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Abstract: Behaviors of many dynamic systems with uncertainty can beethed effectively by systems of fuzzy differential eqoat.
In this paper, we develop new numerical iterative methodé&iving systems of fuzzy initial value problems based orréipeoducing
kernel theory under the assumption of Hukuhara differéilitg. The exact and approximate solutions are given wéhies form in
terms of their parametric form, where two smooth reprodydiarnel functions are used throughout the evolution of igerdhm
to obtain the required nodal values. Furthermore, erramesion is proved in order to capture the behavior of fuzzjusons.
Applicability, potentiality, and efficiency of the propasealgorithm for the fuzzy solutions of different fuzzy syste are investigated
using computer tables and graphical representation.

Keywords: Fuzzy differential systems; Reproducing kernel theorykithara derivative

1 Introduction fuzzy initial value problems (FIVPs) in terms of
elementary functions in a simple manner, so an efficient,
Theory of systems of differential equations plays a vital reliable numerical algorithm for the solutions of such
role to model physical, engineering, and economicalsystems is required; it is little wonder that with the
problems, such as in solid and fluid mechanics, dynamiglevelopment of fast, efficient digital computers, the role
supply and demand, mathematical biology, plasmaof numerical methods in mathematics and engineering
physics, control theory, and other areas of scieic2, B, problem solving has increased dramatically in recent
4,5,6,7,8,9,10]. But in actual case, the parameters, Y€ars.
variables, or initial conditions involved in the differéait In this paper, we introduce a novel iterative technique
systems may be uncertain, or a vague estimation of thosbased on the use of reproducing kernel Hilbert space
are found in general by some observation, experiment(RKHS) method for numerically approximating solutions
experience, data collection, or maintenance induced.erroof systems of FIVPs in the spa@ﬁ’ilwzz [a,b] under the
So, to overcome the uncertainty and vagueness, one mayukuhara differentiability. The new method has the
use fuzzy environment in parameters, variables, andollowing characteristics; first, it is of global nature in
initial conditions in place of crisp ones. So, with these terms of the solutions obtained as well as its ability to
uncertainties the general differential systems turn intosolve other mathematical and engineering problems;
fuzzy differential systems. second, it is accurate, need less effort to achieve the
Numerical techniques are widely used by scientistsresults, and is developed especially for the nonlinear;case
and engineers to solve their problems. A major advantag¢hird, in the proposed method, it is possible to pick any
for numerical techniques is that a numerical answer carpoint in the interval of integration and as well the
be obtained even when a problem has no analyticabpproximate solutions and their first Hukuhara derivatives
solution. Anyhow, in most real-life applications, it is too will be applicable; fourth, the method does not require
complicated to obtain the exact solutions to systems ofdiscretization of the variables, and it is not effected by
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computation round off errors and one is not faced with  This paper is comprised of 6 sections including the
necessity of large computer memory and time; fifth, theintroduction. In the next section, overview of fuzzy
proposed approach does not resort to more advancechlculus theory is collected. In Section 2} 2imensional
mathematical tools; that is, the algorithm is simple to inner product spaces are constructed in order to apply the
understand, implement, and should be thus easilynethod. In Section 3, series representation of exact and
accepted in the mathematical and engineeringapproximate solutions and theoretical basis of the method
application’s fields. More precisely, we provide numerical are introduced. In Section 4, an iterative algorithm for
approximate solutions on the interjal b] for systems of  numerically approximating the solutions is described and

FIVPs of the form the n-truncation approximate solutions are proved to
, converge to the exact solutions. Software libraries and
X (1) = fatxa (1), %2 (1), % (1), numerical experiment are presented in Section 5. This
X (1) = fo (t,xa (1), %2 (t),.... %y (1)), article ends in Section 6 with some concluding remarks.
(1)
Xp (1) = fo (txa (1), %2 (1) ... % (1)), 2 Overview of fuzzy calculus theory
subject to the fuzzy initial conditions The contents of this section is basic in some sense, for the
- B B reader's convenience, we present some necessary
X1 (8) = a1, %2 (@) =0z, Xn (@) =an,  (2)  (efinitions from fuzzy calculus theory and preliminary

results. After that, a numerical algorithm for the soluion

. n H . R
where fy, : [a,b] x R5 — Rz are continuousy-tuples  of systems of FIVPs based on theicut representation
fuzzy-valued functionsx, : [a,b] -+ Rz, a, € Ry, form is introduced.

a,beR,andv =1,2,--- . n. Throughout this papéer the Let S be a nonempty set. A fuzzy set in S is

set of real numbers anil> denote the set of fuzzy real .h5racterized by its membership function S — [0,1].
numbers orR. _ _____Thus,u(s) is interpreted as the degree of membership of
_ Reproducing kernel theory has important applicationsy glemeng in the fuzzy set for eachs € S. A fuzzy set

in numerical analysis, differential equations, integral \, o is called convex if for eack.t € R andA ¢ 0,1]
equations, integro-differential equations, probabibtyd u(As+(1—A)t) > min{u(s),u(t)}; is called upper
statistics, and so fourthl],1213]. Recently, a lot of Zemicontinuous if the sefs€ R | u(s) >r} is closed for

0

research work has been devoted to the applications ofachyr ¢ [0,1); and is called normal if there e R such
RKHS method for wide classes of stochastic a”dthatu(s) — 1. The support of a fuzzy setis defined as

dgterministic probl_ems in\{olving operator equations, {seR:u(s) > 0}.
differential  equations, integral equations, and
integro-differential equations. The RKHS method was Definition 1 [46] A fuzzy numberu is a fuzzy subset dR
successfully used by many authors to investigate severatith normal, convex, and upper semicontinuous
scientific applications side by side with their theorieseTh membership function of bounded support.
reader is kindly requested to go throudH,[15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,
36,37] in order to know more details about RKHS
method, including its history, its modification for use, its
scientific applications, its kernel functions, and its
characteristics.

The numerical solvability for systems of FIVPs have
been pursued by several authors. To mention a few, ir%i

t

The concept of a fuzzy real number arises from the
fact that many quantifiable phenomena do not lend
themselves to being characterized in terms of absolutely
precise numbers. In fact, a fuzzy number is one which is
described in terms of a number word and a linguistic
modifier, such as approximately, nearly, or around.

For eachr € (0,1], set[u]’ = {s€R:u(s)>r} and
]O = {se R:u(s) > 0}, where{-} denote the closure of

[38] the authors have discussed the geometric approach . ; . ) ;
solve linear systems of FIVPs. Furthermore, the -}. Then, it easily to establish thatis a fuzzy number if

variational iteration method is carried out i39 for ~ and onlyif[{u’ IS & compact convex subsetBffor each
linear fuzzy differential system. The homotopy analysis € [0, 1] and[u]” # @ [47]. Thus, ifuis a fuzzy number,
method (HAM) has been applied to solve the linear fuzzythen[u]r = [ug(r),uz2(r)], where

system as described id({]. Recently, the fuzzy neural , ;

network approach for solving linear system of FIVPs is uy(r) =min{s:se [u]'}
proposed in 41. On the other aspect as well, the U (r) =max{s:se [u'}
numerical solvability of other version of FIVPs can be

found in [42,43,44,45 and references therein. As a for eachr € [0,1]. The symbol[u]' is called ther-cut
result, none of previous studies propose a methodical wayepresentation or parametric form of a fuzzy numter

to solve systems of FIVPs in general. Moreover, previous The question arises here is, if we have an
studies require more effort to achieve the results, they arénterval-valued functionz; (r),z (r)] defined on[0,1],

not accurate and usually they are suited for linear form. then is there a fuzzy numberu such that

