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Abstract: Behaviors of many dynamic systems with uncertainty can be modelled effectively by systems of fuzzy differential equations.
In this paper, we develop new numerical iterative method forsolving systems of fuzzy initial value problems based on thereproducing
kernel theory under the assumption of Hukuhara differentiability. The exact and approximate solutions are given with series form in
terms of their parametric form, where two smooth reproducing kernel functions are used throughout the evolution of the algorithm
to obtain the required nodal values. Furthermore, error estimation is proved in order to capture the behavior of fuzzy solutions.
Applicability, potentiality, and efficiency of the proposed algorithm for the fuzzy solutions of different fuzzy systems are investigated
using computer tables and graphical representation.
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1 Introduction

Theory of systems of differential equations plays a vital
role to model physical, engineering, and economical
problems, such as in solid and fluid mechanics, dynamic
supply and demand, mathematical biology, plasma
physics, control theory, and other areas of science [1,2,3,
4,5,6,7,8,9,10]. But in actual case, the parameters,
variables, or initial conditions involved in the differential
systems may be uncertain, or a vague estimation of those
are found in general by some observation, experiment,
experience, data collection, or maintenance induced error.
So, to overcome the uncertainty and vagueness, one may
use fuzzy environment in parameters, variables, and
initial conditions in place of crisp ones. So, with these
uncertainties the general differential systems turn into
fuzzy differential systems.

Numerical techniques are widely used by scientists
and engineers to solve their problems. A major advantage
for numerical techniques is that a numerical answer can
be obtained even when a problem has no analytical
solution. Anyhow, in most real-life applications, it is too
complicated to obtain the exact solutions to systems of

fuzzy initial value problems (FIVPs) in terms of
elementary functions in a simple manner, so an efficient,
reliable numerical algorithm for the solutions of such
systems is required; it is little wonder that with the
development of fast, efficient digital computers, the role
of numerical methods in mathematics and engineering
problem solving has increased dramatically in recent
years.

In this paper, we introduce a novel iterative technique
based on the use of reproducing kernel Hilbert space
(RKHS) method for numerically approximating solutions
of systems of FIVPs in the space

⊕2η
ν=1W 2

2 [a,b] under the
Hukuhara differentiability. The new method has the
following characteristics; first, it is of global nature in
terms of the solutions obtained as well as its ability to
solve other mathematical and engineering problems;
second, it is accurate, need less effort to achieve the
results, and is developed especially for the nonlinear case;
third, in the proposed method, it is possible to pick any
point in the interval of integration and as well the
approximate solutions and their first Hukuhara derivatives
will be applicable; fourth, the method does not require
discretization of the variables, and it is not effected by
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computation round off errors and one is not faced with
necessity of large computer memory and time; fifth, the
proposed approach does not resort to more advanced
mathematical tools; that is, the algorithm is simple to
understand, implement, and should be thus easily
accepted in the mathematical and engineering
application’s fields. More precisely, we provide numerical
approximate solutions on the interval[a,b] for systems of
FIVPs of the form

x′1 (t) = f1 (t,x1 (t) ,x2 (t) , ...,xη (t)) ,

x′2 (t) = f2 (t,x1 (t) ,x2 (t) , ...,xη (t)) ,
...

x′η (t) = fη (t,x1(t) ,x2 (t) , ...,xη (t)) ,

(1)

subject to the fuzzy initial conditions

x1 (a) = α1,x2 (a) = α2, · · · ,xη (a) = αη , (2)

where fυ : [a,b]× R
η
F

→ RF are continuousη-tuples
fuzzy-valued functions,xυ : [a,b] → RF , αυ ∈ RF ,
a,b ∈ R, andυ = 1,2, · · · ,η . Throughout this paperR the
set of real numbers andRF denote the set of fuzzy real
numbers onR.

Reproducing kernel theory has important applications
in numerical analysis, differential equations, integral
equations, integro-differential equations, probabilityand
statistics, and so fourth [11,12,13]. Recently, a lot of
research work has been devoted to the applications of
RKHS method for wide classes of stochastic and
deterministic problems involving operator equations,
differential equations, integral equations, and
integro-differential equations. The RKHS method was
successfully used by many authors to investigate several
scientific applications side by side with their theories. The
reader is kindly requested to go through [14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,
36,37] in order to know more details about RKHS
method, including its history, its modification for use, its
scientific applications, its kernel functions, and its
characteristics.

The numerical solvability for systems of FIVPs have
been pursued by several authors. To mention a few, in
[38] the authors have discussed the geometric approach to
solve linear systems of FIVPs. Furthermore, the
variational iteration method is carried out in [39] for
linear fuzzy differential system. The homotopy analysis
method (HAM) has been applied to solve the linear fuzzy
system as described in [40]. Recently, the fuzzy neural
network approach for solving linear system of FIVPs is
proposed in [41]. On the other aspect as well, the
numerical solvability of other version of FIVPs can be
found in [42,43,44,45] and references therein. As a
result, none of previous studies propose a methodical way
to solve systems of FIVPs in general. Moreover, previous
studies require more effort to achieve the results, they are
not accurate and usually they are suited for linear form.

This paper is comprised of 6 sections including the
introduction. In the next section, overview of fuzzy
calculus theory is collected. In Section 2, 2η dimensional
inner product spaces are constructed in order to apply the
method. In Section 3, series representation of exact and
approximate solutions and theoretical basis of the method
are introduced. In Section 4, an iterative algorithm for
numerically approximating the solutions is described and
the n-truncation approximate solutions are proved to
converge to the exact solutions. Software libraries and
numerical experiment are presented in Section 5. This
article ends in Section 6 with some concluding remarks.

2 Overview of fuzzy calculus theory

The contents of this section is basic in some sense, for the
reader’s convenience, we present some necessary
definitions from fuzzy calculus theory and preliminary
results. After that, a numerical algorithm for the solutions
of systems of FIVPs based on theirr-cut representation
form is introduced.

Let S be a nonempty set. A fuzzy setu in S is
characterized by its membership functionu : S → [0,1].
Thus,u(s) is interpreted as the degree of membership of
an elements in the fuzzy setu for eachs ∈ S. A fuzzy set
u onR is called convex if for eachs, t ∈ R andλ ∈ [0,1],
u(λs+(1−λ)t) ≥ min{u(s) ,u(t)}; is called upper
semicontinuous if the set{s ∈ R | u(s)≥ r} is closed for
eachr ∈ [0,1]; and is called normal if there iss ∈ R such
that u(s) = 1. The support of a fuzzy setu is defined as
{s ∈ R : u(s)> 0}.

Definition 1 [46] A fuzzy numberu is a fuzzy subset ofR
with normal, convex, and upper semicontinuous
membership function of bounded support.

The concept of a fuzzy real number arises from the
fact that many quantifiable phenomena do not lend
themselves to being characterized in terms of absolutely
precise numbers. In fact, a fuzzy number is one which is
described in terms of a number word and a linguistic
modifier, such as approximately, nearly, or around.

For eachr ∈ (0,1], set [u]r = {s ∈ R : u(s)≥ r} and
[u]0 = {s ∈ R : u(s)> 0}, where{·} denote the closure of
{·}. Then, it easily to establish thatu is a fuzzy number if
and only if [u]r is a compact convex subset ofR for each
r ∈ [0,1] and[u]1 6= φ [47]. Thus, if u is a fuzzy number,
then[u]r = [u1(r) ,u2 (r)], where

u1 (r) = min{s : s ∈ [u]r}
u2 (r) = max{s : s ∈ [u]r} ,

for eachr ∈ [0,1]. The symbol[u]r is called ther-cut
representation or parametric form of a fuzzy numberu.

The question arises here is, if we have an
interval-valued function[z1 (r) ,z2 (r)] defined on[0,1],
then is there a fuzzy numberu such that
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[u]r = [z1 (r) ,z2 (r)]. The next theorem is characterizes
fuzzy numbers through theirr-cut representations.

Theorem 1 [47] Suppose thatu1,u2 : [0,1] → R satisfy
the following conditions; first,u1 is a bounded increasing
function andu2 is a bounded decreasing function with
u1 (1) ≤ u2 (1); second, for eachk ∈ (0,1], u1 andu2 are
left-hand continuous functions atr = k; third, u1 andu2
are right-hand continuous functions atr = 0. Then

u : R→ [0,1] ,

defined by

u(s) = sup{r : u1(r)≤ s ≤ u2 (r)} ,

is a fuzzy number with parameterization[u1 (r) ,u2 (r)].
Furthermore, ifu : R → [0,1] is a fuzzy number with
parameterization[u1(r) ,u2 (r)], then the functionsu1 and
u2 satisfy the aforementioned conditions.

In general, we can represent an arbitrary fuzzy
numberu by an order pair of functions(u1,u2) which
satisfy the requirements of Theorem 1. Frequently, we
will write simply u1r andu2r instead ofu1(r) andu2 (r),
respectively.

Definition 2 [48,49] The complete metric structure onRF

is given by the Hausdorff distance mapping

D : RF ×RF → R
+∪{0} ,

such that

D(u,v) = sup
0≤r≤1

max{|u1r − v1r| , |u2r − v2r|} ,

for arbitrary fuzzy numbersu andv.

