibouti, Egypt, Indonesia, Iraq, Lao People’s
emocratic Republic, Myanmar, Nigeria, Pakistan,
hailand, Viet Nam, from 2003-2016, there were 854
gases; among these, 450 individuals have been fatal. In
addition, WHO has published outbreak factsheets of
human infection with avain influenza A(H7N9) virus in

Avian influenza is caused by type A strains of the
influenza virus. These viruses are carried by aquatic bird
and can infect local poultry, birds and other animal
species. There are, in general, two categories of influenz
A virsus that may cause illness in birds: low pathogenic
avian influenza (LPAI) and high pathogenic avian . .
influenza (HPAI). Wild birds usually spread LPAI viruses g:gi%a arr:d the dataf;hows that f;orln b24 June - 2]? Julé/
to domestic birds and, under suitable condtions, LPAI , there were five cases of laboratory-confirme

mutates and evolves into HPAI that causes illness in birdg, “Man infection with avain |anuenz_a A(H7NS);two of the
and leads to 90-100 percent of death rates within 4 ive cases reported exposure to live poultry. In January

hours. When LPAI outbreaks occur in poultry, culling 2016, a report of an HPAI(H7NS) outbreak in Indiana,

; : orth America, was confirmed in a commercial turkey
emc%tﬁgfmc'simgzﬂ?"y carried out and that causes they, .\ iy bubois County. Also, LPAI(H7NS) was detected

in eight nearby turkey flocks. However, there was no
report in human infection from this incidence. Human

suscentible humans which there has been a report fro infections with the influenza virus A(H7N9) need to be
P P Thonitored since the changes in the virus and its

such transmission documented on the Centers for Diseasg, \ission dynamic to humans can cause a serious
Control and Prevention website. Humans infected by d

S roblem to public health.
avian influenza show symptoms such as fever, cough, sorB
throat, acute respiratory distress, and respiratory riailu
Avian influenza subtype HPAI H5N1 has been endemicin  There have been many mathematical models (see,
Asia and several other places, according to the data oe.g., PR,4,10,13,16,17,18,19,24]) published for the
CDC website. The latest data as of 19 July 2016 reportedransmission of the influenza A viruses and the spread of
by World Health Organization (WHO) shows that the the infection among birds. However, in this study, birds
disease is still considered as a likely possible threat inare not included in our model since we are interested in

Influenza A viruses can spread from infected birds to
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only optimal control study in human dynamics when 2 Mathematical model with constant controls
outbreaks occur. Similarly, a number of studies have
proposed with a focus only on humans and the impact o

hypothetical pandemics(see, e.g8 9,12, 25,27,29,30 f\/Ve describe the avian influenza dynamics using a system

. .. of five differential equations. The human population is
31,32)). Meanwhile, there are only a few studies divided into five classes: susceptible (S), vaccinated (V),

conducted optimal control theory to gain more guidelines ) . .
for human vaccination and other control measures toexposed (E), infectious (1), and recovered (R). A diagram

prevent avian influenza pandemics among humans. Ir!iJf the model is presented in Figure 1.

2009, Eunok Jung et al.1f] formulated an optimal )
control mathematical model for prevention of avain e use an SVEIRS model to represent the disease

influenza pandemic based on the assumptions that thdynamics of humans and we assume that individuals are
infection is fatal and the study was interested in theP0rn and die at an average rateWe further assume that

quarantine control and the effort of reducing the numberSuSceptible individuals are vaccinated at a reiét),
of infected birds or elimination control. The results of Were tis the time variable, with a vaccine that has a

their study shows that screening of the infected humang&legreee of protectioa = (1—¢), wheree is the vaccine
and restriction of their movement help reducing the €fficacy. Infected individuals are treated at a rgiet),

number of infectious persons. In 2016, there were a fewANd Some recover naturally at a raténto the recovered
studies on an optimal control of an SIR epidemic modelC!2sS- Susceptible and some of vaccinated humans, once
with a saturated treatment which they were very generajnfected, will first enter the exposed class E, and then

and not useful to predict and to control an outbreak ofP?®cOMe infectious after an incubation periody 1herek
avian influenza. is the progression rate from exposed to infectious. The