)
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[u' = [z (r),2(r)]. The next theorem is characterizes the endpoints functions;, andxy are differentiable on
fuzzy numbers through theircut representations. [a,b] and

Theorem 1 [47] Suppose thatiy,uy : [0,1] — R satisfy . d

the following conditions; firsty, is a bounded increasing X )] = XU = X (1) % ()],
function anduy is a bounded decreasing function with

us (1) < uz(1); second, for eack € (0,1], u3 andup are  for eachr ¢ [0,1].
left-hand continuous functions at= k; third, u; andu,

are right-hand continuous functionsrat 0. Then In some applications, the behavior of an object is

determined by physics laws and is crisp. However, if the
u:R—[0,1], initial values are obtained from measurements, for
example, this value can be uncertain and often there are
defined by more suitable to model them using fuzzy numbers. Next,
we consider and study systems involving fuzzy equations
u(s) =sup{r:u(r) <s<ux(r)}, and/or fuzzy initial conditions. In other word, if the irti
) . o values are fuzzy numbers, the solutions are fuzzy
is a fuzzy number with parameterizatidm (r),uz(r)].  functions, and consequently the derivatives must be
Furthermore, ifu: R — [0,1] is a fuzzy number with  considered as fuzzy derivatives. Let us consider the
parameterizatiofuy (1), uz (r)], then the functionsy and  following system of first-order equations described the
up satisfy the aforementioned conditions. crisp ordinary differential equations (ODEs) on the

In general, we can represent an arbitrary fuzzyinterval[a,b]:
numberu by an order pair of functiongus,u,) which

satisfy the requirements of Theorem 1. Frequently, we X1 (1) = f1(t,xe (1) %2 (1), oo %q (1),
will write simply uy, andug, instead ofus (r) andus (), X () = f2(t,xa (1), X2 (t) ..., Xy (1)),
respectively. : 3)

Definition 2 [48,49] The complete metric structure &y , -
is given by the Hausdorff distance mapping Xn (1) = Tn (X2 (), %2 (1) .. % (1)),

D:Rs xRy — RTU{0}, subject to the crisp initial conditions
such that x1(a) = a1,%2(a) = az,...xp (@) =apn,  (4)
: 7 — R are continuoug)-tuples real-
D(u,v) = sup max{|us —Vir|, U — Var|}, wherefy : [a,b] x RT — %)-tup
(V) ogrgpl {ltar = Va ur = Var[} valued functionsy, : [a,b] = R, ay,a,b € R, andv =
12,..,n.
for arbitrary fuzzy numbers andv. Assume that the initial conditions,, in Eq. @) are

uncertain and modeled by fuzzy numbers. Also, assume
that the functionf, in system of ODE ) contain
uncertain parameters modeled by fuzzy numbers. Then,

Letu,ve R . If there exists an elemente R & such
thatu = v+ w, thenw is called the Hukuhara difference of

u andv, denoted byuo v. Here, the sign> stands always X .
for Hukuhara difference and let us mention thatv = e obtain system of FIVP1j and @). Anyhow, in order

; Ive this new system, we rewrite the fuzzy functions
U+ (~1)v. Usually, we denotei+ (—1)v by u—v, while 10 SO
ue v stands for the Hukuhara difference. Xu (1) a8 o O = [Xav-1r (1) X0y (1)] _ and
Definition 3 [50] Let x : [a,b] — R» andt bowe @I = [a@y 1 deuy]. Indeed, according  to
efinition 3 [50] Let x: [a,b] — R# andto € [a,b]. We Nguyen theoremd3,54] it follows that:
say thatx is Hukuhara differentiable ag, if there exists
an elementx (tp) € Rz such that for eachh > 0 [fo (t, % (1), X2 (1) .., Xn ()]
sufficiently close to 0, the Hukuhara differences — fo (t, O], 2 (1)) Xy (O]
X(to+h) ©x(to), X(to) ©X(to — h) exist and vih P12 nu

- {fU (tvylayZa "'7yf]) :yU S [XU (t)] }
X (to) = limp_o+ Mﬂemo) = [fav—1r (% (1)), frauy (X (1))]
. t to—h
:|'mh—>0+wh(())' wherev =1,2,...,1.

Here, the limit is taken in the metric spa¢® »,D) Definition 4 Letx, : [a,b] — R # such thak, exists. Ifx,
and at the endpoints ¢&,b], we consider only one-sided andx, satisfy system of FIVP1) and @), we say thak,
derivatives. Next theorem shows us a way to translate are system fuzzy solutions, whewe=1,2,...,n.

differential system from fuzzy setting into ordinary segi Before using RKHS method as an efficient solver for

Theorem 2 [51,52] Let x: [a,b] -+ R% be Hukuhara fuzzy differential systems, we shall now introduce and
differentiable function and (t)]" = [xy (t), % (t)]. Then  implement a procedure to transform system of FIMP (
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and @) into parametric form in order to find system fuzzy

solutions.

Algorithm 1 To find fuzzy solutions of system of FIVR

and @), there are four main steps:

Input: The interval[a, b}, the unit interval[0,1], and the
endpoints functionsf o, 1) (t,% (1)), fau)r (t, % (t)) of

[fu (t, X0 (1), %2 (1) ... Xq (1))]"

Output: Exact fuzzy solutions, (t) for eacht € [a,b.

Step 1 Forv =1,...,n, do the following:
Set[XU (t)]r = [X(Zu—l)r (t) 7X(2U)r (t)] ;
Setlx, (O] = [Xoy 1 () X0 (0]

Set[xy (0)]" = [a(Zufl)raa(Zu)r} ;
Set

[fo (6% (1)) = [fav-1r (t.% (1)), Fravr (t,% (1))]

Step 2 Solve the following system of ODEs fof (t):

subject to

Xir (to) = a1r, Xor (to) = Qr,
X3 (tO) = U3, Xqr (to) = Oy,

X2n-1)r (tO) = a(2nfl)r- X2m)r (tO) = a(Zn)r-

Step 3 Foru =1,...,n and each € [a,b] andr € [0,1],

do the following:

Ensure that the solutionfy_1r (1), Xu) (t)] are

valid level sets;
Ensure that the derivative{:xEZU_l)r (t),x
valid level sets;

Construct the fuzzy solutionsx, (t) such that

o (1)]" = [X2u—1)r (1), X0 (1)]-
Step 4 Stop.

3 Multidimensional inner product spaces

(2u)r

formulate several reproducing kernel functions in order to
generate and construct an orthogonal normal basis on the
spacesWs [a,b] and W} [a,b]. After that, new spaces
@21, W2 [a,b] and@>" ;Wi [a, b are building in order to
formulate and utilize the solutions of system of FIVE (
and @) using RKHS method.

An abstract set is supposed to have elements, each of
which has no structure, and is itself supposed to have no
internal structure, except that the elements can be
distinguished as equal or unequal, and to have no external
structure except for the number of elements.

Definition 5 [14] Let E be a nonempty abstract set. A
functionK : E x E — C is a reproducing kernel of the
Hilbert spaceH if

1LvteE; K(,t)eH,

2.VvteEandg eH; (¢ (1), K(-,1))y =9 (1).

