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Abstract: This paper presents a reliability analysis study of lifetime data based on Weibull and Lognormal distributions models.The
main aim of this study is to compare two finite mixture distributions, Weibull mixture distribution (WMD) and Lognormal mixture
distribution (LMD) for modelling heterogeneous survival data sets. This paper also provides the characterization of both WMD and
LMD. A comparison of fitted cumulative distribution functions, probability density functions, hazard functions, reliability functions
and the mean lifetime is obtained for different distribution models. The expectation-maximization (EM) and Levenberg-Marquardt
algorithms are used for estimating the parameters of these mixture models. The goodness of fit is implemented by using different
statistical methods such as the Kolmogorov-Smirnov (KS), Akaike’s Information Criteria (AIC) tests and correlation coefficient to
show the best fit for modelling survival data. This study giveengineers some guidance for selecting the appropriate distribution model.
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1 Introduction

Today’s manufacturers exert much effort to design and
produce highly reliable products to meet customers needs
and respond to the increase in market competition. The
reliability of a system, component, device, vehicle, and so
on is the probability that it performs its function
adequately for a specified period of time under the
operation conditions intended [1]. An effective and
widely used method of handling problems of reliability is
that of accelerated life testing. This requires selecting a
random sample of components of a certain product,
putting on test under specified environmental conditions,
and the times to failure of the individual components are
observed. Reliability assessment depends on testing data
at one or more levels from carefully designed
experiments, statistical estimation and hypothesis tests,
and model selection and validation [2]. Although life
testing of components during the period of useful life is
generally dependent on the exponential model, the failure
rate of a component may not be constant throughout this
period.

the period of initial failure may be so long that the
component’s main use is during this period, and in other

instances the main purpose of life testing may be that of
determining the time to wear-out failure rather than
chance failure. In such cases, several statistical
distributions can be used in analyzing lifetime data. For
example, Gamma, Lognormal, and Weibull distributions
are often used due to their significant usefulness in a wide
range of situations [3].

The statistical analysis of lifetime data is a significant
task in the discipline of reliability engineering. The
Weibull distribution is the most useful distribution in
modelling lifetime data, such as automobile components,
electrical insulation, and ball bearings. The Weibull
distribution is more popular in industrial applications than
the Lognormal distribution. This may be partly because
the lognormal distribution has been ignored by most
reliability engineers for a long time. The lognormal
distribution can be used for modelling physical
phenomenon such as fatigue cracks or crack growth
propagation, degradation failure modes, chemical reaction
modes such as corrosion, material movement due to
molecular diffusion or migration [4]. The lognormal
distribution occurs whenever we encounter a random
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variable which is such that its logarithm has a normal
distribution.

Many statistical methods such as moments, least
squares estimation (LSE), non-linear median rank
regression (NLMRR) with the Levenberg-Marquardt
algorithm, maximum likelihood estimation (MLE), Bayes
estimators, Monte Carlo simulation methods, and MLE
using the expectation-maximization (EM) algorithm can
be applied for estimating model parameters. These
statistical methods may include graphical methods. In
graphical methods, the estimates are obtained from
plotting data where the plot depends on the selected
model. They are useful for providing initial parameters
estimates for different statistical estimation methods. The
statistical estimation methods are more general and
applicable to many kinds of models with different data
types. In reliability analysis data types can be classified as
complete data or incomplete data (censored data) [5,6,7,
8].

Finite mixture models arise in problems of deciding
between a finite number of probability distributions. They
are important as probability models to describe some
heterogeneous populations which can be regarded as
being composed of a finite number of more homogeneous
subpopulations [9,10]. In this study, two competing
models are investigated, Weibull mixture distribution
(WMD) and Lognormal mixture distribution (LMD) that
are used to model lifetime data, it will be proved that both
of them is a suitable and flexible model to analyse random
durations in a possibly heterogeneous population.

The expectation-maximization (EM) algorithm is
developed by Dempster, Laird and Rubin [11]. It gives us
a general iteration procedure for computing MLE for
parameters of mixture models. Each iteration consists of
two steps: estimating expectation value for the likelihood
function for data containing some missing values, these
missing values may be a sub-population of a mixture
distribution, and then maximizing it to get the parameter
estimates of this mixture distribution. Weibull mixture
distribution (WMD) modeling was studied by Elmahdy et
al. [12,13]. In this study, the EM algorithm is
implemented for complete and censored lifetime data to
estimate the parameters of WMD.