recovered individuals can lose immunity and return to the
) ) . susceptible class at a rate®@fIn case there is no disease
Most (if not all) of the current mathematical studies of g 5teg mortalityN = S+ E + | + R and they represent

avian influenza utilize an SIR model for human diseaseq (constant) total population. Thus, our model take the
transmission. Some of these studies have applied the;:m pelow:

optimal control theory to seek cost-effective vaccination

and treatment strategies. However, they have assumed

that vaccination confers lifetime immunity and the gg

recovered individuals have temporary immunity so that - = UN — BIS— (qu(t) + p)S+ SR, 1)
they will not move into susceptible class. In reality,

however, the recovered or vaccinated class may lose— = @ (t)S—oBIV — uV, (2

immunity over time and re-enter the susceptible class anddt

become re-infected individuals. (ii_ltz = 0PIV + BIS— KE — LE, (3)
The main contribution of the present work is a ﬂ =KE—(a+u+y+@b)l, (4)

modeling framwork that incorporates the vaccinated class dt

of humans and the control strategies; vaccination andd_R = @(t)l +yl — uUR— SR (5)

medical treatment. Adding the vaccinated class of dt
humans increases the dimension of the whole system
which makes the analysis more challenging. We will  In general, @ (t) and ¢(t) are functions of t,
utilize both analytical and numerical means so as to gairrepresenting non-uniform and time-dependent controls.
deeper insight into the disease dynamics. Meanwhile, ouFor the special case when the rates of all the two controls
analysis and simulation results regarding the vaccinatiorare positive constants, i.e.,
and medical treatment will provide useful information for
public health administrations in the prevention of an avian o) =@ >0 and@(t) =@ >0 (6)
influenza outbreak.

the model (1)-(5) is reduced to an autonomous system.

The organization of this paper is as follows. Details of This allow us to conduct a careful equilibrium analysis.

our avian influenza mathematical model is provided in
Section 2, followed by a careful analysis of the The definition and numerical values of all the model
disease-free equilibria (DFE) in Section 3. The global parameters are provided in Table 1. Written in a vector
stability of the DFE for the system is also established.form, the above equations become
Section 4 is devoted to the analysis of the endemic
dynamics. An optimal control model for vaccination and dX
medical treatment is constructed and analyzed in Section at F(X) (7)
5. Finally, conclusions are drawn and some discussion is
presented in Section 6. with X = (SV,E,I,R)T.
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(H2) G(X1,X2) = AXz — G(X1,X2), G(X1,X2) > O for
(X1,X2) € Q, where the off-diagonal elements of the

Jacobian matriA = g—)‘;’z(xl*,O) are non-negative, an@

is the region where the model makes biological sense.

Then the DFEXg = (X{,0) is globally asymptotically
stable provided tha®y < 1.

We now apply this lemma to our model, under the
) _ assumption thad = O; i.e., recovery from the disease will
Fig. 1. Diagram of the model. confer lifetime immunity.

Theorem 3.3. The disease-free equilibrium of the model

3 Disease-free equilibrium is globally asymptotic stable iRy < 1 providedd = 0.
Proof. We show that the conditions (H1) and (H2) hold
With constant controls, the disease-free equilibrium (PFE when Ry < 1. In our ODE system (1)-(5)

of the system (1)-(5) is given by X1 — (SV,R), %o — (E. 1), andX; — (ﬂ aN 0). We

UN  @N note that e
80:(—7—707070) (8)
Qt+H gt+H
N—@S—uS
To compute the basic reproduction number, we use the dXq — F(X,0) = H (015(% uvu
well-known method of van den Driessche and Watmough dt ’ — R
[6], with the associated next-generation matraces
is a linear and its solution can be found as
F:{gaBVOjLBS} andV:[K+“ 0 ]

R(t) = R(0)e ¥,

—K a+U+Yy+@
9)
The basic reproductive number is then determined as th%(t) _ UN 4 [(S(O) MUN } e~ (ot

spectral radius oFV ~1; thus we obtain Qo+ u o+ u
koB@N+kBuN
Ro — BoN +kBu . (o) and
(@ +H)(K+R)(a+p+ Y+ @)

Consequently, based on work i8] we immediately V(t) = @N FRO)EH 4+ V(0)e M
obtain the result below: @+
Theorem 3.1. The disease-free equilibrium of the model el @N ot
(2)-(5) is locally asymptotically stable iRy < 1, and == €

table i 1 @ gt
unstable ifRp > 1. : . o.(R(0)) e Ht e (urat

Next we examine the global asymptotic stability of B Py L o} N )
the DFE. To that end we state the following result @G+ H @ @

introduced by Castillo-Chavez et aB][

N N
Clearly, R(t) — 0,S(t) — & and V(t) - 2% as

Lemma 3.2. Consider a model system written in the form t — o, regardless of the values &(0),V(0) and S(0).