Remark 1 The condition(2) in Definition 5 is called "the
reproducing property” which means that the value of a
function¢ at a point is reproducing by the inner product
of ¢ () with K(-,t). A Hilbert space which possesses a
reproducing kernel is called a RKHS.

An important subset of the RKHSs are the RKHSs
associated to a continuous kernel. These spaces have wide
applications, including complex analysis, harmonic
analysis, quantum mechanics, statistics and machine
learning. Next, in order to apply the RKHS method, we
shall define and construct a reproducing kernel space
WZ[a,b] in which every function satisfies the initial
conditionsz(a) = 0.

Definition 6 [15 The inner product spac® [a,b] is
defined as W2[a,b] = {z(t) : zZ are absolutely
continuous real-valued functions da,b], Z’ € L?[a,b],
and z(a) = 0}. The inner product and the norm in
W2 [a,b] are given by

(@(t), 22wz = 2 (8) 22(a)

bt e ()
+3(@%@)+ LA 1)z )d,

and ||21||W22 = <zl(t),zl(t)>wzz, respectively, where

71,2 € W22 [a, b]

Definition 7 [14] The Hilbert spaceN? [a,b] is called a
reproducing kernel if for each fixed € [a,b] and any
z(s) € WZ[a,b], there existG(t,s) € W#[a,b] (simply
Gt (s)) ands € [a,b] such thatz(s),G; (s)>W22 =2z(1).

It is very important to obtain the representation form
of the reproducing kernel functid® (s), because it is the
basis of our algorithm. In the following theorem, we will

In functional analysis, RKHS is a Hilbert space of give the representation form of the reproducing kernel
functions in which pointwise evaluation is a continuous function G (s) in the spaceWZ[a,b]. After that, we
linear functional. Equivalently, they are spaces that ean b construct the space/ [a,b] in order to define the linear
defined by reproducing kernels. In this section, we firstly bounded operators as shown later in the next section.
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Theorem 3[15] The Hilbert spacé\V [a,b] is a complete  wherez; € WZ[a,b] and j = 1,...,2n. The inner product
reproducing kernel and its reproducing kernel functionand the norm iW [a, b] are building as
Gt (s) is given by

2n
(9 = {A (st),s<t, (2(t),w(t))w = _Zl<zj (1), W (1) )2
A(t,s),s>t. =
2n
where and [|Zly = /3 HZJHSVZZ respectively, where
Asy) = Gls—a) swewab.
(2a? -+ 3t(2+9s)—a(6+3t+59). Clearly,W [a, b] is a Hilbert space. On the other aspect

as well, the inner product spatt|a,b] can be defined in
a similar manner with similar inner product and norm, and
it is also a Hilbert space.

Definition 8 [16] The inner product spac®s [a,b] is
defined asiy [a,b] = {z(t) : z is absolutely continuous
real-valued function oifa,b] andZ € L?[a,b]}. The inner
product and the norm inW}[a,b] are defined as
@), 20w = R@EOZO+ab)20)d and 4 Series representation of solutions
22l @ (t),21 (). respectively,  where In this section, formulation of differential linear opevat
21,2 € W} [a,b]. and implementation method are presented in the spaces
Wia,b] and H[ab]. Meanwhile, we construct an
orthogonal function system of the spata, b] based on
Gram-Schmidt orthogonalization process in order to
obtain the exact and approximate solutions of system of

Theorem 4[16] The Hilbert spacé\Vy [a,b] is a complete
reproducing kernel and its reproducing kernel function
H: (s) is given by

A(st),s<t, FIVP (1) and @). Through remainder sections, the
Hi (s):{At 7t lowercase letterr whenever used means for each
(t,9),s>t. re 0,1,
where Now, to apply the RKHS method, we will define the
1 differential linear operatokj, : WZ[a,b] — W [a, b] such
A(s7t):§(;scf‘(b_a)>< that Lerjr(t) = X/jr(t), j = 12,..,2n. Put
T T
(cosht+s—b—a)+coshit—s—b+a)) foo= (fur faro fope) 0 X = (X, Xer, - X))
. - T d L =
The space¥2[a, b] andW} [a, b] are complete Hilbert 9" (ar, 2r, e, A anyr) an '

with some special properties. So, all the properties of thediag(Lar, Lar, ..., Lizn)r ), where
Hilbert space will be hold. Further, theses spaces L Wiabl — Hlab
possesses some special and better properties which could r:W(a,b] — Hla.bj

make some problems be solved easier. For instance, many Based on this, the system of ODES &nd €) can be
pr.oblems studied in.2 [a, b] space, which is a ComDIEte converted into the equivalent form as follows:
Hilbert space, requires large amount of integral

computations and such computations may be very Lexe (t) = fr (t,% (1))
difficult in some cases. Thus, the numerical integrals have _f (t X (1) Xor (1) 100X (t))
to be calculated in the cost of losing some accuracy. B A ’
However, the properties 03[, b] andW, [a, b] require  gpject to

no more integral computation for some functions, instead % () = ar, (9)
of computing some values of a function at some nodes. In )

fact, this simplification of integral computation not only in whichx. € W{a,bj andf, € Ha,b].

improves the computational speed, but also improves th@ emma 1 The operatorsLj, : WZ[a,b] — Wi[a,b],
computational accuracy. Henceforth and not to conflictj — 1 2 .. 21 are bounded and linear.

unless stated otherwise, we denote

(8)

Proof The linearity part is obvious, for boundedness part,

W a,b] = @27, W2[a,b] we need to prove thdtLjrxer\fvzl < Mijr ijrH\fvzz, where
Hla,b] = @J?llwzl [a,b]. Mj: > 0. From the definition of the inner product and the

norm of W4 [a, b], we have
Definition 9 The inner product spac#/[a,b] can be
constructed as || ||2 b{[ , }2 2}
Linxelfag = {10 ]+ (L) )7 ot
Wia,b] = {(z(t).2(t),.... 229 (1)}, 2y
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By reproducing property of the kernel functi@ (s), we
have

Xjr (1) = (Xjr (), Gt () )z
(Lirxje) (8) = (Xir (8).. (LirGt) () g
(Lirxie)' () = (Xir (8), (Lir G (8) g

Again, by Schwarz inequality, we get

[Linkie) ()] = [ (e (), (L1:G) (0
< [I(LirGo)

= Mt {[xjr

(1) lwg [Xir (8l

)HWZZ’

[Linge) ©)] = (e (0, (Lir G’ (1)
< ||(Ljr G (

= ME [[x;e (t

HWzHXJr Bllwg
||W22’

whereM* M2 > 0. Thus,

o

b
[Liexieliag = S { [(Liote)’ @]+ [(Liexe) (F ot

< (MY +M2 ) (b—a)][xe (02
or

[Lirie gz < M [[Xje (0)]uz

whereMj, = \/(Mjlr + szr) (b—a).

Theorem 5The operatok; :
and linear.

W a,b] — H [a,b] is bounded

Proof Clearly, L; is a linear operator. A boundedness is
shown as follows: for eackr € W [a, b], one can write

2n 2
(1Ll > HLJrXierzl
=1

al 2 2
3 il Tar g
i=

2n 2 2n 2
L; Xi
<le\| ol ) (J_zlu Jruwzz)

2n 2
3 11Liel 1%l
=1

IN

IN

The boundedness bf; implies that_; is bounded. So, the
proof of the theorem is complete.