Let u,v ∈RF . If there exists an elementw ∈ RF such
thatu = v+w, thenw is called the Hukuhara difference of
u andv, denoted byu⊖ v. Here, the sign⊖ stands always
for Hukuhara difference and let us mention thatu⊖ v 6=
u+(−1)v. Usually, we denoteu+(−1)v by u− v, while
u⊖ v stands for the Hukuhara difference.

Definition 3 [50] Let x : [a,b] → RF andt0 ∈ [a,b]. We
say thatx is Hukuhara differentiable att0, if there exists
an elementx′ (t0) ∈ RF such that for eachh > 0
sufficiently close to 0, the Hukuhara differences
x(t0+ h)⊖ x(t0), x(t0)⊖ x(t0− h) exist and

x′ (t0) = limh→0+
x(t0+h)⊖x(t0)

h

= limh→0+
x(t0)⊖x(t0−h)

h .

Here, the limit is taken in the metric space(RF ,D)
and at the endpoints of[a,b], we consider only one-sided
derivatives. Next theorem shows us a way to translate a
differential system from fuzzy setting into ordinary setting.

Theorem 2 [51,52] Let x : [a,b] → RF be Hukuhara
differentiable function and[x(t)]r = [x1r (t) ,x2r (t)]. Then

the endpoints functionsx1r and x2r are differentiable on
[a,b] and

[

x′ (t)
]r
=

d
dt

[x(t)]r =
[

x′1r (t) ,x
′
2r (t)

]

,

for eachr ∈ [0,1].

In some applications, the behavior of an object is
determined by physics laws and is crisp. However, if the
initial values are obtained from measurements, for
example, this value can be uncertain and often there are
more suitable to model them using fuzzy numbers. Next,
we consider and study systems involving fuzzy equations
and/or fuzzy initial conditions. In other word, if the initial
values are fuzzy numbers, the solutions are fuzzy
functions, and consequently the derivatives must be
considered as fuzzy derivatives. Let us consider the
following system of first-order equations described the
crisp ordinary differential equations (ODEs) on the
interval[a,b]:

x′1 (t) = f1 (t,x1 (t) ,x2 (t) , ...,xη (t)) ,

x′2 (t) = f2 (t,x1 (t) ,x2 (t) , ...,xη (t)) ,
...

x′η (t) = fη (t,x1 (t) ,x2 (t) , ...,xη (t)) ,

(3)

subject to the crisp initial conditions

x1 (a) = α1,x2 (a) = α2, ...,xη (a) = αη , (4)

where fυ : [a,b]×Rη → R are continuousη-tuples real-
valued functions,xυ : [a,b] → R, αυ ,a,b ∈ R, andυ =
1,2, ...,η .

Assume that the initial conditionsαυ in Eq. (4) are
uncertain and modeled by fuzzy numbers. Also, assume
that the function fυ in system of ODE (3) contain
uncertain parameters modeled by fuzzy numbers. Then,
we obtain system of FIVP (1) and (2). Anyhow, in order
to solve this new system, we rewrite the fuzzy functions
xυ (t) as [xυ (t)]

r =
[

x(2υ−1)r (t) ,x(2υ)r (t)
]

and
[xυ (a)]

r =
[

α(2υ−1)r,α (2υ)r
]

. Indeed, according to
Nguyen theorem [53,54] it follows that:

[ fυ (t,x1(t) ,x2 (t) , ...,xη (t))]r

= fυ (t, [x1 (t)]
r , [x2 (t)]

r , ..., [xη (t)]r)

=
{

fυ (t,y1,y2, ...,yη ) : yυ ∈ [xυ (t)]
r}

=
[

f(2υ−1)r (t,xr (t)) , f(2υ)r (t,xr (t))
]

,

whereυ = 1,2, ...,η.

Definition 4 Let xυ : [a,b]→RF such thatx′υ exists. Ifxυ
andx′υ satisfy system of FIVP (1) and (2), we say thatxυ
are system fuzzy solutions, whereυ = 1,2, ...,η.

Before using RKHS method as an efficient solver for
fuzzy differential systems, we shall now introduce and
implement a procedure to transform system of FIVP (1)
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and (2) into parametric form in order to find system fuzzy
solutions.

Algorithm 1 To find fuzzy solutions of system of FIVP (1)
and (2), there are four main steps:

Input: The interval[a,b], the unit interval[0,1], and the
endpoints functionsf(2υ−1)r (t,xr (t)) , f(2υ)r (t,xr (t)) of
[ fυ (t,x1(t) ,x2 (t) , ...,xη (t))]r.

Output: Exact fuzzy solutionsxυ (t) for eacht ∈ [a,b].

Step 1: For ν = 1, ...,η , do the following:

Set[xυ (t)]
r =
[

x(2υ−1)r (t) ,x(2υ)r (t)
]

;

Set[x′υ (t)]
r =
[

x′(2υ−1)r (t) ,x
′
(2υ)r (t)

]

;

Set[xυ (0)]
r =
[

α (2υ−1)r,α(2υ)r
]

;
Set

[ fυ (t,xr (t))]
r =
[

f(2υ−1)r (t,xr (t)) , f(2υ)r (t,xr (t))
]

;

Step 2: Solve the following system of ODEs forxr (t):

x′1r (t) = f1r (t,xr (t)) ,
x′2r (t) = f2r (t,xr (t)) ,

x′3r (t) = f3r (t,xr (t)) ,
x′4r (t) = f4r (t,xr (t)) ,
...

x′(2η−1)r (t) = f(2η−1)r (t,xr (t)) ,
x′(2η)r (t) = f(2η)r (t,xr (t)) ,

(5)

subject to

x1r (t0) = α1r, x2r (t0) = α2r,

x3r (t0) = α3r, x4r (t0) = α4r,

...

x(2η−1)r (t0) = α (2η−1)r, x(2η)r (t0) = α(2η)r.

(6)

Step 3: For υ = 1, ...,η and eacht ∈ [a,b] andr ∈ [0,1],
do the following:

Ensure that the solutions
[

x(2υ−1)r (t) ,x(2υ)r (t)
]

are
valid level sets;

Ensure that the derivatives
[

x′(2υ−1)r (t) ,x
′
(2υ)r (t)

]

are

valid level sets;
Construct the fuzzy solutionsxυ (t) such that

[xυ (t)]
r =
[

x(2υ−1)r (t) ,x(2υ)r (t)
]

.

Step 4: Stop.

3 Multidimensional inner product spaces

In functional analysis, RKHS is a Hilbert space of
functions in which pointwise evaluation is a continuous
linear functional. Equivalently, they are spaces that can be
defined by reproducing kernels. In this section, we firstly

formulate several reproducing kernel functions in order to
generate and construct an orthogonal normal basis on the
spacesW 2

2 [a,b] and W 1
2 [a,b]. After that, new spaces

⊕2η
ν=1W 2

2 [a,b] and
⊕2η

ν=1W 1
2 [a,b] are building in order to

formulate and utilize the solutions of system of FIVP (1)
and (2) using RKHS method.

An abstract set is supposed to have elements, each of
which has no structure, and is itself supposed to have no
internal structure, except that the elements can be
distinguished as equal or unequal, and to have no external
structure except for the number of elements.

Definition 5 [14] Let E be a nonempty abstract set. A
function K : E × E → C is a reproducing kernel of the
Hilbert spaceH if

1.∀t ∈ E; K (·, t) ∈ H,
2.∀t ∈ E andϕ ∈ H; 〈ϕ (·) ,K (·, t)〉= ϕ (t) .

Remark 1 The condition(2) in Definition 5 is called ”the
reproducing property” which means that the value of a
functionϕ at a pointt is reproducing by the inner product
of ϕ (·) with K (·, t). A Hilbert space which possesses a
reproducing kernel is called a RKHS.

An important subset of the RKHSs are the RKHSs
associated to a continuous kernel. These spaces have wide
applications, including complex analysis, harmonic
analysis, quantum mechanics, statistics and machine
learning. Next, in order to apply the RKHS method, we
shall define and construct a reproducing kernel space
W 2

2 [a,b] in which every function satisfies the initial
conditionsz(a) = 0.

Definition 6 [15] The inner product spaceW 2
2 [a,b] is

defined as W 2
2 [a,b] = {z(t) : z,z′ are absolutely

continuous real-valued functions on[a,b], z′′ ∈ L2 [a,b],
and z(a) = 0}. The inner product and the norm in
W 2

2 [a,b] are given by

〈z1(t),z2(t)〉W 2
2
= z1 (a)z2 (a)

+ z′1(a)z
′
2(a)+

∫ b
a z′′1 (t)z′′2 (t)dt,

(7)

and ||z1||W 2
2
=
√

〈z1 (t) ,z1 (t)〉W 2
2
, respectively, where

z1,z2 ∈W 2
2 [a,b].

Definition 7 [14] The Hilbert spaceW 2
2 [a,b] is called a

reproducing kernel if for each fixedt ∈ [a,b] and any
z(s) ∈ W 2

2 [a,b], there existG(t,s) ∈ W 2
2 [a,b] (simply

Gt (s)) ands ∈ [a,b] such that〈z(s) ,Gt (s)〉W 2
2
= z(t).

