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Abstract: This paper presents a reliability analysis study of lifetidata based on Weibull and Lognormal distributions modédis.
main aim of this study is to compare two finite mixture disfitibns, Weibull mixture distribution (WMD) and Lognormalixture
distribution (LMD) for modelling heterogeneous survivaltd sets. This paper also provides the characterizatiootbf WMD and
LMD. A comparison of fitted cumulative distribution functis, probability density functions, hazard functions,aility functions
and the mean lifetime is obtained for different distribatimodels. The expectation-maximization (EM) and Leventddéagquardt
algorithms are used for estimating the parameters of theseine models. The goodness of fit is implemented by usinfeidift
statistical methods such as the Kolmogorov-Smirnov (KRaike's Information Criteria (AIC) tests and correlatiooefficient to
show the best fit for modelling survival data. This study gwgineers some guidance for selecting the appropriatéodison model.

Keywords: Life Data Analysis; Weibull Distribution (WD); Lognormal iBtribution (LND); Weibull Mixture Distribution (WMD);
Lognormal Mixture Distribution (LMD); Maximum LikelihoodEstimation (MLE) Method; Expectation-Maximization (EM)
Algorithm; Non-linear median rank regression (NLMRR); eaberg-Marquardt Algorithm; Goodness of Fit (GOF) Tests.

1 Introduction instances the main purpose of life testing may be that of

. determining the time to wear-out failure rather than
Today's manufacturers exert much effort to design andchance failure. In such cases, several statistical
produce highly reliable products to meet customers needgjstriputions can be used in analyzing lifetime data. For
and respond to the increase in market competition. Theexample, Gamma, Lognormal, and Weibull distributions

reliability of a system, component, device, vehicle, and sogre often used due to their significant usefulness in a wide
on is the probability that it performs its function yange of situationsd.

adequately for a specified period of time under the
operation conditions intendedl]] An effective and
widely used method of handling problems of reliability is The statistical analysis of lifetime data is a significant
that of accelerated life testing. This requires selecting aask in the discipline of reliability engineering. The
random sample of components of a certain productWeibull distribution is the most useful distribution in
putting on test under specified environmental conditionsmodelling lifetime data, such as automobile components,
and the times to failure of the individual components areelectrical insulation, and ball bearings. The Weibull
observed. Reliability assessment depends on testing datdistribution is more popular in industrial applicationsith
at one or more levels from carefully designed the Lognormal distribution. This may be partly because
experiments, statistical estimation and hypothesis ,testdhe lognormal distribution has been ignored by most
and model selection and validatio2][ Although life reliability engineers for a long time. The lognormal
testing of components during the period of useful life is distribution can be used for modelling physical
generally dependent on the exponential model, the failurgghenomenon such as fatigue cracks or crack growth
rate of a component may not be constant throughout thigpropagation, degradation failure modes, chemical reactio
period. modes such as corrosion, material movement due to
the period of initial failure may be so long that the molecular diffusion or migration 4]. The lognormal
component’s main use is during this period, and in otherdistribution occurs whenever we encounter a random
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variable which is such that its logarithm has a normalalgorithm for estimating mixing parameters of WMD
distribution. [15].

Many statistical methods such as moments, least The objective of this study is to compare the
squares estimation (LSE), non-linear median rankPerformance of different distributions =~ such as
regression (NLMRR) with the Levenberg-Marquardt three-parameterWeibull distribution (3p WD), WMD and
algorithm, maximum likelihood estimation (MLE), Bayes LMD for fitting complete data random sample of a system
estimators, Monte Carlo simulation methods, and MLE ©f components by estimating the following: '
using the expectation-maximization (EM) algorithm can _ ® The parameters of each distribution using Maximum
be applied for estimating model parameters. These-ikelihood — Estimation — (MLE)  Method  or
statistical methods may include graphical methods. InEXpectation-Maximization (EM) Algorithm or the
graphical methods, the estimates are obtained froni-€venberg-Marquardtalgorithm. _
plotting data where the plot depends on the selected © The cumulative distribution function (CDF),
model. They are useful for providing initial parameters Probability density function (PDF), reliability function
estimates for different statistical estimation methodee T R(t), hazard functionh(t), B-life, and mean time to
statistical estimation methods are more general andailure (MTTF) of the system of components. _
applicable to many kinds of models with different data __® The goodness of fit which is implemented by using
types. In reliability analysis data types can be classified adifferent  statistical ~ methods  such as  the

complete data or incomplete data (censored d&#)7,  Kolmogorov-Smirnov  (KS), Akaike’s Information
g]. Criterion (AIC) tests and correlation coefficient to show