Monte Carlo simulation can be applied in reliability
analysis to implement simple relationships based on
simulations. This type of simulation has different
applications in risk analysis, design, quality control, etc.
The Monte Carlo simulation is used for modeling today’s
complex systems that often involve order dependent
failures [14]. The Monte Carlo simulation also presents
one other important feature necessary for statistical
inference of the distribution model. The Monte Carlo
simulation method helps us to generate Weibull mixture
distribution WMD lifetime data samples with different
sizes, and studying the effects on analysis methods such
as MLE using the EM algorithm and non-linear median
rank regression (NLMRR) with the Levenberg-Marquardt

algorithm for estimating mixing parameters of WMD
[15].

The objective of this study is to compare the
performance of different distributions such as
three-parameterWeibull distribution (3p WD), WMD and
LMD for fitting complete data random sample of a system
of components by estimating the following:

• The parameters of each distribution using Maximum
Likelihood Estimation (MLE) Method or
Expectation-Maximization (EM) Algorithm or the
Levenberg-Marquardt algorithm.

• The cumulative distribution function (CDF),
probability density function (PDF), reliability function
R(t), hazard functionh(t), B-life, and mean time to
failure (MTTF) of the system of components.

• The goodness of fit which is implemented by using
different statistical methods such as the
Kolmogorov-Smirnov (KS), Akaike’s Information
Criterion (AIC) tests and correlation coefficient to show
the best fit for modeling survival data.

2 Modeling lifetime data

Modeling data that can be generated by some random
process is a procedure for selecting a statistical
distribution that best fits data. Modeling data is important
for engineering design to avoid damage and errors in
manufacture equipments. In general, in many industries,
modeling is used for saving money and time through
reducing the costs of manufacture and the ability to
complete tasks and projects in specified time. In this
section, some probability distributions are investigatedfor
modeling lifetime data, such as Weibull
distribution,Weibull mixture distribution (WMD),
Lognormal distribution and Lognormal mixture
distribution (LMD). There are some important features
must be taken under consideration to model lifetime data
by using Weibull mixture distributions as follows:

First , plotting cumulative distribution function (CDF)
for data sample on Weibull plotting paper (WPP) and
check it’s fit by a smooth curve which may be concave,
convex or likely S-shaped, which approaches to a straight
line when data points become smaller [13]. It’s suitable to
select 3p WD model for concave downward curve,
Weibull competing risk model for convex curve and
WMD model for S-shaped curve.

Second, the possible shapes of the probability density
function which depends on the parameter values, it may be
decreasing, uni-modal, decreasing followed by unimodal
or bimodal.

Third , The possible shapes of the hazard function
which depends on the parameter values, it may be
decreasing, increasing, uni-modal followed by increasing,
decreasing followed by uni-modal, uni-modal followed
by increasing or bi-modal followed by increasing, Glaser
(1980) shows that a twofold Weibull mixture can never
have a bathtub-shaped failure rate [8], Elmahdy et al. also
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show that the graph of the hazard function for a twofold
Weibull mixture distribution can be decreasing failure rate
followed by increasing [12].

2.1 Weibull Model

The three-parameterWeibull probability distribution (3p
WD) is often used to model lifetime data. It has three
parametersα, β and t0. The Weibull probability density
function (PDF) is defined as

f (t β ,α, t0) =
β
α

(

t − t0
α

)β−1

e
−
(

t−t0
α

)β

, t > 0 (1)

for β > 0, α > 0, and−∞ < t0 < t , whereβ is the
shape parameter (determining the shape of the Weibull
PDF), α (representing the characteristic life at which
63.2% of the population can be expected to have failed)
and t0 is called a threshold, location or shift parameter
(sometimes called a failure-free time, minimum life or
guarantee time).

If t0 = 0 then the Weibull distribution is said to be two-
parameter Weibull distribution or standard Weibull model.
The PDF of the standard Weibull model is given by:

f (t|β ,α) =
β
α
(

t
α
)β−1exp[−(

t
α
)β ], t > 0 (2)

The mean life or mean time to failure (MTTF) is the
average time that the units in a certain population are
expected to operate before failure, the mean time to
failure (MTTF) of a 3p WD is given by:

MTTF = t0+αΓ (1+
1
β
) (3)

whereΓ (.) stands to gamma function.