It is very important to obtain the representation form
of the reproducing kernel functionGt (s), because it is the
basis of our algorithm. In the following theorem, we will
give the representation form of the reproducing kernel
function Gt (s) in the spaceW 2

2 [a,b]. After that, we
construct the spaceW 1

2 [a,b] in order to define the linear
bounded operators as shown later in the next section.

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 4, 1059-1074 (2017) /www.naturalspublishing.com/Journals.asp 1063

Theorem 3 [15] The Hilbert spaceW 2
2 [a,b] is a complete

reproducing kernel and its reproducing kernel function
Gt (s) is given by

Gt (s) =

{

Λ (s, t) ,s ≤ t,

Λ (t,s) ,s > t.

where

Λ (s, t) =
1
6
(s− a)

(2a2− s2+3t(2+ s)− a(6+3t+ s)).

Definition 8 [16] The inner product spaceW 1
2 [a,b] is

defined asW 1
2 [a,b] = {z(t) : z is absolutely continuous

real-valued function on[a,b] andz′ ∈ L2 [a,b]}. The inner
product and the norm inW 1

2 [a,b] are defined as
〈z1 (t) ,z2 (t)〉W1

2
=

∫ b
a (z′1 (t)z′2 (t)+ z1(t)z2 (t))dt and

||z1||W 1
2

=
√

〈z1 (t) ,z1 (t)〉W 1
2
, respectively, where

z1,z2 ∈W 1
2 [a,b].

Theorem 4 [16] The Hilbert spaceW 1
2 [a,b] is a complete

reproducing kernel and its reproducing kernel function
Ht (s) is given by

Ht (s) =

{

∆ (s, t) ,s ≤ t,

∆ (t,s) ,s > t.

where

∆ (s, t) =
1
2

csch(b− a)×
(cosh(t + s− b− a)+ cosh(t − s− b+ a))

The spacesW 2
2 [a,b] andW 1

2 [a,b] are complete Hilbert
with some special properties. So, all the properties of the
Hilbert space will be hold. Further, theses spaces
possesses some special and better properties which could
make some problems be solved easier. For instance, many
problems studied inL2 [a,b] space, which is a complete
Hilbert space, requires large amount of integral
computations and such computations may be very
difficult in some cases. Thus, the numerical integrals have
to be calculated in the cost of losing some accuracy.
However, the properties ofW 2

2 [a,b] andW 1
2 [a,b] require

no more integral computation for some functions, instead
of computing some values of a function at some nodes. In
fact, this simplification of integral computation not only
improves the computational speed, but also improves the
computational accuracy. Henceforth and not to conflict
unless stated otherwise, we denote

W [a,b] =
⊕2η

ν=1W 2
2 [a,b]

H [a,b] =
⊕2η

j=1W 1
2 [a,b] .

Definition 9 The inner product spaceW [a,b] can be
constructed as

W [a,b] = {(z1 (t) ,z2 (t) , ...,z2η (t))T },

wherez j ∈ W 2
2 [a,b] and j = 1, ...,2η . The inner product

and the norm inW [a,b] are building as

〈z(t),w(t)〉W =
2η

∑
j=1

〈

z j(t),w j(t)
〉

W 2
2

and ||z||W =

√

2η
∑
j=1

∣

∣

∣

∣z j
∣

∣

∣

∣

2
W2

2
, respectively, where

z,w ∈W [a,b].

Clearly,W [a,b] is a Hilbert space. On the other aspect
as well, the inner product spaceH [a,b] can be defined in
a similar manner with similar inner product and norm, and
it is also a Hilbert space.

4 Series representation of solutions

In this section, formulation of differential linear operator
and implementation method are presented in the spaces
W [a,b] and H [a,b]. Meanwhile, we construct an
orthogonal function system of the spaceW [a,b] based on
Gram-Schmidt orthogonalization process in order to
obtain the exact and approximate solutions of system of
FIVP (1) and (2). Through remainder sections, the
lowercase letter r whenever used means for each
r ∈ [0,1].

Now, to apply the RKHS method, we will define the
differential linear operatorL jr : W 2

2 [a,b]→ W 1
2 [a,b] such

that L jrx jr (t) = x′jr (t), j = 1,2, ...,2η. Put

fr =
(

f1r, f2r, ..., f(2η)r
)T , xr =

(

x1r,x2r, ...,x(2η)r
)T ,

αr =
(

α1r,α2r, ...,α (2η)r
)T

, and Lr =

diag
(

L1r,L2r, ...,L(2η)r
)

, where

Lr : W [a,b]→ H [a,b]

Based on this, the system of ODEs (5) and (6) can be
converted into the equivalent form as follows:

Lrxr (t) = fr (t,xr (t))

= fr
(

t,x1r (t) ,x2r (t) , ...,x(2η)r (t)
)

,
(8)

subject to
xr (a) = α r, (9)

in which xr ∈W [a,b] and fr ∈ H [a,b].

Lemma 1 The operatorsL jr : W 2
2 [a,b] → W 1

2 [a,b],
j = 1,2, ...,2η are bounded and linear.

Proof The linearity part is obvious, for boundedness part,
we need to prove that

∥

∥L jrx jr
∥

∥

2
W 1

2
≤ M jr

∥

∥x jr
∥

∥

2
W2

2
, where

M jr > 0. From the definition of the inner product and the
norm ofW 1

2 [a,b], we have

∥

∥L jrx jr
∥

∥

2
W 1

2
=

b
∫

a

{

[

(L jrx jr)
′ (t)
]2
+[(L jrx jr)(t)]

2
}

dt.
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By reproducing property of the kernel functionGt (s), we
have

x jr (t) =
〈

x jr (s) ,Gt (s)
〉

W 2
2

(L jrx jr) (t) =
〈

x jr (s) ,(L jrGt)(s)
〉

W 2
2

(L jrx jr)
′ (t) =

〈

x jr (s) ,(L jrGt)
′ (s)
〉

W 2
2
.

Again, by Schwarz inequality, we get

∣

∣(L jrx jr) (t)
∣

∣=
∣

∣

∣

〈

x jr (t) ,(L jrGt)(t)
〉

W 2
2

∣

∣

∣

≤
∥

∥(L jrGt)(t)
∥

∥

W 2
2

∥

∥x jr (t)
∥

∥

W 2
2

= M1
jr

∥

∥x jr (t)
∥

∥

W 2
2
,

∣

∣(L jrx jr)
′ (t)
∣

∣=
∣

∣

∣

〈

x jr (t) ,(L jrGt)
′ (t)
〉

W 2
2

∣

∣

∣

≤
∥

∥(L jrGt)
′ (t)
∥

∥

W 2
2

∥

∥x jr (t)
∥

∥

W2
2

= M2
jr

∥

∥x jr (t)
∥

∥

W 2
2
,

whereM1
jr,M

2
jr > 0. Thus,

∥

∥L jrx jr
∥

∥

2
W 1

2
=

b
∫

a

{

[

(L jrx jr)
′ (t)
]2
+[(L jrx jr) (t)]

2
}

dt

≤
(

M1
jr +M2

jr

)

(b− a)
∥

∥x jr (t)
∥

∥

2
W 2

2

or
∥

∥L jrx jr
∥

∥

W 1
2
≤ M jr

∥

∥x jr (t)
∥

∥

W 2
2
,

whereM jr =

√

(

M1
jr +M2

jr

)

(b− a).

Theorem 5The operatorLr :W [a,b]→H [a,b] is bounded
and linear.

Proof Clearly, Lr is a linear operator. A boundedness is
shown as follows: for eachxr ∈W [a,b], one can write

‖Lrxr‖H =

√

√

√

√

2η

∑
j=1

∣

∣

∣

∣L jrx jr
∣

∣

∣

∣

2
W 1

2

≤

√

√

√

√

2η

∑
j=1

∣

∣

∣

∣L jr
∣

∣

∣

∣

2 ∣
∣

∣

∣x jr
∣

∣

∣

∣

2
W 2

2

≤

√

√

√

√

(

2η

∑
j=1

∣

∣

∣

∣L jr
∣

∣

∣

∣

2

)(

2η

∑
j=1

∣

∣

∣

∣x jr
∣

∣

∣

∣

2
W 2

2

)

=

√

√

√

√

2η

∑
j=1

∣

∣

∣

∣L jr
∣

∣

∣

∣

2 ||xr||W

The boundedness ofL jr implies thatLr is bounded. So, the
proof of the theorem is complete.