Finite mixture models arise in problems of deciding the best it for modeling survival data.

between a finite number of probability distributions. They
are important as probability models to describe some . I

heterogeneous populations which can be regarded ag Modeling lifetime data
being composed of a finite number of more homogeneou

subpopulations 9,10]. In this study, two competing R/Iodellng data that can be generated by some random

process is a procedure for selecting a statistical

models are investigated, Weibull mixture distribution 7. """ ; : T
. s distribution that best fits data. Modeling data is important
(WMD) and Lognormal mixture distribution (LMD) that for engineering design to avoid damage and errors in

are used to model lifetime data, it will be proved that both : : . .
of them is a suitable and flexible model to analyse randommgggr%%tuirse Sggép;g?n;zv:sggi‘ci:g; 'Qnrgat?%e'n?hﬁtﬂgﬁ’
durations in a possibly heterogeneous population. reducing the costs of manufacture and the ability to

The expectation-maximization (EM) algorithm is complete tasks and projects in specified time. In this
developed by Dempster, Laird and Rublii]. It gives us  section, some probability distributions are investigdted
a general iteration procedure for computing MLE for modeling  lifetime  data, such as  Weibull
parameters of mixture models. Each iteration consists Ofjistribution,Weibull mixture  distribution (WMD),

two steps: estimating expectation value for the likelihood) ognormal  distribution and Lognormal  mixture

function for data containing some missing values, thesgyjstripution (LMD). There are some important features
missing values may be a sub-population of a mixturemyst be taken under consideration to model lifetime data
distribution, and then maximizing it to get the parameterpy ysing Weibull mixture distributions as follows:
estimates of this mixture distribution. Weibull mixture First, plotting cumulative distribution function (CDF)
al. [1213. In this study, the EM algorithm is check it's fit by a smooth curve which may be concave,
|mplemented for complete and censored lifetime data ta:qnyvex or likely S-shaped, which approaches to a straight
estimate the parameters of WMD. line when data points become small&8] It's suitable to
Monte Carlo simulation can be applied in reliability select 3p WD model for concave downward curve,
analysis to implement simple relationships based onWeibull competing risk model for convex curve and
simulations. This type of simulation has different WMD model for S-shaped curve.
applications in risk analysis, design, quality controt. et Second the possible shapes of the probability density
The Monte Carlo simulation is used for modeling today’s function which depends on the parameter values, it may be
complex systems that often involve order dependendecreasing, uni-modal, decreasing followed by unimodal
failures [L4]. The Monte Carlo simulation also presents or bimodal.
one other important feature necessary for statistical Third, The possible shapes of the hazard function
inference of the distribution model. The Monte Carlo which depends on the parameter values, it may be
simulation method helps us to generate Weibull mixturedecreasing, increasing, uni-modal followed by increasing
distribution WMD lifetime data samples with different decreasing followed by uni-modal, uni-modal followed
sizes, and studying the effects on analysis methods suchy increasing or bi-modal followed by increasing, Glaser
as MLE using the EM algorithm and non-linear median (1980) shows that a twofold Weibull mixture can never
rank regression (NLMRR) with the Levenberg-Marquardt have a bathtub-shaped failure ra8g Elmahdy et al. also
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show that the graph of the hazard function for a twofold model (two parameter Weibull distribution) for
Weibull mixture distribution can be decreasing failuresrat sub-population is given by:
followed by increasingl2).

.a) = ()L tep- (LA 1500 )

2.1 Weibull Model ai’ i ai

The three-parameterWeibull probability distribution (3p therefore,

WD) is often used to model lifetime data. It has three MRt t a
parametersr, 8 andty. The Weibull probability density f(t|0)= Zlm(_-)(_-)ﬁl_ exp[—(—_)ﬁ']. (6)
function (PDF) is defined as s di 0 ai

In reliability analysis, the survivor (reliability)
B (t_to>ﬁ—1e_<u0>ﬂ function R(t|0), the hazard (failure rate) functidmt|0)

fep.at)="5 =), t>0 (1)

o and the mean life or mean time to failuITTF) of a

WMD can be defined respectively as follows.

for >0, a >0, and—c <ty <t , wheref is the
shape parameter (determining the shape of the Weibull m t g
PDF), a (representing the characteristic life at which R(t|6):ziaqexp[—(a)5'] (7)
63.2% of the population can be expected to have failed) =
andtg is called a threshold, location or shift parameter m Bt
(sometimes called a failure-free time, minimum life or h(t|g) = Zim(_')(_)ﬁi—l (8)
guarantee time). s di G