W (t) = Ligy;(t), where e = (0,..0,1jn,0,...,0)",
LS = dlag(Llr,LZF,...,Lz‘zmr) is the adjoint operator of

Ly, Hi (s) is the reproducing kernel function ¥ [a, b],
and {tj};-, is dense or{a,b]. The orthonormal function

(c0,27) .
system{wi i (t)} of W [a,b] can be derived from

(i.5)=(1,1)

Gram-Schmidt orthogonalization process of
{qj.. (t)}(m,ZU) as follows: set

= '

Wu ZZB Lplk (10)
where i = 1,23,..., j = 1,2,...2n and Blk are
orthogonalization coefficients.

The subscripts by the operatol,, denoted byl,s,
indicates that the operaty applies to the function dd.
Indeed, it is easy to see that,
yit) = Ligyt) = <L>rk¢ij(s)th(S)>W =
(919 L& (9)) = LisGi(9)]ey, € Wab]. Thus,
Y;j(t) can be expressed in the form

Wij () = LisGt ()]s

Theorem 6 For Egs. 8) and @), if {ti};-, is dense on
(0,2 . .

[a,b], then {L[J,J (t )}(I ) is the complete function

system of the spad#' [a, b].

Proof ¥x; (t) € Wa,b], let <xr (t), ¥ (t)>W =0, which
gives

(% ©.450), = (% 1).L76;; 1))
= (Lox (1), 94 (©))

W

H
Whilst
2n
X (t)= 3 Xjr(t)e;
=1
2n
=3 (e ()& Oe)ye:

2n
Hence, Lyx (t) = J-Zl<"'Xr (t),¢ij(t)>wej — 0. But

since{t;};, is dense orfa,b], we must havé.x; (t) = 0.
It follows that x; (t) = O from the existence of; . So,
the proof of the theorem is complete.

The internal structure of the following theorem is to
utilize the representation form of the exact and

Next, we construct an orthogonal function system of approximate solutions of system of FIVR)(and @) in

W(a,b] as follows: and

put ¢;;(t) = Hy(t)e

the spac&V [a,b.
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Theorem 7If {t;}7; is dense orja, b] and the solution of Case 2 If Eq. (8) is nonlinear, then the exact and

Egs. 8) and Q) is unique, then the exact solution of Egs. approximate solutions can be obtained by using the

(8) and(9) satisfies the expansion form following iterative process. According to E¢ll), the
oo i representation form of the solution of Eq®8) and (9)

)=2 3 3 3 Bt tx )0 () wilbe oo
X (t) = i;\J_le—ijr"uij (t)

Proof Applying Theorem 6, it is easy to see that
(0,2) .
{wu (t )} L) is the complete orthonormal basis of whereL;j, = Z Z B | fir (t,% (4)). Putt; = a, it follows

W/a, b]. Thus, using Eq.10), we have thatx; (t1) is known from the initial conditions of Eq9);
% (1) so f; (t1,% (t1)) is known. For numerical computations, we
' 5 put initial functionx’(t;) = x (t1) and define ther-term
_ E z" <Xr > G (1) approximations to (t) by
i=1j=1 ' 2n
n
00 2n i . _ _
= <Xr ), é Z B|f<‘l’|k(t)> Wi (1) X' (t) :ZZ Bij i (1), (13)
i= 11_ I=1k=1 w i=1lj=1
o 20 i ] . . .
% (1) LE b (1) T (t where the coefficients Bjj and the successive
zl lezlkZ B'k< (O b 1y 1 approximations; (t), i = 1,2,...,n are given as follows:
o 2n i j i _ .
Lex (1), t Gt 1] .
Izljzllzl g B|k< r( ) ¢Ik( )>H llf” ( ) Blj _ IZlkilﬁﬁfkr (tl,XP(tl)):
w0 20 0] _ o
a&aggﬁmem»mmmwm ﬁmié%@m%
o 2n i j — 2 J H
= Ilezllg Z B|kfkr (t, % () Uij (t). Boj = z z Blzkj fir (t|,lel (t|)) ;
=
Therefore, the form of Eq(11) is the exact solution of X2 (t) = § zn Bij i (1), (14)

Egs.(8) and(9). The proof is complete.

Remark 2 We mention here that, the approximate solution

X (t) of X, (t) for Egs.(8) and(9) can be obtained directly

by taking finitely many terms in the series representation Bnj = 2 2 B| fkr (t|7 (t|)):
form of x; (t) for Eq.(11) and is given as

=}
\S]
=

n 2
X (t) = lzljleijl,Uij (t).

X (1) = B|kfkr (% (0) @ (). (12)

M-
™M -

n
I
e

In the iterative process of EQ14), we can guarantee
that the approximatior!' (t) satisfies the initial condition

formula(14) is converge to the exact solutian(t) of Eq.

In this section we develop an iterative algorithm to find (8). In fact, this result is a fundamental rule in the RKHS
the solutions of system of FIVPL and @) in the space theory and its applications.

W({a,b] for linear and nonlinear case. Also, the solutions | emyma 21t 2(t) € W2[a, b, then

of same system, obtained by using proposed method with

existing fuzzy numbers are proved to converge to the exact 3
solutions with decreasing absolute difference between the lz(t)] < <1+ b—a+/(b—a) ) 12wz
exact values and the values obtained using RKHS method.

The basis of our RKHS solutions method for solving Z(t)] < (1+vb-a) 1Zllwgz -

Egs. (8) and(9) is summarized below for the exact and ! ,
approximate solutions. Firstly, we shall make use of thePrOOf For the ~ first  part, noting  that

following facts about linear and nonlinear case depending () = [,Z'(p)dp, where Z(t) is absolute

on the internal structure of the functidn contlnuous orja b]. If this is integrated again fromtot,
. . the resultisz(t) itself as;

Case 1If Eq. (8) is linear, then the exact and approximate

solutions can be obtained directly from E and(12), t y
respectively. g 1) and(12) z(t) - z(a) -7 (a)(t - a) :/a (/a z”(p)dp) dy
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So,
b
z(t)] < |z(a)| +|Z (a)| (10—61)+(IO—61)/a 1Z'(p)|dp

By using Holder’s inequality and E¢7), we can note the
following relation: |z(a)| < ||z||W22, |Z (a)] < |\z||W22, and

J21Z/ (P dp < /(B=2) |2z Thus,

1Z(t)] < (1+ b—a+/(b— a)3) 2l

For the second part, sing&(t) = Z (a) + [. 2’ (p) dp, this
means thalZ (t)| < |Z (a)| + /2|’ (p)|dp. In other word,

0] < (14 V0=-a)) |2z

Theorem 8 If X! (t) =% (t)|l|y — O, th = sasn — oo,
[IX'|lw is bounded, andf, (t,x (t)) is continuous, then
fr (tn, X" 1 (th)) — fr (S, % (S)) @asn — oo,

one can findZ (t)

Proof Firstly, we will prove that"* (t,) — % (s). Since,
we can note that

XL (th) — X (9)]
= XL (tn) — XY )+xn‘1(8) X ()]
<) (tn) =X ()| + [} (S) — X (9)]
<‘ (1) (&) ftn — 8+ [ ( ) X (s)]

whereé lies betweern, ands. From Lemma 2, it follows
that

a)3) X

-

X (s) =% ()] < (L+b—a+/(b—

I1(9) =% ()

which is gives|x"1(s) — x (s)| — 0 asn — o, while on
the other hand, we have

67 (&) < (14 VB=2) 48 |-

In terms of the boundedness !~ (t)||,,,, one obtains
that |x!* (tn) — X (S)| — 0 asn — co. Thus, by means of
the continuation of f; (t,x (t)), it is implies that

fr (tn, X" 2 (th)) — fr(S,% (S)) asn — . So, the proof of
the theorem is complete.