Next, we construct an orthogonal function system of
W [a,b] as follows: put ϕ i j (t) = Hti (t)e j and

ψ i j (t) = L∗
r ϕ i j (t), where e j =

(

0, ...0,1jth,0, ...,0
)T

,

L∗
r = diag

(

L∗
1r,L

∗
2r, ...,L

∗
(2η)r

)

is the adjoint operator of

Lr, Ht (s) is the reproducing kernel function ofW 1
2 [a,b],

and {ti}∞
i=1 is dense on[a,b]. The orthonormal function

system
{

ψ i j (t)
}(∞,2η)

(i, j)=(1,1)
of W [a,b] can be derived from

Gram-Schmidt orthogonalization process of
{

ψ i j (t)
}(∞,2η)

(i, j)=(1,1)
as follows: set

ψ i j (t) =
i

∑
l=1

j

∑
k=1

β i j
lkψ lk (t) , (10)

where i = 1,2,3, ..., j = 1,2, ...,2η and β i j
lk are

orthogonalization coefficients.
The subscripts by the operatorLr, denoted byLrs,

indicates that the operatorLr applies to the function ofs.
Indeed, it is easy to see that,

ψ i j (t) = L∗
r ϕ i j (t) =

〈

L∗
r ϕ i j (s) ,Gt (s)

〉

W
=

〈

ϕ i j (s) ,LrsGt (s)
〉

H
= LrsGt (s)|s=ti

∈ W [a,b]. Thus,

ψ i j (t) can be expressed in the form
ψ i j (t) = LrsGt (s)|s=ti

.

Theorem 6 For Eqs. (8) and (9), if {ti}∞
i=1 is dense on

[a,b], then
{

ψ i j (t)
}(∞,2η)

(i, j)=(1,1)
is the complete function

system of the spaceW [a,b].

Proof ∀xr (t) ∈ W [a,b], let
〈

xr (t) ,ψ i j (t)
〉

W
= 0, which

gives

〈

xr (t) ,ψ i j (t)
〉

W
=
〈

xr (t) ,L∗
r ϕ i j (t)

〉

W

=
〈

Lrxr (t) ,ϕ i j (t)
〉

H

= Lrxr (ti) = 0.

Whilst

xr (t) =
2η
∑
j=1

x jr (t)e j

=
2η
∑
j=1

〈

xr (·) ,Gt (·)e j
〉

W e j.

Hence, Lrxr (t) =
2η
∑
j=1

〈

Lrxr (t) ,ϕ i j (t)
〉

W
e j = 0. But

since{ti}∞
i=1 is dense on[a,b], we must haveLrxr (t) = 0.

It follows that xr (t) = 0 from the existence ofL−1
r . So,

the proof of the theorem is complete.

The internal structure of the following theorem is to
utilize the representation form of the exact and
approximate solutions of system of FIVP (1) and (2) in
the spaceW [a,b].
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Theorem 7 If {ti}∞
i=1 is dense on[a,b] and the solution of

Eqs. (8) and (9) is unique, then the exact solution of Eqs.
(8) and(9) satisfies the expansion form

xr (t) =
∞

∑
i=1

2η

∑
j=1

i

∑
l=1

j

∑
k=1

β i j
ik fkr (tl ,xr (tl)) ψ̄ i j (t) . (11)

Proof Applying Theorem 6, it is easy to see that
{

ψ̄ i j (t)
}(∞,2η)

(i, j)=(1,1)
is the complete orthonormal basis of

W [a,b]. Thus, using Eq. (10), we have

xr (t)

=
∞
∑

i=1

2η
∑
j=1

〈

xr (t) , ψ̄ i j (t)
〉

W
ψ̄ i j (t)

=
∞
∑

i=1

2η
∑
j=1

〈

xr (t) ,
i

∑
l=1

j
∑

k=1
β i j

lkψ lk (t)

〉

W
ψ̄ i j (t)

=
∞
∑

i=1

2η
∑
j=1

i
∑

l=1

j
∑

k=1
β i j

lk 〈xr (t) ,L∗
r ϕ lk (t)〉W ψ̄ i j (t)

=
∞
∑

i=1

2η
∑
j=1

i
∑

l=1

j

∑
k=1

β i j
lk 〈Lrxr (t) ,ϕ lk (t)〉H ψ̄ i j (t)

=
∞
∑

i=1

2η
∑
j=1

i
∑

l=1

j
∑

k=1
β i j

lk 〈 fkr (t,xr (t)) ,ϕ lk (t)〉H ψ̄ i j (t)

=
∞
∑

i=1

2η
∑
j=1

i
∑

l=1

j
∑

k=1
β i j

lk fkr (tl ,xr (tl)) ψ̄ i j (t) .

Therefore, the form of Eq.(11) is the exact solution of
Eqs.(8) and(9). The proof is complete.

Remark 2 We mention here that, the approximate solution
xn

r (t) of xr (t) for Eqs.(8) and(9) can be obtained directly
by taking finitely many terms in the series representation
form of xr (t) for Eq.(11) and is given as

xn
r (t) =

n

∑
i=1

2η

∑
j=1

i

∑
l=1

j

∑
k=1

β i j
lk fkr (tl ,xr (tl)) ψ̄ i j (t) . (12)

5 Implementation of iterative algorithm

In this section we develop an iterative algorithm to find
the solutions of system of FIVP (1) and (2) in the space
W [a,b] for linear and nonlinear case. Also, the solutions
of same system, obtained by using proposed method with
existing fuzzy numbers are proved to converge to the exact
solutions with decreasing absolute difference between the
exact values and the values obtained using RKHS method.

The basis of our RKHS solutions method for solving
Eqs.(8) and (9) is summarized below for the exact and
approximate solutions. Firstly, we shall make use of the
following facts about linear and nonlinear case depending
on the internal structure of the functionfr.

Case 1If Eq. (8) is linear, then the exact and approximate
solutions can be obtained directly from Eqs.(11) and(12),
respectively.

Case 2 If Eq. (8) is nonlinear, then the exact and
approximate solutions can be obtained by using the
following iterative process. According to Eq.(11), the
representation form of the solution of Eqs.(8) and (9)
will be

xr (t) =
∞

∑
i=1

2η

∑
j=1

Li jrψ̄ i j (t) ,

whereLi jr =
i

∑
l=1

j
∑

k=1
β i j

ik fkr (tl ,xr (tl)). Putt1 = a, it follows

thatxr (t1) is known from the initial conditions of Eq.(9);
so fr (t1,xr (t1)) is known. For numerical computations, we
put initial functionx0

r (t1) = xr (t1) and define then-term
approximations toxr (t) by

xn
r (t) =

n

∑
i=1

2η

∑
j=1

Bi jψ̄ i j (t) , (13)

where the coefficients Bi j and the successive
approximationsxi

r (t), i = 1,2, ...,n are given as follows:

B1 j =
1
∑

l=1

j
∑

k=1
β 1 j

1k fkr
(

t1,x0
r (t1)

)

;

x1
r (t) =

2η
∑
j=1

B1 jψ̄1 j (t) ,

B2 j =
2
∑

l=1

j
∑

k=1
β 2 j

lk fkr
(

tl ,xl−1
r (tl)

)

;

x2
r (t) =

2
∑

i=1

2η
∑
j=1

Bi jψ̄ i j (t) ,

...

Bn j =
n
∑

l=1

j
∑

k=1
β n j

lk fkr
(

tl ,xl−1
r (tl)

)

;

xn
r (t) =

n
∑

l=1

2η
∑
j=1

Bi jψ̄ i j (t) .

(14)

In the iterative process of Eq.(14), we can guarantee
that the approximationxn

r (t) satisfies the initial condition
of Eq. (9). Now, we will proof thatxn

r (t) in the iterative
formula(14) is converge to the exact solutionxr (t) of Eq.
(8). In fact, this result is a fundamental rule in the RKHS
theory and its applications.

Lemma 2 If z(t) ∈W 2
2 [a,b], then

|z(t)| ≤
(

1+ b− a+
√

(b− a)3
)

‖z‖W2
2

|z′ (t)| ≤
(

1+
√

b− a
)

‖z‖W 2
2
.

Proof For the first part, noting that
z′ (t) − z′ (a) =

∫ t
a z′′ (p)d p, where z′ (t) is absolute

continuous on[a,b]. If this is integrated again froma to t,
the result isz(t) itself as;

z(t)− z(a)− z′ (a)(t − a) =
∫ t

a

(

∫ y

a
z′′ (p)d p

)

dy
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So,

|z(t)| ≤ |z(a)|+
∣

∣z′ (a)
∣

∣(b− a)+ (b− a)
∫ b

a

∣

∣z′′ (p)
∣

∣d p

By using Holder’s inequality and Eq.(7), we can note the
following relation: |z(a)| ≤ ‖z‖W2

2
, |z′ (a)| ≤ ‖z‖W2

2
, and

∫ b
a |z′′ (p)|d p ≤

√

(b− a)‖z‖W 2
2
. Thus,

|z(t)| ≤
(

1+ b− a+
√

(b− a)3
)

‖z‖W2
2
.

For the second part, sincez′ (t) = z′ (a)+
∫ t

a z′′ (p)d p, this
means that|z′ (t)| ≤ |z′ (a)|+

∫ b
a |z′′ (p)|d p. In other word,

one can find|z′ (t)| ≤
(

1+
√

(b− a)
)

‖z‖W 2
2
.

Theorem 8 If ‖xn
r (t)− xr (t)‖W → 0, tn → s as n → ∞,

‖xn
r‖W is bounded, andfr (t,xr (t)) is continuous, then

fr(tn,xn−1
r (tn))→ fr(s,xr (s)) asn → ∞.