If tg = 0 then the Weibull distribution is said to be two-
parameter Weibull distribution or standard Weibull model. o 1
The PDF of the standard Weibull model is given by: MTTF= i;a.l' (1+ E) (©)

There’s another term used for estimating percentile
feg.a) = B (L)ptexg—(L)f, t>0 () life whichis called B-iife, its the life by which a certain
a of proportion (B%) of the population can be expected to be

The mean life or mean time to failur®T TF) is the failure.

average time that the units in a certain population are
expected to operate before failure, the mean time to

failure (MT TF) of a 3p WD is given by: 2.3 Lognormal model
1 The Lognormal distribution has many uses in
MTTF=to+al (1+ = 3 __Lognorm many
otal(1+ B) 3) engineering, biology and economy. This model has been

used to model stress failure mechanisms, such as when a
failure is caused by rupture. This model has also been
used to represent the sizes of fragments from a breakage
process, distribution of income, distribution of a variety

wherel™ (.) stands to gamma function.

2.2 Finite Weibull mixture model of biological phenomena, and as a lifetime model for
- . , . electronic and electromechanical components.
Finite Weibull mixture models are univariate models, If the random variabl@ has a lognormal distribution

which can be used to model heterogeneous populationghenx = Int has a normal distribution. The probability
The finite Weibull mixture model describes the density density function (PDF) of thee-parameter lognormal

f(t|@) as a combination ofn weighted densities, which  mqqel can be derived from this relationship and is given
can be written as follows.

by:
m
f(116)= 3 afi(tip,a) 4) ,
= ) 1 { 1(In(t—to)—u> ]
f(t|u,0%t)= ——=——exp|—5 ([ ———"—
6 = (0)170)27"'70)(“7017027"'7 am;BLBZP'me) iS \/ﬁa(t_to) 2 g
the parameter vector for Weibull mixture distribution that , t>0 (10)

including m sub-populations whewg > 0, a; > 0, and

Bi > 0 denote the mixing weight, scale, and shape foro>0,—c < < oand—o <ty<t,wherethe
parameter of sub-populatian respectivelyy ™ ; w = 1. shape is determined by the parameterthe scalling by
The probability density function of the standard Weibull the parameten and the location by the parametgr
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The Lognormal distribution is called a two-parameter  or
Lognormal distribution whety = 0. The PDF of the two-

parameter Lognormal model is given by: g g2 — 1 Int — pi
R(t|i,of) =1-@ o (18)
1 1/Int—p\2 where, @(-) is the CDF of the standard Normal
f(t|u,0%) = ——exp|—= ., t>0 distribution,®(-) is tabulated in many publication3
ot = = p[ 5 (M) 0 v I
11 il
() N110)= 3 @t .o (19)
and theMTTF of 3p LND is given by: =
) where, the hazard function of the two-parameter
MTTF:to+exp(u+%) (12) Lognormal model for sub-population is given by:
L_exp —;('ntui)z]
2.4 Finite Lognormal mixture model o fi(t)y  Verat 2\ a
n(tIu.x&)—R(t)— o nx (20)
The finite Lognormal mixture model describes the density { G }

f(t|6) as a combination o weighted densities, which m )

can be written as follows. MTTE = Zimexp(ui + 9 1)
. 2
=

f0) = 3 (¢ ju.of) (13

, 3 Parameter estimation for mixture models
0= (Maaéa-“v(ofﬂvulau&“'a IJm,O'f,O'ZZ,...,O}%) IS

the parameter vector of an m-mixed Lognormal|n this section, MLE using the EM algorithm and
distribution wherewy > 0, i > 0, andoj > 0 denote the  NLMRR method are introduced to estimate the paramete
mixing weight, and the parameters that determine theyector 9 = (61,6,,....,6,....6m) of an m-mixed
scale, and the shape of the PDF of sub-population distribution which is formed by identical distributions.
respectively, ", = 1. The probability density Gijven a grouped ordered time-to-failure détds, ..., t, of
function of the two-parameter Lognormal model for jgentical units of a random sample of sizeof a certain
sub-population is given by: product are obtained from a reliability life testing

experiment.
1 1/Int— 2
fi(t |, 07) = ——— ex ——< ) , t>0 . . L
i(t |, o) N p[ 2\ o 3.1 MLE using the EM Algorithm for estimating
(14)  WMD model parameters
therefore,

o ) The EM algorithm for estimating parameters is an
o)=Y @ 1 exp 1 ('nt—ﬂi> (15)  Optimizing method for a log-likelihood function1y].
i; V2mait 2\ o ' Given a current estimaté(") , we define the expectation
of a log-likelihood function for grouped and complete
In reliability analysis, the survivor (reliability) ordered time-to-failure data as follows.
function R(t|0), the hazard (failure rate) functidmt|6)