* UN  @N . .
dXq F(X %) Thus X = (m,m,o) is globally asymptotically
dt 1,72 stable.
dXz
ar G(X1,%2), G(X1,0) =0 Next, we have
whereX; € R™ denotes (its components) the number of
uninfected individuals andX, € R" denotes (its G(Xe, Xo) = {GBIV+BIS— (K—|—H)E}
components) the number of infected individuals including ’ KE—(a+p+y+@)l

latent, infectious, etc; Xo = (X{,0) denotes the
disease-free equilibrium of the system. Also assume th&Ve can then obtain
two conditions (H1) and (H2) below:

(H1) For % = F(X1,0), X{ is globally asymptotically A —(K+1) Uﬁ(pi"l—ﬂl +B%“—J':'“
stable; K —(a+U+y+@)
(@© 2017 NSP
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will all non-negative off-diagonal elements. Meanwhile, We substituteS*,V* and E* into equation 13) to

we find obtain
G(X1, %) = —(K+H) Brpﬁu Brpﬁu ] { ] (0(01+GB|*+H)(HNQ1+5Q3|*) (K+H)
K —(a+pu+y+@) oBl*+ (BI* +Q2)Q1 KB
[oBIV +BIS— (kK + U)E
- KLI;E—(aB+u+(y+ (g))l }, This equation, after some algebra, yields a quadratic
equation
_ GBI((,,M )+B|(q,l+,, )1 . Al +Byl* +CL =0, (20)
L where
. N _UN
Since 0<V < T and 0< S< TR Therefore, the Ay — 0B5Qs— <K+u)a1Q10132,
DFE Xo = (X{,0) is globally asymptotically stable. KB
- B1 = (0@ + 1)0Q3 + 0BUNQ; — (K:B“)al(GﬁQz-irHﬁ)QL
K+

. . C=(opm+ NQj1 — a .

4 Endemic analysis 1= (0@ +H)UNQy < KB ) 11Q2Q1
Th ts of tior2Q) h t ti
The stability at the DFE determines the short-term & roots of equatiore() have to satisfy
epidemics of the disease, whereas its dynamics over a .. O By
longer period of time is characterized by the stability at I1l2 = ™ and |1 +13 = A
the endemic equilibrium. In this section we will analyze
the endemic properties of our model. Consider tha€; can be rewritten as
+0
C,— (H+O)u (Ro—1).

4.1 Endemic equilibrium KB(K+p)(a+H+Y+@) (g + 1)

We first examine the existence of the positive endemicWhenRy > 1, itis clearly seen thal; > 0. Meanwhile we
equilibrium. Denote the endemic equilibrium of the have

model by &* = (S",V*,E*,I*,R*). From equations (1)- K+
(5) we obtain AL =0Bo(@+Y)— (T)(a +U+Y+@)(pn+0)oB,
K+

i = B(8(@+y) - (“F )@+ ut v+ @)(u+9)
dv* = @S — oIV — uv*, (12)  Thusljl; <O0; that is, the two roots of equatio@@) are

dt* both real; one must be positive and the other must be
oldEt — GBIV + BI*S" — (K + P)E*, (13) negative. Consequently, we have the result below:
 —KE (a4 pty+@)lt 14 Theorem 4.1. The positive endemic equilibriumr of the

dt (@t ptyte) (14) system (1)-(5) exists and is unique provid&a> 1.

ddF: = @l|"+yI" — uUR" - dR". (15)
With some algebraic manipulations, we have 4.2 Local stability

S = M, (16) In this section we proceed to analyze the local stability of

(Bl +Q2)Q1 the endemic equilibrium. First we establish the following

* nS result.