Proof Firstly, we will prove thatxn−1
r (tn)→ xr (s). Since,

we can note that
∣

∣xn−1
r (tn)− xr (s)

∣

∣

=
∣

∣xn−1
r (tn)− xn−1

r (s)+ xn−1
r (s)− xr (s)

∣

∣

≤
∣

∣xn−1
r (tn)− xn−1

r (s)
∣

∣+
∣

∣xn−1
r (s)− xr (s)

∣

∣

≤
∣

∣

∣

(

xn−1
r

)′
(ξ )
∣

∣

∣
|tn − s|+

∣

∣xn−1
r (s)− xr (s)

∣

∣ ,

whereξ lies betweentn ands. From Lemma 2, it follows
that

∣

∣xn−1
r (s)− xr (s)

∣

∣ ≤ (1+ b− a+
√

(b− a)3)×
∥

∥xn−1
r (s)− xr (s)

∥

∥

W ,

which is gives
∣

∣xn−1
r (s)− xr (s)

∣

∣→ 0 asn → ∞, while on
the other hand, we have

∣

∣

∣

(

xn−1
r

)′
(ξ )
∣

∣

∣
≤
(

1+
√

(b− a)
)

∥

∥xn−1
r (ξ )

∥

∥

W .

In terms of the boundedness of
∥

∥xn−1
r (t)

∥

∥

W , one obtains
that

∣

∣xn−1
r (tn)− xr (s)

∣

∣→ 0 asn → ∞. Thus, by means of
the continuation of fr (t,xr (t)), it is implies that
fr(tn,xn−1

r (tn)) → fr(s,xr (s)) asn → ∞. So, the proof of
the theorem is complete.

Theorem 9 Suppose that||xn
r ||W is bounded in Eq.(13),

and Eqs.(8) and (9) has a unique solution. If{ti}∞
i=1 is

dense on[a,b], then the n-term approximate solution
xn

r (t) in the iterative formula of Eq.(13) converges to the
exact solution xr (t) of Eqs. (8) and (9), and

xr (t) =
∞
∑

i=1

2η
∑
j=1

Bi jψ̄ i j (t).

Proof Similar to the proof of Theorem 4 in []

6 Software libraries and numerical
experiment

In order to solve system of FIVP (1) and (2)
approximately on a computer, the system is approximated
by a discrete one. Continuous functions are approximated
by finite arrays of values. Algorithms are then sought
which approximately solve the mathematical problem
efficiently, accurately and reliably. While scientific
computing focuses on the design and the implementation
of such algorithms, numerical analysis may be viewed as
the theory behind them. To show behavior, properties,
efficiency, and applicability of the present RKHS method,
two linear and one nonlinear fuzzy differential systems
will be solved numerically in this section.

An algorithm is a finite sequence of rules for
performing computations on a computer such that at each
instant the rules determine exactly what the computer has
to do next. Next algorithm is utilizes to implement a
procedure to solve FIVP (1) and (2) in numeric form in
terms of their grid nodes based on the use of RKHS
method.

Algorithm 2 To approximate the solutionxn
r (t) of xr (t)

for Eqs.(8) and(9), we do the following steps:

Input The interval[a,b], the unit interval[0,1] the integers
n, the integersm, the kernel functionsGt (s) andHt (s), the
differential operatorLr, and the functionfr.

Output Approximate solutionxn
r (t) of xr (t).

Step 1 Fixedt in [a,b] and sets ∈ [a,b];

If s ≤ t, setGt (s) = Λ (s, t);
Else setGt (s) = Λ (t,s);
For i = 1,2, ...,n, h = 1,2, ...,m, and
j = 1,2, ...,2η , do the following:
Setti = i−1

n−1;

Setrh =
h−1
m−1;

Setψ i, j(t) = Lrhs [Gt (s)]s=ti
;

Output: the orthogonal function systemψ i, j(t).

Step 2 For l = 2,3...,n− 1 andk = 1,2..., l − 1, do the
following:

Setψ i j (t) =
i

∑
l=1

j
∑

k=1
β i j

lkψ lk (t);

Output: the orthonormal function systemψ i j (t).

Step 3Setx0
rh
(t1) = xrh (t1) = 0;

SetBi j =
i

∑
l=1

2
∑

k=1
β i j

lk fkrh

(

tl ,xl−1
rh

(tl)
)

;

Setxi
rh
(t) =

i
∑

i=1

2
∑
j=1

Bi jψ̄ i j (t);

Output: the approximate solutionxn
r (t) of xrh (t).

Step 4Stop.

Remark 3 Throughout this paper, we will try to give the
results of the three examples; however, in some cases we
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will switch between the results obtained for the examples
in order not to increase the length of the paper without the
loss of generality for the remaining examples and results.
In the process of computation, all the symbolic and
numerical computations are performed by using MAPLE
13 software package.

Next, we show by example that the system of crisp
initial value problems can be modeled in a natural way as
system of FIVPs. To illustrate this, consider the dynamic
supply and demand system. The system of ODE
corresponding to this problem isp′ (t) = θ − k1 (s− s0)
and s′ (t) = k2 (p− p0), where p is the price,s is the
supply, p0 is the equilibrium price,s0 is equilibrium
supply,θ is the rate of inflation, andk1,k2 are positive
constant corresponding to the dynamic nature of the
system. Here, we are considering an item such that
increasing its pricep results in an increase in supplys but
that increasing its supplys will ultimately decrease its
price p. Furthermore, we will assume there are two
factors that influence price; inflation and supply. The
factors− s0 means that; firstly, ifs > s0, the supply is too
large and price is to decrease; secondly, ifs < s0, supply
is too low and price tends to increase, while on the other
hand, the factorp− p0 means that; firstly, ifp > p0, price
is high and supply increasing; secondly, ifp < p0, price is
low and supply decreases. Uncertainty in determining the
initial values, inaccuracy in element modeling, and other
parameters cause uncertainty in the aforementioned
system. Considering them instead as system of FIVPs
yields more realistic results.

Example 1 [41] Consider the following dynamic supply
and demand differential system of fuzzy equations on
[0,1]:

p′ (t) = θ − k1(s− s0) ,

s′ (t) = k2 (p− p0) ,
(15)

subject to the fuzzy initial conditions

x1 (0) = α1,x2 (0) = α2, (16)

where

[α1]
r = [20+5r,30−5r]

[α2]
r = [550+50r,650−50r].

For numerical results and comparisons, the following
values, for parameters, are considered [41]: θ = 0.05,
s0 = 1200, p0 = 25, andk1 = k2 = 0.5. The exact fuzzy
solutions of system of FIVP (15) and (16) in parametric

form are

[p(t)]r

= [
(

45
2 − 45

2 r
)

e−
t
2 −
(

55
2 − 55

2 r
)

e
t
2 ,

(45
2 r− 45

2

)

e−
t
2 +
(55

2 − 55
2 r
)

e
t
2 ]

+ 6001
10 sin

(

t
2

)

+25,

[s(t)]r

= [
(45

2 r− 45
2

)

e−
t
2 −
(55

2 − 55
2 r
)

e
t
2 ,

(45
2 − 45

2 r
)

e−
t
2 +
(55

2 − 55
2 r
)

e
t
2 ]

− 6001
10 cos

(

t
2

)

+ 12001
10 .

Using RKHS method, takingti = i−1
n−1, i = 1,2, ...,n,

n = 251 andr j =
j−1

m−1, j = 1,2, ...,m, m = 5 with the
reproducing kernel functionsGt (s) andHt (s) on [0,1] in
which Algorithms 1 and 2 are used throughout the
computations; some graphical results and tabulate data
are presented and discussed quantitatively to illustrate the
fuzzy approximate solutions and the approximate
Hukuhara derivatives.

As we mentioned earlier, it is possible to pick any
point in the interval of integration[0,1] and as well the
fuzzy approximate solutions and their first Hukuhara
derivatives will be applicable. Next, numerical results of
approximating the sets[p(t)]r and [p′ (t)]r of system of
FIVP (15) and (16) at t = 1/

√
2 and variousr are given in

Tables 1 and 2, respectively, while in Tables 3 and 4 the
approximate solutions for[s(t)]r and [s′ (t)]r have been
tabulated.
Example 2 [41] Consider the following linear differential
system of fuzzy equations on[0,1]:

x′1 (t) = x1 (t)+ x2(t) ,

x′2 (t) =−x1 (t)+ x2(t) ,
(17)

subject to the fuzzy initial conditions

x1 (0) = α1,x2 (0) = α2, (18)

where

α1 (s) =

{

s−1, 1≤ s ≤ 2,

3− s, 2≤ s ≤ 3,

and

α2 (s) =

{

s, 0≤ s ≤ 1,

2− s, 1≤ s ≤ 2,

The exact fuzzy solutions of system of FIVP (17) and (18)
in fuzzy setting are

x1 (t) = α3 (s)e2t + et sin(x)+2et cos(t)

x2 (t) = α3 (s)e2t + et cos(t)−2et sin(t) ,

where

α3 (s) =

{

s+1, −1≤ s ≤ 0,

1− s, 0≤ s ≤ 1,
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Table 1: The fuzzy exact and approximate solutions of[p(t)]r for system of FIVP (15) and (16) at t = 1/
√

2.