Theorem 9 Suppose thafix’||,y is bounded in Eq(13),
and Egs.(8) and (9) has a unique solution. It} is
dense on[a,b], then then-term approximate solution
X' (t) in the iterative formula of Eq(13) converges to the
exact solution X (t) of Egs. (8) and (9), and

Xr() 2 EBlJl’UIj()

Proof Similar to the proof of Theorem 4 in [

6 Software libraries and numerical
experiment

In order to solve system of FIVP 1 and @)
approximately on a computer, the system is approximated
by a discrete one. Continuous functions are approximated
by finite arrays of values. Algorithms are then sought
which approximately solve the mathematical problem
efficiently, accurately and reliably. While scientific
computing focuses on the design and the implementation
of such algorithms, numerical analysis may be viewed as
the theory behind them. To show behavior, properties,
efficiency, and applicability of the present RKHS method,
two linear and one nonlinear fuzzy differential systems
will be solved numerically in this section.

An algorithm is a finite sequence of rules for
performing computations on a computer such that at each
instant the rules determine exactly what the computer has
to do next. Next algorithm is utilizes to implement a
procedure to solve FIVPLf and @) in numeric form in
terms of their grid nodes based on the use of RKHS
method.

Algorithm 2 To approximate the solutior] (t) of x; (t)
for Egs.(8) and(9), we do the following steps:

Input The intervala, b], the unitinterval0, 1] the integers
n, the integersn, the kernel function&: (s) andH; (s), the
differential operatot,, and the functiorf;.

Output Approximate solutiorx? (t) of x; (t).
Step 1 Fixedt in [a,b] and ses € [a,b];

If s<t, seth() A(st);

Else sth( s) =A(t,s);
Fori=1,2,...n,h=12....m and
ji=12,. ,2r7 do the foIIowmg
Sett; = i1
Setr = =1,
Sety; j( ) = thS[Gt (S)]s=ti;

Output: the orthogonal function systefn ; (t).

Step 2Forl =2,3...,n—1 andk=1,2...,| — 1, do the
following:
Setdj; (t) = Z Z Bl ();

Output: the orthonormal function system; (t).
Step 3Setx? (tl) =X, (t1) = 0;

SetBij = 2 2 Bikfie, (6.4,

L),

Setx;, (t) = izljleijqjij (t);
Output: the approximate solutiodi (t) of x;, (t).
Step 4Stop.

Remark 3 Throughout this paper, we will try to give the
results of the three examples; however, in some cases we
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will switch between the results obtained for the examplesform are
in order not to increase the length of the paper without the

loss of generality for the remaining examples and results. p®)]'
In the process of computation, all the symbolic and —[(2-%r)ez— (8-r)er,
numerical computations are performed by using MAPLE 45. 45\ !t /55 55
13 software package. (Fr-2)ez+(F-Fr)e?]
. + 8%0gjn (L) + 25,
Next, we show by example that the system of crisp ; 1 2
initial value problems can be modeled in a natural way as [s(t)]
system of FIVPs. To illustrate this, consider the dynamic — [(45p _ 45\ o5 _ (55 _ 55() @b
(Fr—F)e (F-Fr)ez,
supply and demand system. The system of ODE 45 45 .t /55 5\ L
corresponding to this problem ig (t) = 8 — ki (s— o) (Z-Zr)e 2+ (3 - Fr)e]
and § (t) = ko (p— po), Where p is the price,s is the — 800%cos (L) 4 12001
supply, po is the equilibrium price,s is equilibrium
supply, 6 is the rate _of inflation, andil,kg are positive Using RKHS method, taking = :1%11 i=12,..n,
constant corresponding to the dynamic nature of the _ 251 andr; = r!n;j i =12..m m=5 with the

system. Here, we are considering an item such tha
increasing its price results in an increase in suppyut
that increasing its supplg will ultimately decrease its
price p. Furthermore, we will assume there are two
factors that influence price; inflation and supply. The
factors— sp means that; firstly, i > s, the supply is too
large and price is to decrease; secondly 4 s, supply

is too low and price tends to increase, while on the other _As_ we m_entloned G%ar"e“ It IS possible to pick any
hand, the factop— po means that: firstly, ip > po, price point in the interval of integratiof0,1] and as well the

is high and supply increasing; secondlypi&’ po, price is fuzzy approximate solutions and their first Hukuhara

low and supply decreases. Uncertainty in determining thederivatiyest_\/vill t?\e appt)licatlblre. Ndext,/ r;u[ne][ical :esult? of
initial values, inaccuracy in element modeling, and other@PProximating the se ()] _and[p'(t)]" of system o

parameters cause uncertainty in the aforementioneff!VP (15)and (L6) att =1/v/2 and various are given in

system. Considering them instead as system of Flvpgables 1 and 2, respectively, while in Tables 3 and 4 the
yields more realistic results. approximate solutions fojs(t)]" and [s (t)]" have been

tabulated.
Example 2[41] Consider the following linear differential

Example 1[41] Consider the following dynamic supply System of fuzzy equations 4@, 1]:
and demand differential system of fuzzy equations on

reproducing kernel functionS; (s) andH; (s) on [0,1] in
which Algorithms 1 and 2 are used throughout the
computations; some graphical results and tabulate data
are presented and discussed quantitatively to illusthete t
fuzzy approximate solutions and the approximate
Hukuhara derivatives.

. G (1) =X (t) +x2(t)
[Oa 1] Xl( 1 ) 17
X (1) = —x0 (1) + %o (1) (7
Pt)=060—ki(s—=0), (15)  subjectto the fuzzy initial conditions
S(t)=ka(p—po),
x1(0) = a1,%(0) = ay, (18)
subject to the fuzzy initial conditions where
_[s— 1,1<s<2,
a1(9 =13 s2<s<3,
X1 (O) =01,X2 (0) =ay, (16) and
ao(S) = S, 0<s<1,
where 2(8) = 2-51<s<2,
[a4]" = [20+5r,30— 5r] The exact fuzzy solutions of system of FIVP7f and (8)

in fuzzy setting are
[a5]" = [550+ 50r, 650 50r]. y seting

X1 (t) = a3(s) €* + € sin(x) + 2€ cos(t)
X2 (t) = az(s)€® + € cos(t) — 2¢ sin(t)

For numerical results and comparisons, the following
values, for parameters, are considerdd]:[ 6 = 0.05, where

So = 1200, pg = 25, andk; = ko = 0.5. The exact fuzzy as(s) = s+1, -1<s<0,
solutions of system of FIVP16) and (L6) in parametric 3\ = 1-s50<s<1,
(@© 2017 NSP
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Table 1: The fuzzy exact and approximate solutiongjpft)]" for system of FIVP {5) and (16) att = 1/+/2.
L
r p(y/v2)] e (1/v2)
0 [209410747871820256.13881138357883 [209410745777804256.1388096296631
0.25 [215251755810789850.2978034446090 [2152517537592872502978016481808
0.5 [221092763749756844.4567955056391 [221092761740769%2444567936666986
0.75 [2269337716887292386157875666692 [2269337697222512386157856852160
1 [232774779627699£2327747796276994 [232774777703734@327747777037349

Table 2: The Hukuhara derivative of fuzzy exact and approximatetimia of [p/ (t)]" for system of FIVP {5) and (L6) att = 1/1/2.