Vi=e ——— 17
afBl*+u’ (7)
£ _ al* 18 Theorem 4.2. WhenRy > 1, the endemic equilibriura*
Tk (18) is locally asymptotically stable.

. Qsl” Proof. The Jacobian of the system (1)-(5)dtis given by

R = 9 (19)
1
—BI"— (@ +H) 0 0 -BS
wherea; =a+Uu+y+@,Qr=u+0,Q =@+, and o o —gBl*—u 0 —opV*
Q=@+YV. IeT) = BI* oBl*  —K—u opV*F +BS
0 0 K —a1
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whereag = a + U+ y+ @.
The characteristic equation of the matdige™) is
0= de(Al - J(e"))
= AL (K+3U+ 0+ B +B1I" + @ +ag)A
+ (KOBI* +2u0Bl* + 2uK + 3u? + k B1* + 2uBl*
+ K@+ 21+ 0B+ uoBl* +aik + a1y
+ 3ayu+a10B1" +ayfl* —koBV* —KBS)A?
+ (KoB*? + uoB*? + kupl* + p?pl* + keopl*
+ U@OBI* + K@+ PP+ kol 4 p?opl”
+ pPk + P +arkoPBl* +a uofl* + 2a3uk + 3au?
+ a0 + aKBI* + 2aquBl* + a0 BAU*? + aypoBl*
+ a1oBl* — ko?*S +aik g — 2k o BV*
— 2KuUBS — koBAV* —Kk@BS — K@aBV*)A
+ (aak B2 2 + aguo B2 2 + ark uPl* + ag upl*
+ a Pk +ak QoI+ aru@ o1t +ark ey
+ a P+ ank o Bl + ap® + ayplo Bl
— KHOBAV* —kUoBV* — K@ uPBS'

— KUoB?*'S — ku?apV* — ku?Bs). (21)

Equation 21) can be putinto a quartic equation of the form

ALY+ A+ AoAZ + AtA +Ag =0, (22)

where

Ap=1,

A= K+3U+0+BI* + Bl + @ +a,

Ao = KOBI* +2u0BI* + 21k + 3 + kBl * + 2uBl*
+ K@ 4 2u@ + 0B%1*? + @ oPl* + aik + 3aip
+a10Bl" +aBl*+ a1 — kKopV* — KBS,

AL = KoBA* 2+ poB21*? + kuPl* + p2pI* + kg ofl*
+ U@OBI* + K@+ PP@ + ko Bl 4 u?oBl”
+ WPk + B+ a1k 0Bl ¥ +aruaBl* + 2ar K + 3ay >
+ ak BI* + 281 uBl* + ak @1 + 281 U@y + 3y o B21+2
+ auoBl* +armoPl* —koB*S — 2k uoBV*
— 2kuUBS — KoBA'V* — k@ BS — KopV*,

Ao = akoBA*? + agua B2 + ark uPBl* + ag u2pI1*
+ a1’k + a1k o Bl +arpu@opl*
+ arK U@ + a1’ QL+ ark o Bl 4+ aip?o Bl +ag
— KHOBA*V* —Kk@uoBV* — KU?BS — Ko uBSt
— KHOBA*S —kuloBV*.

We clearly see that, > 0 andAz > 0. Using equations
(14) and (15), we have

Kai+ pa; — KoBV* —kBS =0.

ThusA, yields

A; = KOBI* +2u0BI* + 21k + 3 + kBI* + 2uBl*
+ K@ 4 2u@ + 0B%1*? + @ oPl* + ark + 3ayp
+ a10Bl* +aBl*+ a1 — kopV* — kKBS,
= KOBI* +2u0Bl* + 2uK + 3u+ K BI* + 2upl*
+ K@ 4 2u@ + 0B 2 + @ oPl* + a1 +a 0Bl
+aifl"+am,
> 0.