2.2 Finite Weibull mixture model

Finite Weibull mixture models are univariate models,
which can be used to model heterogeneous populations.
The finite Weibull mixture model describes the density
f (t|θ ) as a combination ofm weighted densities, which
can be written as follows.

f (t|θ ) =
m

∑
i=1

ωi fi(t|βi ,αi) (4)

θ = (ω1,ω2, ...,ωm,α1,α2, ..., αm,β1,β2, ...,βm) is
the parameter vector for Weibull mixture distribution that
including m sub-populations whereωi > 0, αi > 0, and
βi > 0 denote the mixing weight, scale, and shape
parameter of sub-populationi respectively,∑m

i=1 ωi = 1.
The probability density function of the standard Weibull

model (two parameter Weibull distribution) for
sub-populationi is given by:

fi(t|βi,αi) = (
βi

αi
)(

t
αi
)βi−1exp[−(

t
αi
)βi ], t > 0; (5)

therefore,

f (t|θ )=
m

∑
i=1

ωi(
βi

αi
)(

t
αi

)βi−1exp[−(
t

αi
)βi ]. (6)

In reliability analysis, the survivor (reliability)
function R(t|θ ), the hazard (failure rate) functionh(t|θ )
and the mean life or mean time to failure (MTTF) of a
WMD can be defined respectively as follows.

R(t|θ )=
m

∑
i=1

ωi exp[−(
t

αi
)βi ] (7)

h(t|θ ) =
m

∑
i=1

ωi(
βi

αi
)(

t
αi

)βi−1 (8)

MTTF =
m

∑
i=1

αiΓ (1+
1
βi
) (9)

There’s another term used for estimating percentile
life which is called B-life, it’s the life by which a certain
proportion (B%) of the population can be expected to be
failure.

2.3 Lognormal model

The Lognormal distribution has many uses in
engineering, biology and economy. This model has been
used to model stress failure mechanisms, such as when a
failure is caused by rupture. This model has also been
used to represent the sizes of fragments from a breakage
process, distribution of income, distribution of a variety
of biological phenomena, and as a lifetime model for
electronic and electromechanical components.

If the random variableT has a lognormal distribution,
thenX = ln t has a normal distribution. The probability
density function (PDF) of thee-parameter lognormal
model can be derived from this relationship and is given
by:

f (t |µ,σ2, t0) =
1√

2πσ(t − t0)
exp

[

−1
2

(

ln(t − t0)−µ
σ

)2
]

, t > 0 (10)

for σ > 0 , −∞ < µ < ∞ and−∞ < t0 < t , where the
shape is determined by the parameterσ , the scalling by
the parameterµ and the location by the parametert0.
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The Lognormal distribution is called a two-parameter
Lognormal distribution whent0 = 0. The PDF of the two-
parameter Lognormal model is given by:

f (t |µ ,σ2) =
1√

2πσ t
exp

[

−1
2

(

ln t − µ
σ

)2
]

, t > 0

(11)

and theMTTF of 3p LND is given by:

MT TF = t0+exp(µ +
σ2

2
) (12)

2.4 Finite Lognormal mixture model

The finite Lognormal mixture model describes the density
f (t|θ ) as a combination ofm weighted densities, which
can be written as follows.

f (t|θ ) =
m

∑
i=1

ωi fi(t |µi ,σ2
i ) (13)

θ = (ω1,ω2, ...,ωm,µ1,µ2, ..., µm,σ2
1 ,σ

2
2 , ...,σ

2
m) is

the parameter vector of an m-mixed Lognormal
distribution whereωi > 0, µi > 0, andσi > 0 denote the
mixing weight, and the parameters that determine the
scale, and the shape of the PDF of sub-populationi
respectively, ∑m

i=1 ωi = 1. The probability density
function of the two-parameter Lognormal model for
sub-populationi is given by:

fi(t |µi ,σ2
i ) =

1√
2πσit

exp

[

−1
2

(

ln t − µi

σi

)2
]

, t > 0

(14)
therefore,

f (t|θ )=
m

∑
i=1

ωi
1√

2πσit
exp

[

−1
2

(

ln t − µi

σi

)2
]

. (15)

In reliability analysis, the survivor (reliability)
function R(t|θ ), the hazard (failure rate) functionh(t|θ )
and the mean time to failure (MTTF) of a LMD can be
defined as follows.