r
[

p
(

1/
√

2
)]r [

p251
(

1/
√

2
)]r

0 [209.4107478718200,256.1388113835788] [209.4107457778047,256.1388096296631]
0.25 [215.2517558107898,250.2978034446090] [215.2517537592875,250.2978016481808]
0.5 [221.0927637497568,244.4567955056391] [221.0927617407695,244.4567936666986]
0.75 [226.9337716887295,238.6157875666692] [226.9337697222519,238.6157856852160]
1 [232.7747796276994,232.7747796276994] [232.7747777037349,232.7747777037349]

Table 2: The Hukuhara derivative of fuzzy exact and approximate solutions of [p′ (t)]r for system of FIVP (15) and (16) at t = 1/
√

2.

r
[

p′
(

1/
√

2
)]r [

(p′)251
(

1/
√

2
)]r

0 [254.0101507708822,308.9726650864563] [254.0101469199274,308.9726619205239]
0.25 [260.8804650603299,302.1023507970087] [260.8804612950028,302.1023475454491]
0.5 [267.7507793497783,295.2320365075638] [267.7507756700765,295.2320331703741]
0.75 [274.6210936392236,288.3617222181178] [274.6210900451513,288.3617187952993]
1 [281.4914079286687,281.4914079286687] [281.4914044202282,281.4914044202282]

Table 3: The fuzzy exact and approximate solutions of[s(t)]r for system of FIVP (15) and (16) at t = 1/
√

2.

r
[

s
(

1/
√

2
)]r [

s251
(

1/
√

2
)]r

0 [582.1546698270840,692.0796984582332] [582.1546694374060,692.0796981604634]
0.25 [595.8952984059777,678.3390698793396] [595.8952980277882,678.3390695700812]
0.5 [609.6359269848714,664.5984413004459] [609.6359266181703,664.5984409796985]
0.75 [623.3765555637650,650.8578127215522] [623.3765552085529,650.8578123893166]
1 [637.1171841426586,637.1171841426586] [637.1171837989350,637.1171837989350]

Here,α1 (s), α2 (s), andα3 (s) are vanished outside the
intervals[1,3], [0,2], and[−1,1], respectively. In fact this
system is a generalization of the system of ODE
x′1 (t) = x1 (t)+ x2(t) andx′2 (t) = −x1 (t)+ x2(t) subject
to initial conditionsx1 (0) ≈ 2 andx2 (0) ≈ 1. Anyhow, if
one putr = s−1, thens = r+1, again ifr = 3− s, then
s = 3 − r; hence, [α1]

r = [r+1,3− r]; similarly,
[α2]

r = [r,2− r] and [α3]
r = [r−1,1− r]. In order to

apply the RKHS method, we first apply Algorithm 1 as
follows; put [x1 (t)]

r = [x1r (t) ,x2r (t)] and
[x2 (t)]

r = [x3r (t) ,x4r (t)]. Then we have the following
system of ODE:

x′1r (t) = x1r (t)+ x3r (t) ,
x′2r (t) = x2r (t)+ x4r (t) ,

x′3r (t) =−x2r (t)+ x3r (t) ,

x′4r (t) =−x1r (t)+ x4r (t) ,

(19)

subject to the initial conditions

x1r (0) = r+1, x2r (0) = 3− r,

x3r (0) = r, x4r (0) = 2− r.
(20)

Using RKHS method, takingti = i−1
n−1, i = 1,2, ...,n,

n = 251 andr j =
j−1

m−1, j = 1,2, ...,m, m = 5 with the
reproducing kernel functionsGt (s) andHt (s) on [0,1] in
which Algorithms 1 and 2 are used throughout the
computations; some graphical results, comparison

feedback, and tabulate data are presented and discussed
quantitatively to illustrate the fuzzy approximate
solutions.

Result from numerical analysis is an approximation,
in general, which can be made as accurate as desired.
Because a computer has a finite word length, only a fixed
number of digits are stored and used during computations.
Next, the absolute difference between the exact values
and the values obtained using RKHS method (absolute
error) of numerically approximatingxr (t) by x251

r (t) for
system of ODE (19) and (20) have been calculated for
varioust andr as shown in Tables 5, 6, 7, and 8. From the
tables, it can be seen that with the few tens of iterations,
the RKHS approximate solutions with high accuracy are
achievable.

Numerical comparisons for system of FIVP (17) and
(18) are studied next. The numerical methods that are
used for comparison with RKHS method include the
variational iteration method [39], the HAM [40], and the
fuzzy neural network method [41]. Anyhow, Table 9
shows a comparison between the absolute errors of our
method together with other aforementioned methods in
approximatingx1r (t) andx2r (t) of [x1 (t)]

r at t = 0.2 and
various r, while Table 10 shows a comparison in
approximatingx3r (t) andx4r (t) of [x2 (t)]

r at t = 0.2 and
various r. It is clear from the tables that the absolute
errors of the RKHS method are the lowest one among all
other numerical and analytical ones.
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Table 4: The Hukuhara derivative of fuzzy exact and approximate solutions of [s′ (t)]r for system of FIVP (15) and (16) at t = 1/
√

2.

r
[

s′
(

1/
√

2
)]r [

(s′)251
(

1/
√

2
)]r

0 [92.20537393591667,115.5694056917909] [92.20537249563444,115.5694045426889]
0.25 [95.12587790539287,112.6489017223145] [95.12587650151613,112.6489005368070]
0.5 [98.04638187488287,109.7283977528246] [98.04638050739791,109.7283965309244]
0.75 [100.9668858443705,106.8078937833370] [100.9668845132806,106.8078925250427]
1 [103.8873898138538,103.8873898138538] [103.8873885191619,103.8873885191619]

Table 5: The absolute error of approximatingx1r (t) for system of ODE (19) and (20).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.1 6.99146×10−8 5.08162×10−8 3.17177×10−8 1.26192×10−8 6.47922×10−9

0.2 1.29834×10−7 9.32631×10−8 5.66921×10−8 2.01211×10−8 1.64500×10−8

0.3 1.78264×10−7 1.26074×10−7 7.38839×10−8 2.16936×10−8 3.04967×10−8

0.4 2.13219×10−7 1.47598×10−7 8.19769×10−8 1.63557×10−8 4.92655×10−8

0.5 2.32128×10−7 1.55730×10−7 7.93321×10−8 2.93410×10−9 7.34639×10−8

0.6 2.31722×10−7 1.47827×10−7 6.39312×10−8 1.99643×10−8 1.0386×10−7

0.7 2.07895×10−7 1.20601×10−7 3.33079×10−8 5.39855×10−8 1.41279×10−7

0.8 1.55529×10−7 6.99966×10−8 1.55357×10−8 1.01068×10−7 1.86600×10−7

0.9 6.82846×10−8 8.97415×10−9 8.62329×10−8 1.63492×10−7 2.40750×10−7

1 6.16605×10−8 1.22419×10−7 1.83178×10−7 2.43936×10−7 3.04695×10−7

Table 6: The absolute error of approximatingx2r (t) for system of ODE (19) and (20).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.1 8.28731×10−8 6.37746×10−8 4.46761×10−8 2.55777×10−8 6.47922×10−9

0.2 1.62734×10−7 1.26163×10−7 8.95920×10−8 5.30210×10−8 1.64500×10−8

0.3 2.39258×10−7 1.87068×10−7 1.34877×10−7 8.26870×10−8 3.04967×10−8

0.4 3.11750×10−7 2.46129×10−7 1.80508×10−7 1.14887×10−7 4.92655×10−8

0.5 3.79056×10−7 3.02658×10−7 2.26260×10−7 1.49862×10−7 7.34639×10−8

0.6 4.39442×10−7 3.55546×10−7 2.71651×10−7 1.87755×10−7 1.03860×10−7

0.7 4.90453×10−7 4.03159×10−7 3.15866×10−7 2.28572×10−7 1.41279×10−7

0.8 5.28730×10−7 4.43197×10−7 3.57665×10−7 2.72133×10−7 1.86600×10−7

0.9 5.49786×10−7 4.72527×10−7 3.95268×10−7 3.18009×10−7 2.40750×10−7

1 5.47729×10−7 4.86971×10−7 4.26212×10−7 3.65454×10−7 3.04695×10−7

Nonlinear phenomena’s are of fundamental
importance in various fields of science and engineering,
and other disciplines, since most phenomena in our world
are essentially nonlinear and are described by nonlinear
equations. Anyhow, in most real-life situations, the
differential systems that models the uncertainty systems
are too complicated to solve analytically, and there is a
practical need to approximate the solutions. In the next
example, the fuzzy Hukuhara differentiable exact
solutions cannot be found analytically in terms of closed
form solutions.

Example 3 Consider the following nonlinear differential
system of fuzzy equations on[0,1]:

x′1 (t) = ex2(t)+α,

x′2 (t) = x3
1 (t) ,

(21)

subject to the fuzzy initial conditions

x1 (0) = 0,x2 (0) = β , (22)

where
α (s) = maxs∈R

(

0,1− (4s)
2
3

)

β (s) = maxs∈R
(

0,1− (5s)2
)

.

For the conduct of proceedings in the solution and
depending on Algorithm 1, it is clear that

[

x3
1 (t)

]r
= [x3

1r (t) ,x
3
2r (t)]

[

ex2(t)
]r

= [ex3r(t),ex4r(t)].