; ¥ (1/2)| ()2 (1/v2)]
0 [254.0101507708828089726650864563 [254.0101469199278089726619205239
0.25 [260.880465060329%802 1023507970087 [260.880461295002802 1023475454491
0.5 [267.75077934977832952320365075638 [267.7507756700762952320331703741
0.75 [274621093639223@883617222181178 [274.6210900451512883617187952993
1 [2814914079286682814914079286687 [2814914044202282814914044202282
Table 3: The fuzzy exact and approximate solutiongsgf)]" for system of FIVP {5) and (16) att = 1//2.
; s(1/v2) e (1/v2)]
0 [682154669827084®92 0796984582332 [682154669437406®920796981604634
0.25 [5695895298405977,6783390698793396 [695895298027788578339069570081]2
0.5 [609.635926984871464.5984413004459 [609.635926618170%64 5984409796985
0.75 [623376555563765®50.8578127215522 [623376555208552%50.8578123893166
1 [637.117184142658®37.1171841426586 [637.117183798935®37.1171837989350

Here,a1(s), az(s), andas(s) are vanished outside the feedback, and tabulate data are presented and discussed

intervals[1, 3], [0,2], and[—1, 1], respectively. In fact this

guantitatively to illustrate the fuzzy approximate

system is a generalization of the system of ODE solutions.

X (1) = X1 (1) + X2 (1) andx, (t) =

to initial condition

—x1 (t) + X2 (t) subject

sx1 (0) =~ 2 andxy (0) ~ 1. Anyhow, if

one putr =s—1, thens=r+ 1, again ifr = 3—s, then

s=3-r;

[aa]" =

follows; put

(V)] =

system of ODE:
x;lr
Xor
X
X/
Ar

hence, [al]r'
[r,2—r] and [a3]
apply the RKHS method, we first apply Algorithm 1 as

= [r+1,3—r]; similarly,
= [r—21,1—r]. In order to
and

Xa®)] = [xar(t),xer (1)]

[Xar (), X4 (1)]. Then we have the following

subject to the initial conditions

e
(t) = —xar (t) +xar (1), (19)
(t) = —Xar (t) 4+ xar (1),
X1 (0) =r+1,% (0) =3,
Xar (0) =T, X4 (0) =2 . (20)
Elli=12..,n,

Using RKHS method taking = =3,

n =251 andrj =

l,J—12 m,m_5withthe

reproducing kernel function8; (s) andH (s) on [0,1] in
which Algorithms 1 and 2 are used throughout the errors of the RKHS method are the lowest one among all

computations;

some graphical

results,

Result from numerical analysis is an approximation,
in general, which can be made as accurate as desired.
Because a computer has a finite word length, only a fixed
number of digits are stored and used during computations.
Next, the absolute difference between the exact values
and the values obtained using RKHS method (absolute
error) of numerically approximating (t) by x2%(t) for
system of ODE 19) and @0) have been calculated for
varioust andr as shown in Tables 5, 6, 7, and 8. From the
tables, it can be seen that with the few tens of iterations,
the RKHS approximate solutions with high accuracy are
achievable.

Numerical comparisons for system of FIVP7} and
(18) are studied next. The numerical methods that are
used for comparison with RKHS method include the
variational iteration method3p], the HAM [40], and the
fuzzy neural network method4]]. Anyhow, Table 9
shows a comparison between the absolute errors of our
method together with other aforementioned methods in
approximating; (t) andx (t) of [x (t)]" att = 0.2 and
various r, while Table 10 shows a comparison in
approximatingks, (t) andxg, (t) of [xx (t)]" att = 0.2 and
variousr. It is clear from the tables that the absolute

comparisorother numerical and analytical ones.
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Table 4: The Hukuhara derivative of fuzzy exact and approximatetimia of[s (t)]" for system of FIVP 15) and (L6) att = 1/+/2.

T T
f ¢ (1/v2)] (7 (1/v2)|
0 [92.20537393591667.155694056917909 [92.20537249563444155694045426889
0.25 [95.12587790539287112 6489017223145 [95.1258765015161312 6489005368070
0.5 [98.046381874882871.09.7283977528246 [98.04638050739791.09 7283965309244
[ [
[ [

0.75

1009668858443705.06.8078937833370 1009668845132806.06.8078925250427
1 103887389813853803 8873898138538 10388738851916190388738851916119
Table 5: The absolute error of approximatimg (t) for system of ODE 19) and @O).

t r=0 r=0.25 r=05 r=0.75 r=1
0.1 6.99146x 108 5.08162x 10 8 3.17177x 10° 8 1.26192x 10 8 6.47922x 10 °
0.2 1.29834x 10~/ 0.32631x 10°8 5.66921x 108 2.01211x 10°8 1.64500x 108
0.3 1.78264x 10~/ 1.26074x 10~ 7.38839x 108 2.16936x 10°8 3.04967x 10°8
0.4 2.13219x 10~/ 1.47598% 10~/ 8.19769x 108 1.63557x 108 4.92655x 108
0.5 2.32128x 10~/ 1.55730x 10~/ 7.93321x 10°8 2.93410x 10°° 7.34639x 108
0.6 2.31722x 10~/ 1.47827x 10~ 6.39312x 1078 1.99643x 108 1.0386x 10~/
0.7 2.07895x 10~/ 1.20601x 10~ 3.33079x 1078 5.39855x 108 1.41279x 107
0.8 1.55529x 10~/ 6.99966x 108 1.55357x 108 1.01068x 10~/ 1.86600x 10~/
0.9 6.82846x 108 8.97415x 107° 8.62329x 108 1.63492x 107 2.40750x 10~/
1 6.16605x 108 1.22419x 107 1.83178x 10~ 2.43936x 10~/ 3.04695x 10~/

Table 6: The absolute error of approximatimg, (t) for system of ODE 19) and @0).

t r=0 r=0.25 r=05 r=0.75 r=1
0.1 828731x 108 6.37746x 108 4.46761x 108 2.55777x 108 6.47922x 10
0.2 1.62734x 10~/ 1.26163x 10~/ 8.95920x 108 5.30210x 108 1.64500x 108
0.3 2.39258x 10~/ 1.87068x 10~/ 1.34877x 1077 8.26870x 108 3.04967x 1078
0.4 311750x 10~/ 2.46129x 10~/ 1.80508x 10~/ 1.14887x 10~ 4.92655x 108
0.5 3.79056x 10~/ 3.02658x 10~/ 2.26260x 10~/ 1.49862x 10~ 7.34639x 108
0.6 4.39442x 107 3.55546x 10~/ 2.71651x 10~/ 1.87755x 107 1.03860x 107
0.7 4.90453% 10~/ 4.03159x 10~/ 3.15866x 10~/ 2.28572x 10~/ 1.41279x 10~
0.8 5.28730x 10~/ 4.43197x 10~/ 3.57665x 10~/ 2.72133x 1077 1.86600x 10~/
0.9 5.49786x 107 4.72527x 107 3.95268x 10~/ 3.18009x 10~/ 2.40750x 10~/
1 547729x 107 4.86971x 107 4.26212x 107 3.65454% 10~/ 3.04695% 10~/

Nonlinear phenomena’s are of fundamental where

importance in various fields of science and engineering,
and other disciplines, since most phenomena in our world
are essentially nonlinear and are described by nonlinear

a (s) = maxcr (O, 1— (43)%)

B (5) = Marecr (o, 1- (53)2) .
equations. Anyhow, in most real-life situations, the ) i i
differential systems that models the uncertainty systems For the conduct of proceedings in the solution and
are too complicated to solve analytically, and there is adepending on Algorithm 1, it is clear that
practical need to approximate the solutions. In the next 3T 3 3
example, the fuzzy Hukuhara differentiable exact XS (O] = b (0,55 (1))
solutions cannot be found analytically in terms of closed [eXz(t)}r - [e?(Sr(t>’e?(4r (t>].
form solutions.