R(t|θ )=
m

∑
i=1

ωiRi(t |µi ,σ2
i ) (16)

where, the reliability function of the two-parameter
Lognormal model for sub-populationi , is given by:

Ri(t|µi ,σ2
i ) =1− 1√

2π

z
∫

−∞

e−
1
2u2

i dui, z=
ln t − µi

σi
(17)

or

Ri(t|µi ,σ2
i ) = 1−Φ

[

ln t − µi

σi

]

(18)

where, Φ(·) is the CDF of the standard Normal
distribution,Φ(·) is tabulated in many publications [3].

h(t|θ )=
m

∑
i=1

ωihi(t |µi ,σ2
i ) (19)

where, the hazard function of the two-parameter
Lognormal model for sub-populationi , is given by:

hi(t|µi ,σ2
i ) =

fi(t)
Ri(t)

=

1√
2πσit

exp

[

− 1
2

(

ln t−µi
σi

)2
]

1−Φ
[

ln t−µi
σi

] (20)

MTTF =
m

∑
i=1

ωiexp(µi +
σ2

i

2
) (21)

3 Parameter estimation for mixture models

In this section, MLE using the EM algorithm and
NLMRR method are introduced to estimate the paramete
vector θ = (θ1,θ2, ...,θi , ...,θm) of an m-mixed
distribution which is formed by identical distributions.
Given a grouped ordered time-to-failure datat1, t2, ..., tn of
identical units of a random sample of sizen of a certain
product are obtained from a reliability life testing
experiment.

3.1 MLE using the EM Algorithm for estimating
WMD model parameters

The EM algorithm for estimating parameters is an
optimizing method for a log-likelihood function [11].
Given a current estimateθ (r) , we define the expectation
of a log-likelihood function for grouped and complete
ordered time-to-failure data as follows.

Q(θ ,θ (r))=
n

∑
j=1

n jPi(t j ,θ (r)) ln[ f (t j |θ )] (22)

Pi(t j ,θ (r)) is the posterior probability of a unit that
belongs to thei th sub-population(i = 1,2, ...,m), which
failed at timet j , wheren j denotes the number of units
that failed in the jth group of the exact failure data,
consequently,n = ∑n

j=1n j is the sample size in the life
test experiment. The EM algorithm is based on two main
steps. The E step estimatesQ(θ ,θ (r)) and the M step

selectsθ (r+1) = Arg max
θ

{

Q(θ ,θ (r))
}

by equating the

first derivatives of Q(θ ,θ (r)) with respect to each
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parameterθi ∈ θ with zero. These two steps are repeated

alternately until
∣

∣

∣
θ (r+1)−θ (r)

∣

∣

∣
→ 0 .

By Applying EM algorithm to estimate the parameter
vector of an m-mixed Weibull distribution, thereby
obtaining the following recurrence relations, for censored
extensions, see also E. E. Elmahdy [13].

ω(r+1)
i =

1
n

[

n

∑
j=1

n jPi(t j ,θ (r))

]

(23)

wherePi(t j ,θ (r)) =
ω(r)

i fi(t j |β (r)
i ,α(r)

i )

∑m
i=1ω(r)

i fi(t j |β (r)
i ,α(r)

i )
is the posterior

probability.

α(r+1)
i =





∑n
j=1n jPi(t j ,θ (r))(t j)

β (r+1)
i

∑n
j=1n jPi(t j ,θ (r))





1lβ (r+1)
i

(24)

g(β (r+1
i ) =

1

β (r+1)
i

+
∑n

j=1n jPi(t j ,θ (r) ln(t j)

∑n
j=1n jPi(t j ,θ (r))

−∑n
j=1n jPi(t j ,θ (r))(t j)

β (r+1)
i ln(t j)

∑n
j=1n jPi(t j ,θ (r))(t j )

β (r+1)
i

= 0 (25)

By taking a good initial estimate ofθ (r) and then
solving Eqs.(23), (24) and(25) numerically, we can find

MLE estimates of ω(r+1)
i , β (r+1)

i and α(r+1)
i for

sub-population i . For further illustration, see the
proposed algorithm for estimating the parameters of the
WMD for modelling complete failure data [12].