HenceA; > 0. Meanwhile, from equations (14) and (15),
with some manipulation, we find

Gikay + @ — @KoV — gk PS =0,
and
oBkayl* + ofuayl* — ko?B2*V* — okB2*S =0.
ThusA; yields

Ar = KoBA2 4+ uoBA*? +kupl* + u2pl* + kpoPl*
HELOBI* + K@+ 2@y + KUOBI* + p?a Bl
Y%K + B +ak o BI* + auoBl* + 2a1uK
Baru? + ank BI* + 2aquBl* + ark @1+ 2a1 4y
0B +auoBl* +a@ofl* — kaoBA*S
2KUoBV* — 2k uBS — ko BV —k@BS
K@oBV*

KoBA*? + uoBA*? + kupl* + u2pl* + kpoPpl*
HEOBI* + K@+ 2@y + KUOBI* + o Bl
UK 4+ p3+ ag ik + 28,4 + ak B1*

2a1uB1l* + a @y + a1 B2+ + aguo Bl
apopl”

>0.

I+ + + +

+ 4+ + +

HenceA; > 0. Similarly, equations (14) and (15) give
puoBkagl* + oBuall* — uka?BA*V* — uokB?*S =0,

p?kay + plag — p2k oV — KBS =0,
and

QuuKa+ Qe — LUK OBV — LUK BS = 0.
Hence
Ao = ark 0 B2+ agua B2+ agk pPl* + a1
+ ay Pk +ark o Bl* +au@oBl* +aik U@
+ g’ + ark OBl + agpPofl* +agp®
— KUOBAI'V* — K@ uoBV* — ku?BS — k@ uBS
— KHOBA*S — ku?oBV*
= ak B ? +aguo B + agk uPl* + ay 2Bl
+ akoPBl* +ap@aoBl” +aikpuopl*.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1054 NS 2 C. Modnak: Optimal control of avian influenza virus...

Thus Ag > 0. To ensure that all roots of equatioR2( To achieve the optimal control, the adjoint functions
have negative real parts, the Routh-Hurwitz stability must satisfy

criterion [20] requires Ag,A1,A2,A3 and A4 all to be dAs OH dAy AH dAg AH dA OH
positive, and additional condition#zA, > A; and ot 39S’ at . eV dt - 9B at - o
AsArA; > AZAq + A2 must satisfy. By simple algebra and A oM

comparing terms, the conditions are satistied. This—/—R — _ 2

completes the proof. 0 dt R’
Thus, we have
dA
T = O+ Al @)+ 1)~ Avr(t) - Aepl,
5 Optimal control % W

Now we turn to more general model (1)-(5) with a gy
time-dependent vaccination profilg (t), and treatment ot Ae(K+H) —AIK,
profile, @(t), and conduct an optimal control study. A

Optimal control theory has been used in many works (see,—— = —1—Co@(t) +AsBS+AvaBV — Ae(aB1V + BS)
e.g., R1,34)). We consider the system on a time interval
[0,T]. The functionsp (t) and g(t) are assumed to be at + A(a+p+y+ @) - Ar(@(t) +V),
least Lebesgue measurable on [0,T]. The control set isdAr At Al LS
defined as ot - ot R(HO),
r— 1), @) 0 < @u(t) < Gmax, with the final-time conditionsAs(T) = 0, Ay(T) = 0,
{((QL( ) (pZ( ))| 0< Zzgt; < 22 } (23) )\E(T) = 0, )\|(T) = 0, and /\R(T) = 0. The
= = remaxys characterizations of the optimal contraps(t) and ¢ (t)
where @, and @, denote the upper bounds for the are based on the conditions
effort of vaccination and treatment, respectively. These IH 9H
bounds reflect practical limitations on the maximum rates T 0 andd— =0 (25)
of controls that can be implemented in a given time o ®
period. respectively, subject to the constraints<Qpi(t) < @, .,
N thi g . - I and 0< @(t) < @max- Thus we have
n this study, we perform an optimal control to ... :
minimize the total numbers of infections as the cost of(pl(t) o max{O,m!n(qol(t),qolmax)], (26)
control over the time interval [T]; i.e. @ (t) = max0, min(¢x(t), max)], (27)
where
-
min_ [ [1(t) + e (t)S(t) + Com(t)l (t _SAs—Av—c) MG —Ar—C2)
Jmin [0+ S + cap(O1 (1) ol = S ey <HERE
2 2
+C3()”+ Caga(t)7]alt (24) The optimal control system, consisting of the state
wherecy , ¢z, ¢z andc, are appropriate units defined the equations, the adjoint equations and the optimality
appropriate costs associated with the control. condition @5), has to be solved numerically. We have
conducted numerical simulation using various choices of
Let us first define the adjoint functiors, Av,Ae, Al cost parameters and time intervals, and have observed a
and A associated with the state equations $W, E, | unique solution in each case. The numerical results

and R, respectively. We then from Hamiltionian, H, by clearly demonstrate that an optimal vaccination and

multiplying each adjoint function with the right-hand side treatment strategies can significantly bring down the

of its corresponding state equation, and adding each ofumber of infectious individuals. Some typical results are
these products to the integrand of the objective functionalpresented in Figures 2 and 3.