Example 3 Consider the following nonlinear differential This is due to the fact thaf ande® are strictly increasing
system of fuzzy equations d@, 1J: continuous functions ofr-c, «). On the other hand, if one

2 3 3
X, (t) = 2 & q, setr =1—(4s)3, thens=—Z%(1-r)2 ors=2(1-r)?;

; 3 (21)  hence,
X2 (t) = Xl (t) )
subject to the fuzzy initial conditions [a] = [—%\/(1—03,% (1—r)3}
x1(0) = 0,%(0) =B, (22) B = [-ivI-T,tvV1-T].
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Table 7: The absolute error of approximating; (t) for system of ODE 19) and @0).
t r=0 r=0.25 r=0.5 r=0.75 r=1
0.1 1.18488x 10/ 0.93898x 10 °© 8.02914x 108 6.11929x 10 4.20945x 108
0.2 2.29597x 10~/ 1.93026x 10~/ 1.56455% 10~/ 1.19884x 10~/ 8.33126x 108
0.3 3.33077x 1077 2.80887x 10~/ 2.28696x 10~/ 1.76506x 10~/ 1.24316x 107
0.4 4.28326x 10~/ 3.62705% 10~/ 2.97084x 10~/ 2.31463x 10~/ 1.65841x 107
0.5 5.14312x 10~/ 4.37914x 10~/ 3.61516x 10~/ 2.85118x 10~/ 2.08720x 10~/
0.6 5.89478x 10~/ 5.05583x 10~/ 4.21687x 107 3.37792x 107 2.53896x 10~/
0.7 6.51618x 107/ 5.64325x 10~/ 4.77031x 107 3.89738x 10~/ 3.02444x 107
0.8 6.97723x 10~/ 6.12190x 10~/ 5.26658x 10~/ 4.41126x 107 3.55593x 10~/
0.9 7.23783x 10~/ 6.46525x 10~/ 5.69266x 10~/ 4.92007x 107 4.14748x 10~/
1 7.24547x 107 6.63789x 10~/ 6.03030x 10~/ 5.42271x 10~/ 4.81513x 10~/
Table 8: The absolute error of approximating; (t) for system of ODE 19) and @0).
t r=0 r=0.25 r=05 r=0.75 r=1
0.1 342994x 108 1.52009x 10 8 3.89753x 10 ? 2.29960x 108 4.20945% 108
0.2 6.29715x 108 2.64005x 108 1.01706x 108 4.67416x 1078 8.33126x 10°8
0.3 8.44453x 108 3.22551x 108 1.99352x 108 7.21255x 108 1.24316x 107
0.4 9.66433x 108 3.10221x 1078 3.45991x 10°8 1.00220x 10~ 1.65841x 10~
0.5 0.68714x 108 2.04735x 108 5.59245x 10~8 1.32322x 107 2.08720x 10~/
0.6 8.16858x 108 2.20970x 10°° 8.61052x 108 1.70001x 107 2.53896x 10~/
0.7 4.67297x 1078 4.05638x 1078 1.27857x 107 2.15151x 10~/ 3.02444x 1077
0.8 1.34640x 108 9.89963x 108 1.84529x 107 2.70061x 107 3.55593x 10~/
0.9 105713x 10~/ 1.82972x 107 2.60231x 10~/ 3.37489x 10~/ 4.14748x 107
1 2.38478x 10~/ 2.99237x 10~/ 3.59996x 10~/ 4.20754x 107 4.81513x 10~/
Table 9: Numerical comparison of approximate solutipm(t)]" for system of FIVP 17) and (L8) att = 0.2.
method of P7] method of R6] method of p5| RKHS method
r Xar (t) Xor (t) Xar (t) Xor (t) xar (t) Xor (t) Xar (t) Xor (t)
0 21x10° 14x10° 67x10°% 53x10°% 12x10% 59x10° 13x107 16x10 '
02 60x108 14x10° 55x10°% 41x10% 11x10% 40x10°5 10x107 13x10°7
04 13x105 16x10° 43x10°% 29x108 88x10° 22x10°5 71x10% 10x107
0.6 16x105 19x10° 31x10°% 17x10°% 69x10° 39x10°® 42x108 75x10°8
0.8 80x10% 13x10° 19x10°® 52x107 51x10° 14x10°5 13x10°% 46x108
1 13x10° 13x10° 69x10°% 69x107 33x10° 33x10° 83x108 83x10°8

For finding fuzzy approximate solutions of system of FIVP form solutions which are inapplicable in general for such

(21) and @2), which are corresponding to their parametric nonlinear systems, in order to employ again the obtained

form, we have the following system of ODE: expansions to measure the accuracy of the RKHS method
in finding and predicting the fuzzy approximate solutions.

X, (1) =ee® 1 (1—r)3. To do so, we report the series formulas for the HAM
' ‘11 solutions in which the obtained results are generated from
X, (t) = €O 4 24/ (1—r)°, (23) the 10-truncated series solutions for —eacty (),
X, (1) =3 (t) i = 1,2,3,4. Henceforth, for simplicity and not to
s flict, we will let xtAM (1), j = 1,2,3,4 to denote the
X, (t):X3 (t) con 'V ; jr ') 3 &9y
a 2\ HAM series solutions ofj, (t), as follows:
subject to the initial conditions
X1r (0) =0, Xy (0) =0,
1 (0) =0, (0) ”

x3r(0)=—%Vl—r,x4r(0):lv1—r.

Our next goal is to present the HAM approximate
solutions for system of ODE2@) and @4) in order to
measure the extent of agreement with unknowns closed

HAM

XPAM (£) = (Bur 4 arye ) t+ 2 (B + aryy ) *ePurt

+ (sgePr (P +ay)°
+ AP (P 4 ay, ) O
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Table 10: Numerical comparison of approximate solutien (t)]" for system of FIVP {7) and (L8) att = 0.2.
method of R7] method of p6)] method of R5] RKHS method

r Xar (t) Xor (t) xar (t) Xor (t) Xar (t) Xor (t) Xar (t) Xor (t)
0 24x10° 14x10° 45x10°% 75x10°% 79x10° 10x10% 23x10’ 63x108
02 13x105 40x10°% 33x10°6 63x10% 61x10° 85x10°5 20x107 34x10°8
04 20x10° 13x10° 21x10°% 51x10°% 43x10° 67x10° 17x107 45x10°
0.6 13x105 08x10° 93x107 39x10°% 24x10° 49x10°5 14x107 25x10°8
0.8 14x105 90x10°% 28x107 27x10% 61x10% 30x10°5 11x107 54x10°8
1 10x10° 10x10° 15x10% 15x106 12x10° 12x10° 16x10°% 1.6x10°8

Table 11: The values of absolute residual error functions for syste@@E (23) and @4) att = 0.5.