3.2 MLE using the EM Algorithm for estimating
LMD model parameters

Given a current estimate θ (r), the expectation of a
log-likelihood function for Lognormal mixture
distribution (LMD) can be defined as

Q(θ ,θ (r)) =
n

∑
j=1

m

∑
i=1

n jPi(t j ,θ (r)) ln[ωi fi(t j |µi ,σ2
i )] (26)

Q(θ ,θ (r)) =
n

∑
j=1

m

∑
i=1

n jPi(t j ,θ (r)) ln(ωi)

+
n

∑
j=1

m

∑
i=1

n jPi(t j ,θ (r)) ln( fi(t j |µi ,σ2
i )+λ (

m

∑
i=1

ωi −1)

(27)

whereλ is the lagrange multiplier, on condution that
∑m

i=1 ωi = 1. EM algorithm is based on two steps, first
step is finding this expectation which is called the E step
and the second one is finding the valueθ (r+1) of θ that
maximizesQ(θ ,θ (r)) which is called the M-step (the
maximization step).

We can findω(r+1)
i of ωi which maximizesQ(θ ,θ (r)),

by taking the derivative of Eq.(27)with respect toωi equal
to zero, :

n

∑
j=1

n jPi(t j ,θ (r))+λ ωi = 0 (28)

Summing both sides overi and using the fact that
∑m

i=1Pi(t j ,θ (r)) = 1, we getλ =−n , consequently

ω r+1
i =

1
n

n

∑
j=1

n jPi(t j ,θ (r)) (29)

To obtain the valueµ (r+1)
i of µi which maximizes

Q(θ ,θ (r)), taking the derivative of Eq.(27) with respect
to µi equal to zero, we get:

∂Q(θ ,θ (r))

∂ µi
= 0 (30)

n

∑
j=1

n jPi(t j ,θ (r))
∂ ln( fi(t j |µi ,σ2

i )

∂ µi
= 0 (31)

n

∑
j=1

n jPi(t j ,θ (r))[ln t j − µ (r+1)
i ]

(σ2
i )

(r+1)
= 0 (32)

µ (r+1)
i =

∑n
j=1n jPi(t j ,θ (r)) ln t j

∑n
j=1n jPi(t j ,θ (r))

(33)

Also, we can find the value(σ2
i )

(r+1) of σ2
i which

maximizesQ(θ ,θ (r)), taking the derivative of Eq.(27)
with respect toσ2

i equal to zero, we get:

n

∑
j=1

n jPi(t j ,θ (r))
∂ ln( fi(t j |µi ,σ2

i )

∂σ2
i

= 0 (34)

n

∑
j=1

nj Pi(t j ,θ (r)).
−1

2(σ2
i )

(r+1)
[1 − 1

(σ2
i )

(r+1)
(ln t j − µ(r+1)

i )2] = 0 (35)

(σ2
i )

(r+1) =
∑n

j=1n jPi(t j ,θ (r))(ln t j − µ (r+1)
i )2

∑n
j=1n jPi(t j ,θ (r))

(36)

Taking a good initial guess ofθ (r), consequently
knowingPi(t j ,θ (r)), and by updating Eqs.(29), (33) and

(36) until
∣

∣

∣
θ (r+1)−θ (r)

∣

∣

∣
→ 0 we can solve these Eqs.

numerically to find MLE estimates ofω(r+1)
i , µ (r+1)

i and
(σ2

i )
(r+1) of subpopulationi.
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3.3 NLMRR for estimating the parameters of
mixture models

Here, the parameter optimization can be implemented for
LMD and WMD models using the Levenberg-Marquardt
algorithm. The Levenberg-Marquardt algorithm is a
non-linear iterative optimization method that can be used
to minimize the sum of squares for the residuals due to
error,SSR[15]. When regression analysis is applied to the
WMD model to estimate its parameters,MATLAB
program can be used for non-linear median rank
regression (NLMRR), which is based on the modified
Levenberg-Marquardt algorithm and median rank
method. Estimates of the parameters in Eq.(7) and Eq.
(16) are required to fit lifetime data with the WMD or
LMD models. These parameters can be evaluated by
usingSSR, which can be defined as:

SSR=
n

∑
i=1

(Ri − R̂i)
2 (37)

where R̂i denotes the approximated value of the
reliability function which can be calculated using Eqs.
(7), (16), (17) and(18) andRi is the actual value of the
reliability function at ti , which can be determined by
plotting a probability graph for the given lifetime data on
WPP using various methods, such as the median rank
method, Kaplan–Meier, or Benard’s median rank [6,13].
The required parameter estimatesθ are the values that
minimizeSSR.