This is due to the fact thats3 andes are strictly increasing
continuous functions on(−∞,∞). On the other hand, if one

setr = 1− (4s)
2
3 , thens = − 1

4 (1− r)
3
2 or s = 1

4 (1− r)
3
2 ;

hence,

[α ]r =

[

− 1
4

√

(1− r)3, 1
4

√

(1− r)3
]

[β ]r =
[

− 1
5

√
1− r, 1

5

√
1− r

]

.
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Table 7: The absolute error of approximatingx3r (t) for system of ODE (19) and (20).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.1 1.18488×10−7 9.93898×10−8 8.02914×10−8 6.11929×10−8 4.20945×10−8

0.2 2.29597×10−7 1.93026×10−7 1.56455×10−7 1.19884×10−7 8.33126×10−8

0.3 3.33077×10−7 2.80887×10−7 2.28696×10−7 1.76506×10−7 1.24316×10−7

0.4 4.28326×10−7 3.62705×10−7 2.97084×10−7 2.31463×10−7 1.65841×10−7

0.5 5.14312×10−7 4.37914×10−7 3.61516×10−7 2.85118×10−7 2.08720×10−7

0.6 5.89478×10−7 5.05583×10−7 4.21687×10−7 3.37792×10−7 2.53896×10−7

0.7 6.51618×10−7 5.64325×10−7 4.77031×10−7 3.89738×10−7 3.02444×10−7

0.8 6.97723×10−7 6.12190×10−7 5.26658×10−7 4.41126×10−7 3.55593×10−7

0.9 7.23783×10−7 6.46525×10−7 5.69266×10−7 4.92007×10−7 4.14748×10−7

1 7.24547×10−7 6.63789×10−7 6.03030×10−7 5.42271×10−7 4.81513×10−7

Table 8: The absolute error of approximatingx4r (t) for system of ODE (19) and (20).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.1 3.42994×10−8 1.52009×10−8 3.89753×10−9 2.29960×10−8 4.20945×10−8

0.2 6.29715×10−8 2.64005×10−8 1.01706×10−8 4.67416×10−8 8.33126×10−8

0.3 8.44453×10−8 3.22551×10−8 1.99352×10−8 7.21255×10−8 1.24316×10−7

0.4 9.66433×10−8 3.10221×10−8 3.45991×10−8 1.00220×10−7 1.65841×10−7

0.5 9.68714×10−8 2.04735×10−8 5.59245×10−8 1.32322×10−7 2.08720×10−7

0.6 8.16858×10−8 2.20970×10−9 8.61052×10−8 1.70001×10−7 2.53896×10−7

0.7 4.67297×10−8 4.05638×10−8 1.27857×10−7 2.15151×10−7 3.02444×10−7

0.8 1.34640×10−8 9.89963×10−8 1.84529×10−7 2.70061×10−7 3.55593×10−7

0.9 1.05713×10−7 1.82972×10−7 2.60231×10−7 3.37489×10−7 4.14748×10−7

1 2.38478×10−7 2.99237×10−7 3.59996×10−7 4.20754×10−7 4.81513×10−7

Table 9: Numerical comparison of approximate solution[x1(t)]
r for system of FIVP (17) and (18) at t = 0.2.

method of [27] method of [26] method of [25] RKHS method
r x1r (t) x2r (t) x1r (t) x2r (t) x1r (t) x2r (t) x1r (t) x2r (t)

0 2.1×10−5 1.4×10−5 6.7×10−6 5.3×10−6 1.2×10−4 5.9×10−5 1.3×10−7 1.6×10−7

0.2 6.0×10−6 1.4×10−5 5.5×10−6 4.1×10−6 1.1×10−4 4.0×10−5 1.0×10−7 1.3×10−7

0.4 1.3×10−5 1.6×10−5 4.3×10−6 2.9×10−6 8.8×10−5 2.2×10−5 7.1×10−8 1.0×10−7

0.6 1.6×10−5 1.9×10−5 3.1×10−6 1.7×10−6 6.9×10−5 3.9×10−6 4.2×10−8 7.5×10−8

0.8 8.0×10−6 1.3×10−5 1.9×10−6 5.2×10−7 5.1×10−5 1.4×10−5 1.3×10−8 4.6×10−8

1 1.3×10−5 1.3×10−5 6.9×10−6 6.9×10−7 3.3×10−5 3.3×10−5 8.3×10−8 8.3×10−8

For finding fuzzy approximate solutions of system of FIVP
(21) and (22), which are corresponding to their parametric
form, we have the following system of ODE:

x′1r (t) = ex3r(t)− 1
4

√

(1− r)3,

x′2r (t) = ex4r(t)+ 1
4

√

(1− r)3,

x′3r (t) = x3
1r (t) ,

x′4r (t) = x3
2r (t) ,

(23)

subject to the initial conditions

x1r (0) = 0, x2r (0) = 0,

x3r (0) =− 1
5

√
1− r, x4r (0) = 1

5

√
1− r.

(24)

Our next goal is to present the HAM approximate
solutions for system of ODE (23) and (24) in order to
measure the extent of agreement with unknowns closed

form solutions which are inapplicable in general for such
nonlinear systems, in order to employ again the obtained
expansions to measure the accuracy of the RKHS method
in finding and predicting the fuzzy approximate solutions.
To do so, we report the series formulas for the HAM
solutions in which the obtained results are generated from
the 10-truncated series solutions for eachx jr (t),
j = 1,2,3,4. Henceforth, for simplicity and not to
conflict, we will let xHAM

jr (t), j = 1,2,3,4 to denote the
HAM series solutions ofx jr (t), as follows:

xHAM
1r (t) =

(

eβ1r +α1r
)

t + 1
20

(

eβ1r +α1r
)3

eβ1r t5

+( 1
288eβ1r

(

eβ1r +α1r
)6

+ 1
480e2β1r

(

eβ 1r +α1r
)5
)t9
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Table 10: Numerical comparison of approximate solution[x2 (t)]
r for system of FIVP (17) and (18) at t = 0.2.

method of [27] method of [26] method of [25] RKHS method
r x1r (t) x2r (t) x1r (t) x2r (t) x1r (t) x2r (t) x1r (t) x2r (t)

0 2.4×10−5 1.4×10−5 4.5×10−6 7.5×10−6 7.9×10−5 1.0×10−4 2.3×10−7 6.3×10−8

0.2 1.3×10−5 4.0×10−6 3.3×10−6 6.3×10−6 6.1×10−5 8.5×10−5 2.0×10−7 3.4×10−8

0.4 2.0×10−5 1.3×10−5 2.1×10−6 5.1×10−6 4.3×10−5 6.7×10−5 1.7×10−7 4.5×10−9

0.6 1.3×10−5 0.8×10−5 9.3×10−7 3.9×10−6 2.4×10−5 4.9×10−5 1.4×10−7 2.5×10−8

0.8 1.4×10−5 9.0×10−6 2.8×10−7 2.7×10−6 6.1×10−6 3.0×10−5 1.1×10−7 5.4×10−8

1 1.0×10−5 1.0×10−5 1.5×10−6 1.5×10−6 1.2×10−5 1.2×10−5 1.6×10−8 1.6×10−8

Table 11: The values of absolute residual error functions for system of ODE ( 23) and (24) at t = 0.5.
r ResHAM

1r (t) ResHAM
2r (t) ResHAM

3r (t) ResHAM
4r (t)

0 1.1656990040×10−8 2.3244814053×10−3 1.3235259190×10−7 8.2380214832×10−5

0.25 5.2844108311×10−8 1.3639342244×10−3 5.0779808894×10−7 4.4089302308×10−5

0.5 1.7734610724×10−7 7.7122024269×10−4 1.4936037025×10−6 2.4555858754×10−5

0.75 4.9090555176×10−7 3.8672144886×10−4 3.7071763640×10−6 1.5286806524×10−5

1 1.7943953232×10−6 1.7943953232×10−6 1.1855064168×10−5 1.1855064168×10−5

Table 12: Numerical comparison of approximate solution of[x1(t)]
r for system of FIVP (21) and (22) at t = 0.5.

r HAM solution RKHS solution
0 [0.2846010588829784,0.7417813098616158] [0.2846010604602641,0.7417813504005433]
0.25 [0.3397042479611809,0.6803323123735007] [0.3397042507217690,0.6803323429733797]
0.5 [0.3905128029340397,0.6235854675651437] [0.3905128072739875,0.6235854905123175]
0.75 [0.4377406928550377,0.5707492345416490] [0.4377406992449165,0.5707492515434681]
1 [0.5015733506944444,0.5015733506944444] [0.5015733613715239,0.5015733613715239]

xHAM
2r (t) =

(

eβ 2r +α2r
)

t + 1
20

(

eβ 2r +α2r
)3

eβ 2rt5

+( 1
288eβ1r

(

eβ1r +α1r
)6

+ 1
480e2β1r

(

eβ1r +α1r
)5

t9),

xHAM
3r (t) = β 1r +

1
4

(

eβ 1r +α1r
)3

t4

+ 3
160eβ 1r

(

eβ1r +α1r
)5

t8,

xHAM
4r (t) = β2r +

1
4

(

eβ2r +α2r
)3

t4

+ 3
160eβ2r

(

eβ2r +α2r
)5

t8

While one cannot know the absolute error without
knowing the exact solution, in most cases the residual
error, denoted by Res(t), can be used as a reliable
indicators in the iteration progresses. In Table 11, the
value of the following residual error functions:

ResHAM
1r (t)

=

∣

∣

∣

∣

d
dt xHAM

1r (t)−
(

exHAM
3r (t)− 1

4

√

(1− r)3
)∣

∣

∣

∣

,

ResHAM
2r (t)

=

∣

∣

∣

∣

d
dt xHAM

2r (t)−
(

exHAM
4r (t)+ 1

4

√

(1− r)3
)∣

∣

∣

∣

,

ResHAM
3r (t) =

∣

∣

∣

d
dt xHAM

3r (t)−
(

xHAM
1r (t)

)3
∣

∣

∣
,

ResHAM
4r (t) =

∣

∣

∣

d
dt xHAM

4r (t)−
(

xHAM
2r (t)

)3
∣

∣

∣
,

(25)

for the 10-truncated series HAM approximate solutions
xHAM

jr (t), j = 1,2,3,4 have been calculated att = 0.5 and
various r for system of ODE (23) and (24). From the
table, it can be seen that the HAM provides us with the
accurate approximate solutions with attention to that,
more accurate solution can be found at the beginning
values ofr in comparison with larger.