r Reg"M Reg/AM Reg"M Reg/AM
0 11656990040« 108 2.3244814053% 103 1.3235259196 10~/ 8.238021483% 10~ °
0.25 5284410831k 108 1.3639342244 103 5.0779808894 10~/ 4.4089302308& 10°°
0.5 17734610724 107 7.712202426% 104 1.4936037025 106 2.4555858754 10~°
0.75 4.9090555176¢ 10~/ 3.8672144886¢ 104 3.7071763640 10°° 15286806524 10>
1 1794395323 10~ 1.794395323% 106 1.185506416& 10~° 1.185506416& 10>
Table 12: Numerical comparison of approximate solutiorxyf(t)]" for system of FIVP 21) and @2) att = 0.5.
r HAM solution RKHS solution
0 [0.2846010588829780.7417813098616158 [0.2846010604602640.7417813504005433
0.25 [0.3397042479611800.6803323123735007 [0.3397042507217690.6803323429733797
0.5 [0.3905128029340390.6235854675651437 [0.3905128072739876.6235854905123175
0.75 [0.4377406928550370.5707492345416490 [0.4377406992449168.5707492515434681
1 [0.5015733506944448.5015733506944444 [0.5015733613715230.5015733613715239
XM (1) = (6% + @z ) t+ 5 (€87 + azr) *ePat®

for the 10-truncated series HAM approximate solutions
XM (1), | = 1,2,3,4 have been calculated et 0.5 and
variousr for system of ODE Z3) and @4). From the
table, it can be seen that the HAM provides us with the
accurate approximate solutions with attention to that,
more accurate solution can be found at the beginning

values ofr in comparison with large.

+ (e (P 1 ay,)°
+ AP (P 4 ay,)tO),

3
XM (1) :B1r+%(e’31r+a1r) t4
5
+ 1356P1 (P - ay) 18,

Now, we will return to our RKHS method in order to
display new numerical and comparison results. Anyhow,

3
XHAM (£) = B, + 711 (eﬁzr +ay)th
+ 12€P (e32r+a2r)5t8 using RKHS method takingi = =%, i = 1,2,...n,
=12,

While one cannot know the absolute error without N = 251 gndr, =43 ~m, m=5 with the
knowing the exact solution, in most cases the residuareproducing kernel fUﬂCtIOF@t( s) andHt (s)on[0,1] in
error, denoted by RéS, can be used as a reliable which Algorithms 1 and 2 are used throughout the

indicators in the iteration progresses. In Table 11, thecomputations; some graphical results, comparison
value of the following residual error functions: feedback, and tabulate data are presented and discussed

quantitatively to illustrate the fuzzy approximate
Reg!AM solutions.
((jitx?rAM (t)— (engM _711 (1— r)3> 7 Numerical comparisons are carried out to verify the
mathematical results and the theoretical statement of the
Reg'rAM solutions. Next, some tabulated data are presented to
HAM ¢ show the extent between the HAM solutions and the
d yHAM (¢ o +1 /113 ;
aXer (D)= +71/( e RKHS method solutions. However, Table 12 shows a
HAM Ham 3 comparison of approximate solution fog (t)]" att = 0.5
Reg\V ‘dtxsr ) — (™M )7, and variousr for system of FIVP 21) and @2), while
Tables 13 shows a comparison of approximate solution
HAM HAM ( 3 . o :
Reg ‘dt X (8) = (&M ()] for [x2(t)]" att = 0.5 and various. As it is evident from

(25)  the comparison results, it was found that our method in
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Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1072 NS 2 O. Abu Arqub et al.: A novel iterative numerical algorithnr.fo

Table 13: Numerical comparison of approximate solutionxf(t)]" for system of FIVP 21) and @2) att = 0.5.
r HAM solution RKHS solution

0 [—0.1971220785059320.2503923858174381 [—0.1971220669419136.2503925964361660
0.25 [—0.1683138165457320.2121685332672482 [—0.1683137968506898.2121686948804722
0.5 [—0.1339957069088526.1714814924642561 [—0.1339956769374640.1714816163367717
0.75 [—0.0895493664478428.1230851973330545 [—0.0895493241507738.1230852919240308
1 [0.0156982421875000.0156982421875000 [0.0156983060546909.0156983060546904

comparison with the mentioned method is similar with a [2] P.G. Drazin, R.S. Jonson, Soliton: An Introduction,

view to accuracy and utilization. Cambridge, New York, 1993.

The aforementioned computational results provide a [3] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New

numerical estimate for the RKHS solutions. Also, it is York, 1974.

clear that the accuracy obtained using present method is[4] L. Debnath, Nonlinear Water Waves, Academic Press,

in advanced by using only few tens of iteration, where Boston, 1994.

higher accuracy can be achieved by increasing the[5]L. Collatz, Differential Equations: An Introduction i

numbem in Algorithms 2. Applications, John Wiley & Sons Ltd, 1986.

[6] M.W. Hirsch, S. Smale, Differential Equations, Dynaatic
Systems, and Linear Algebra, Academic Press, 1974.
; [7] M.R. Spiegel, Applied Differential Equations, Preridall,

7 Concludlng remarks Englewood Cliffs, NJ, 1981.

[8] O. Abu Arqub, A. El-Ajou, S. Momani, Constructing and
predicting solitary pattern solutions for nonlinear time-
fractional dispersive partial differential equationsdwl of
Computational Physics 293 (2015) 385-399.

[9] A. El-Ajou, O. Abu Arqub, S. Momani, D. Baleanu, A.

In various subjects of science and engineering, nonlinear
systems of fuzzy differential equations subject to given
fuzzy initial conditions, as well as their exact and
numerical solutions, are essentially important, theesfor

systems of FI.VPS should be solve_d. In the_present Paper,” * aisaedi, A novel expansion iterative method for solving
we have studied exact and numerical solutions for system  |inear partial differential equations of fractional orgder

of FIVPs (1) and @) based on the reproducing kernel Applied Mathematics and Computation 257 (2015) 119-
theory. Some results on the behavior of fuzzy solutions, 133,

convergence theorem, and errors estimation have alspoja. El-Ajou, O. Abu Arqub, S. Momani, Approximate
been Studied. In terms Of numerical Computations, severa ana|ytica| solution of the nonlinear fractional KdV-
improvements have been made; first, the dependency Burgers equation: A new iterative algorithm, Journal of
problem has been highlighted in constructing numerical ~ Computational Physics 293 (2015) 81-95.

methods for the solutions of systems of FIVPs. Second[11] A. Berlinet, C.T. Agnan, Reproducing Kernel Hilbert&e
an efficient computational algorithm has been proposedin  in Probability and Statistics, Kluwer Academic Publishers
order to guarantee the validity of fuzzy solutions on the 2004.

given interval, especially for nonlinear cases, where this[12] M. Cui, Y. Lin, Nonlinear Numercial Analysis in the
issue had been largely neglected in the literature on  Reproducing Kernel Space, Nova Science Publisher, New
numerically solving systems of FIVPs. The solving York, 2008.

procedure reveals that the RKHS method is a[l13]A. Daniel, Reproducing Kernel Spaces and Applicatjons
straightforward, succinct, and promising tool for solving Springer, 2003.

linear and nonlinear systems of FIVPs of ordinary types. [14] F. Geng, Solving singular second order three-pointioauy
value problems using reproducing kernel Hilbert space

method, Applied Mathematics and Computation 215 (2009)
2095-2102.
[15] O. Abu Arqub, M. Al-Smadi, S. Momani, Application of
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