In addition, the dynamics of the exposed individuals

As a result, we obtain can be observed from Figure 3. Without vaccination and

_ 2 2 treatment, the exposed populatida) (attains very high
H =10 +a@ S+ 1) +Cpi(t)+ caga(t) values immediately after the onset of the outbreak SAs

+ As(UN = BIS—(qu(t) +1)S+9) decrease< goes down for a short period of time. Then
+ Av(@(t)S—oBIV —puV) with the increase of infectious individualg (the exposed
+ Ae(0BIV + BIS— KE — UE) population starts increasing again and reaches a peak at

B t ~ 12 days. With optimal vaccination and treatment,
HA(KE— (ot ptyt @) however, E continues decreasing until reaching and
+ AR(@ ()l + VI — UR—OR). settling at a value close to zero, which, consequently,
leads to a very low infection level far

(@© 2017 NSP
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1000 T 2500 T

= = = With Vaccination = = = With Vaccination
—— Without Vaccination | | — Without Vaccination

900

b 2000

1500

1000

Exposed Individuals
Infected Individuals

60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100
Days Days

Fig. 2: Exposed individuals: similary, we can see that the numberFig. 3: The acute avian influenza infection population : it shows
of exposed population is reduced due to the combination ofthat with vaccination and treatment in the model can redbee t
vaccination and treatment in the model. number of acute avian influenza infection group.

Table 1. Parameter values and symbols.

Parameter Symbol | Value 07 I R
Total human population N 8,000
Birth and death rate u (70%365 1) /day 0 - |
Contract avian influenzarate S8 0.5/N/day
The loss of immunity period o 0.699/day 05k i
Rate of vaccination [0y 0.7/day s
Rate of treatments ® 0.7/day gl |
Duration of immunity loss o) 0.01 g
The recovery rate for E K 0.00015 2 osl |
The recovery rate for | y 0.36 o
Death rate due to disease a 0.03 ¢
Appropriate cost a1 0.3 0zr 1
Appropriate cost C 0.7
Appropriate cost Cc3 0.5 o1r 1
Appropriate cost Cy4 0.4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
¢ 0 10 20 30 40 50 60 70 80 90 100
Days
6 Conclusions Fig. 4. Rate of vaccinationg) vs. time (days) withg; max = 0.7,

{1 = (70%365°1), B = 0.5, 0 = 0.699,5 = 0.01, k = 0.00015,

We have presented a mathematical model for the spreaf = 9-36: @ =0.03,¢1, =03, ¢ = 0.7, c3 = 0.5 andc, = 0.4.

of Avian Influenza that involves with the effects of The result shows that the vaccination rate stays_ at_ the mamim
vaccination and medical treatment. We have done thigate about 81 day and reduces to almost zero within 83 day.
work by studying in both theoretical and numerical ways.

In order to observe the effects of rate of vaccination and

vaccine efficiency on the spread of disease and find ways

to control the outbreak of the bird flu disease, we use thébased on the theory d. We assumed that susceptibles
optimal control study. The model exhibits two feasible are vaccinated with the ratg and thus they became a
points of equilibrium, namely, the disease-free vaccinated class and assumed that humans are treated
equilibrium and the endemic equilibrium. The stability of with the rateg and thus they became a recovered class.
these two feasible points of equilibrium are controlled by According to our study, it shows that with a good
the threshold numbeRy. If Ry is less than one, then the vaccination plan combined with a medical treatment,
disease dies out and the disease-free equilibrium is stablevhen strategically deployed, can significantly reduce the
If Ry is greater than one, then the disease persists and theumbers of exposed and infectious people and help
disease free equilibrium is unstable. We have the values igradicate the disease outbreak. Throughout the paper, we
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