Eq. (37) can be written as:

SSR= E
′
.E (38)

whereEi =Ri − R̂i , E =



















E1
E2.
.
.

Ei.
.
.

En



















andE
′
is the transpose

of E
Marquardt techniques depends on finding the gradient

of SSRwith respect to the set of parametersθ as follows:

1
2

∂ (E′
.E)

∂θ
=−X

′
.R+X′.R(θ ) =−X

′
.E (39)

where X is m ×n matrix including the partial
derivatives ofR with respect to the parameters,X = ∂R

∂θ ,
and E is n× 1 matrix including the error at each data
point. The gradient method can be used to determine the
best direction of moving in theθi space to obtain the
smallest sum of squares for the residuals due to error as
follows:

θi+1 = θi +κ .X
′
.E (40)

whereκ is a control variable adjusts how far to move
in the direction opposite to the gradient for updating the
parameter values, but this method can not specify how far
to move for finding the optimal solution.
Levenberg-Marquardt technique treats this problem by
using Gauss-Newton method. This method assumes that
R(θ ) can be expanded inθi space by using Taylor series
aboutθ0 as follows:

R(θ ) =R(θ0)+X.(θ −θ0)+ ... (41)

By taking under consideration only the linear terms in
the above equation and assuming thatθ are the exact
parameter values i.e there’s no error, therfore by the aids
of Eq. (39), one can deduce that:

X
′
.[R(θ0)+X.(θ −θ0)] = X

′
.R (42)

Consequently, the updating formula of Gauss-Newton
method can be written as:

θi+1 = θi +(X
′
.X)−1.X

′
.E (43)

The Levenberg-Marquardt algorithm combines these
two methods through the following general formula:

θi+1 = θi +(X
′
.X+λ .I)−1.X

′
.E (44)

whereλ is the scaling parameter which balances the
gradient-steepest-decent and Gauss-Newton methods.
The optimal solution is obtained by adjustingλ and
taking a good initial values for the parameters. The
Levenberg-Marquardt algorithm is a stable, efficient and
easily programmable.

4 Goodness of fit (GOF) tests

The goodness of fit is implemented by using different
statistical methods such as the Kolmogorov-Smirnov
(KS), Akaike’s Information Criterion (AIC) tests and
correlation coefficient to show the best fit for modeling
survival data. When inferences are to be based on a
statistical model, it is of course important to be satisfied
as to the appropriateness of the model. As a minimum the
model should be consonant with data in regard to
goodness of fit tests and other assessment procedures [2].
Inference for the selected model also depends on sample
sizes and in what the model is used. Goodness of fit tests
are necessary for making a decision for selecting the best
model but not sufficient. Studying physical failure
analysis and prior engineering experience are required.

4.1 The Kolmogorov-Smirnov (KS) test

Consider X be a random variable with distribution
functionF(x), let x1,x2, ...,xi , ...,xn be an ordered random
sample
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then the empirical distribution function can be defined
as

F̄n(xi) =
i
n
,1≤ i ≤ n (45)

and the Kolmogorov-Smirnov (KS) statistics can be
defined as

Dn = max
1≤i≤n

[
i
n
−F0(xi)] (46)

where F0(x) stands to a specified family of
distribution models that can fit complete (uncensored)
data, i.e., the parameters ofF0(x) are determined. It’s
clear that KS statistics measures the distance between
F̄n(xi) andF0(xi), the best fit has the smallest distance.

4.2 Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion (AIC) is defined as

AIC=−2ln(l(θ̂ ))+2K (47)

where ln(l(θ̂ )) is the natural logarithm of the
maximum likelihood for the proposed model andk is the
number of independently adjusted parameters for the
model. Since,AIC is dependent on the maximum
likelihood function, it’s effective and unbiased for large
sample data of size more than 30. To select the best fitting
distribution among competing models, AIC is calculated
for each one, the best fit has the minimumAIC [12].

4.3 The least squares fit criterion

The objective functionJ(θ ) can be defined as

J(θ ) =
n

∑
i=1

[y(xi ;θ )− yi]
2 (48)

wherexi andyi , 1≤ i ≤ ni are the transformed values

of the data set andy(xi ;θ ) are the Weibull transformed

values for the model with parameter vectorθ

The squared value for the correlation coefficientr can
be defined as

r2 = 1− J
S

(49)

whereS represents the sum of squares of the deviation
of y values from their mean ¯y , for the best fit,J ≈ 0 and
consequentlyr ≈ 1.