Now, we will return to our RKHS method in order to
display new numerical and comparison results. Anyhow,
using RKHS method, takingti = i−1

n−1, i = 1,2, ...,n,

n = 251 andr j =
j−1

m−1, j = 1,2, ...,m, m = 5 with the
reproducing kernel functionsGt (s) andHt (s) on [0,1] in
which Algorithms 1 and 2 are used throughout the
computations; some graphical results, comparison
feedback, and tabulate data are presented and discussed
quantitatively to illustrate the fuzzy approximate
solutions.

Numerical comparisons are carried out to verify the
mathematical results and the theoretical statement of the
solutions. Next, some tabulated data are presented to
show the extent between the HAM solutions and the
RKHS method solutions. However, Table 12 shows a
comparison of approximate solution for[x1 (t)]

r at t = 0.5
and variousr for system of FIVP (21) and (22), while
Tables 13 shows a comparison of approximate solution
for [x2 (t)]

r at t = 0.5 and variousr. As it is evident from
the comparison results, it was found that our method in
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Table 13: Numerical comparison of approximate solution of[x2(t)]
r for system of FIVP (21) and (22) at t = 0.5.

r HAM solution RKHS solution
0 [−0.1971220785059322,0.2503923858174381] [−0.1971220669419136,0.2503925964361660]
0.25 [−0.1683138165457321,0.2121685332672482] [−0.1683137968506898,0.2121686948804722]
0.5 [−0.1339957069088525,0.1714814924642561] [−0.1339956769374649,0.1714816163367717]
0.75 [−0.0895493664478423,0.1230851973330545] [−0.0895493241507733,0.1230852919240308]
1 [0.0156982421875000,0.0156982421875000] [0.0156983060546904,0.0156983060546904]

comparison with the mentioned method is similar with a
view to accuracy and utilization.

The aforementioned computational results provide a
numerical estimate for the RKHS solutions. Also, it is
clear that the accuracy obtained using present method is
in advanced by using only few tens of iteration, where
higher accuracy can be achieved by increasing the
numbern in Algorithms 2.

7 Concluding remarks

In various subjects of science and engineering, nonlinear
systems of fuzzy differential equations subject to given
fuzzy initial conditions, as well as their exact and
numerical solutions, are essentially important, therefore
systems of FIVPs should be solved. In the present paper,
we have studied exact and numerical solutions for system
of FIVPs (1) and (2) based on the reproducing kernel
theory. Some results on the behavior of fuzzy solutions,
convergence theorem, and errors estimation have also
been studied. In terms of numerical computations, several
improvements have been made; first, the dependency
problem has been highlighted in constructing numerical
methods for the solutions of systems of FIVPs. Second,
an efficient computational algorithm has been proposed in
order to guarantee the validity of fuzzy solutions on the
given interval, especially for nonlinear cases, where this
issue had been largely neglected in the literature on
numerically solving systems of FIVPs. The solving
procedure reveals that the RKHS method is a
straightforward, succinct, and promising tool for solving
linear and nonlinear systems of FIVPs of ordinary types.
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Hyperchaotic Systems, Journal of Computational Analysis
and Applications 19 (2015) 713-724.

[39] O.S. Farda, N. Ghal-Eh, Numerical solutions for linear
system of first-order fuzzy differential equations with fuzzy
constant coefficients, Information Sciences, 181 (2011)
4765-4779.

[40] M.S. Hashemi, J. Malekinagad, H.R. Marasi, Series solution
of the system of fuzzy differential equations, Advances in
Fuzzy Systems, vol. 2012, Article ID 407647, 16 pages,
2012, doi:10.1155/2012/407647.

[41] M. Mosleh, Fuzzy neural network for solving a system of
fuzzy differential equations, Applied Soft Computing 13
(2013) 3597-3607.

[42] S. Momani, O. Abu Arqub, A. Freihat, M. Al-Smadi,
Analytical approximations for Fokker-Planck equations
of fractional order in multistep schemes, Applied and
Computational Mathematics 15 (2016) 319-330.

[43] O. Abu Arqub, Series solution of fuzzy differential
equations under strongly generalized differentiability,
Journal of Advanced Research in Applied Mathematics 5
(2013) 31-52.

[44] S. Momani, O. Abu Arqub, S. Al-Mezel, M. Kutbi, A.
Alsaedi, Existence and uniqueness of fuzzy solutions for
the nonlinear second-order fuzzy Volterra integrodifferential
equations, Journal of Computational Analysis &
Applications 21 (2016) 213-227.

[45] O. Abu Arqub, S. Momani, S. Al-Mezel, M. Kutbi,
Existence, Uniqueness, and Characterization Theorems

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1074 O. Abu Arqub et al.: A novel iterative numerical algorithm for...

for Nonlinear Fuzzy Integrodifferential Equations of
Volterra Type, Mathematical Problems in Engineering,
Volume 2015 (2015), Article ID 835891, 13 pages.
doi:10.1155/2015/835891.

[46] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and
Systems 24 (1987) 301-317.

[47] R. Goetschel, W. Voxman, Elementary fuzzy calculus,
Fuzzy Sets and Systems 18 (1986) 31-43.

[48] M.L. Puri, Fuzzy random variables, Journal of Mathematical
Analysis and Applications 114 (1986) 409-422.

[49] M.L. Puri, D.A. Ralescu, Differentials of fuzzy functions,
Journal of Mathematical Analysis and Applications 91
(1983) 552-558.

[50] M. Puri, D. Ralescu, Differentials of fuzzy functions,
Journal of Mathematical Analysis and Applications 91
(1983) 552-558.

[51] O. Kaleva, A note on fuzzy differential equations, Nonlinear
Analysis: Theory, Methods & Applications 64 (2006) 895-
900.

[52] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets
and Systems 24 (1987) 319-330.

[53] H.T. Nguyen, A note on the extension principle for fuzzyset,
Journal Mathematical Analysis and Applications 64 (1978)
369-380.

[54] R.C. Bassanezi, L.C. de Barros, P.A. Tonelli, Attractors and
asymptotic stability for fuzzy dynamical systems, Fuzzy Set
Syst. 113 (2000) 473-483.

Omar Abu Arqub
received his Ph.D. from the
university of Jordan (Jordan)
in 2008. He then began
work at Al Balqa applied
university in 2008 as an
assistant professor of applied
mathematics and promoted
to associate professor
in 2013. His research interests
focus on numerical analysis,

optimization techniques, optimal control, fractional
calculus theory, and fuzzy calculus theory.

Shaher Momani received
his Ph.D. from the university
of Wales (UK) in 1991.
He then began work at Mutah
university in 1991 as an
assistant professor of applied
mathematics and promoted
to full Professor in 2006. He
left Mutah university to the
university of Jordan in 2009
until now. Professor Momani

has been at the forefront of research in the field of
fractional calculus in two decades. His research interests
focus on the numerical solution of fractional differential
equations in fluid mechanics, non-Newtonian fluid
mechanics, and numerical analysis.

Saleh Al-Mezel received
his Ph.D. degree in 2003 from
Cardiff University (UK).
Currently, Dr. Al-Mezel is
a professor and vice president
for academic affairs in
the University of Tabuk. His
research interest is focused
in the area of fuction spaces,
fixed point theory and trace
theorems for Sobolve space,

and finance.

Marwan Kutbi received
his Ph.D. degree in 1995
from University of Wales
(UK). Currently, Dr. Kutbi is
a professor of Mathematics at
King Abdulaziz Universitye.
His research interest
is focused in the area
of fuction spaces, fixed point
theory, complex analysis,
and Variational Inequalities.

c© 2017 NSP
Natural Sciences Publishing Cor.


	Introduction
	Overview of fuzzy calculus theory
	Multidimensional inner product spaces
	Series representation of solutions
	Implementation of iterative algorithm
	Software libraries and numerical experiment
	Concluding remarks