5 Application

In Wire Fatigue Experiment [6], forty-eight stranded
stainless steel wire was ruptured by clamping the wire in
needle nose pliers and hanging a 1.65 pound weight on it,
using 3/4 liter of water, followed by a 2.2 pound weight
on it, using one liter of water. The pliers were rotated
through 180 degrees, alternating clockwise and
counterclockwise. The number of half twists to total
rupture (failure) was recorded. The wire data in Table 1
represent the number of half twists to total rupture for
Wire Fatigue Experiment. Table 2 presents the GOF tests:
KS, AIC and r estimates obtained for different competing
distribution models: 2p WD, 2p LND, 3p WD, 3p LND,
WMD and LMD respectively. It’s found in Table 2 that
the smallest AIC for WMD, the smallest KS for LMD and
the largest r for LMD, thus LMD is the most closely fit
these data. Figures 1-4 show clearly that 3p WD or WMD
and LMD are reasonable to model the life data. Figure 1
also shows that B-0.1 or 10% life for all illustrated
models is about 12.6. Table 2 also shows MTTF
estimations for the competing distribution models: 2p
WD, 2p LND, 3p WD, 3p LND, WMD and LMD
respectively, clearly, the estimated values are very closed.
Figure 2 shows that the shape of probability density
function is bimodal for both WMD and LMD but it’s
uni-modal for 3p WD. Figure 3 shows a comparison of
estimated reliability functions obtained for 3p LND,
WMD and LMD models. Figure 4 shows the different
possible shapes for the graph of the hazard function
(failure rate), the shape of hazard function is uni-modal
followed by increasing for both WMD and LMD where
it’s increasing rapidly for WMD and It’s continuous
increasing and concave downward for 3p WD where it
has a horizontal asymptote asx→ ∞ .

Table 1.Wire data set:
37 30 27 51 10 24 15 14
34 34 42 25 15 13 16 12
27 21 37 35 18 17 17 13
35 27 41 41 14 17 20 16
28 24 32 24 17 19 15 20
45 39 27 33 18 13 11 13

Table 2.GOF tests and MTTF results for different
distribution models:

Model GOF tests MTTF

2p WD
2p LND
3p WD
3p LND
WMD
LMD

KS AIC r
0.1458 364.1615 0.9456
0.0978 356.7795 0.9762
0.0746 354.2064 0.9909
0.0895 357.7758 0.9873
0.0653353.88960.9912
0.0486354.10500.9939

24.0789
24.5654
24.5114
24.7562
24.1536
24.4801

6 Conclusion

This paper presented stable and efficient approaches that
are easily programmable for modeling lifetime data such
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Fig. 1: A comparison of fitted CDFs obtained for different life
data distribution models.

Fig. 2: A comparison of fitted PDFs obtained for different life
data distribution models.

as EM Algorithm and Levenberg-Marquardt algorithm. A
numerical application is implemented through the
proposed algorithms, accurate parameters estimates are
obtained. This paper also presents a comparison of the
fitted CDFs, PDFs, reliability functions and hazard
functions of Weibull, Lognormal, Weibull mixture
(WMD) and Lognormal mixture (LMD) models.
Goodness of fit (GOF) based on different statistical
methods such as the Kolmogorov-Smirnov (KS),
Akaike’s Information Criteria (AIC) tests and correlation
coefficient are used to select the best distribution for
modeling life data. The WMD and LMD are considered
as competing distribution models, both of them are
reasonable to fit life data with accuracy. Also, for
selecting the best model to fit life data, the physical

Fig. 3: A comparison of fitted reliability functions obtained for
different life data distribution models.

Fig. 4: A comparison of fitted hazard functions obtained for
different life data distribution models.

failure analysis must be considered besides GOF tests. In
this paper also, some important features and evidences are
considered to justify the choice of a twofold mixture
distribution model for modeling lifetime data by using
WMD or LMD such as the shape of PDF which can be
appeared as bi-modal and the graph of the hazard function
for a twofold mixture distribution WMD or LMD which
can be uni-modal followed by increasing, WMD or LMD
can never have a bathtub-shaped failure rate.
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