and the mean time to failurdAT TF) of a LMD can be Q(8,6")= niR(tj,0")In[f(t;|6)]  (22)
defined as follows. =1

m R(tj,08") is the posterior probability of a unit that

R(t|0)= ZloqRi(t |, o) (16) belongs to the th sub-populatiorfi = 1,2,...,m), which

i= failed at timet; , wheren; denotes the number of units
that failed in the jth group of the exact failure data,
consequentlyn = Z?:lnj is the sample size in the life
test experiment. The EM algorithm is based on two main

steps. The E step estimat€X6,6(")) and the M step
Int —

z .
selects8 ) = Arg max{ Q(6,01) ! by equating the
—i/e*%“izdu, z= (17) g m {Q( )} yeq g
V2mJ Oi first derivatives of Q(6,01")) with respect to each

]

where, the reliability function of the two-parameter
Lognormal model for sub-populatian is given by:

R(t|u,0%) =1

(@© 2017 NSP
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parametei6, € 6 with zero. These two steps are repeated  whereA is the lagrange multiplier, on condution that
sM,w = 1. EM algorithm is based on two steps, first
alternately until‘ g+l _g| 0. step is finding this expectation which is called the E step

P "
By Applying EM algorithm to estimate the parameter 2d the second o(ge is finding the valfig*?) of 6 that
vector of an m-mixed Weibull distribution, thereby maximizesQ(6,6"’) which is called the M-step (the

obtaining the following recurrence relations, for censore Maximization step).

extensions, see also E. E. Elmahdg]| We can find(q(“rl) of w which maximizeQ(8,6"),
by taking the derivative of Eq27) with respect tay equal
1|2 to zero, :
= [ > n;a(tj,em)] (23) n
=1
GPYSINGING Z an(tj,G(r>) +Aw =0 (28)
whereR(tj, 6() =—" (,')“‘Bi < ()l') is the posterior =1
. S @ iGIAT A Summing both sides overand using the fact that
probability.

M. R(t,00)) =1, we geth = —n, consequently

1 n
W *t==3 niR(t;,0") (29)
=1

L [lean.<tj,e<f>><t,->Bi o

(1) 1|Ei(r+1)
' Si_1niR(t},60) ]

To obtain the valueui“”) of i which maximizes
Q(8,6"), taking the derivative of Eq(27) with respect
1 1 ZT_lnjpl(tj .0 In(t;) to yj equal to zero, we get:

)= -

Y SiniR(,00)

aQ(6,0")

R0 )A ! ingy) o

=0 (30)

-0  (25)
(r+1) NCRITE: A
5" NP (t;, 60)) (1)) 5 nja<tj,e<f>>%;1'_"““') —0 (@
= I
By taking a good initial estimate 0f(") and then =
solving Eqs(23), (24) and(25) numerically, we can find " nR(tj, 00 [Int; — u" Y]
. (r+1) (r+1) (r+1) Z > =0 (32)
MLE estimates of w7, [ and q; for & (g?)r+1)
sub-populationi . For further illustration, see the
proposed algorithm for estimating the parameters of the 11 Y-1MiR(t,01)Int; a3
WMD for modelling complete failure datd 2. [ - ZTzlan(tjae<r)) (33)

Also, we can find the valuéa?)1 of g? which

) ) ] _ maximizesQ(6, 8")), taking the derivative of Eq(27)
3.2 MLE using the EM Algorithm for estimating with respect tas? equal to zero, we get:

LMD model parameters

. . . n 0In(fi(tj|ui,a-2)
Given a current estimate 8", the expectation of a > R (t;,0")——1 "2 =0 (34)
log-likelihood function for Lognormal mixture =1 a0,
distribution (LMD) can be defined as
5 mR.0) s~ ey — WY = 0 @)
j= i i
m
Q(6,6") =3 3 niR(t;,6")In[w fi(tj|p,07)] (26)
,Zli; | ST iR (t, 80 (Intj — )2
(0_2)(r+1): j=1"1"1\ | [ (36)
' > 1-1njR(t;, 60)
Q(6,6") = i injpl(tj’g(r))m(m) Taking a good initial guess 08("), consequently
=1is knowing R (tj, 6("), and by updating Eqg29), (33) and
n m m til |or+1) — (1) Ive th Egs.
. Z anpl(tj,9(”)|n(fi(tjIui,0i2)+)\(zim ) (36) unti ’9 6'"] — 0 we can solve these Egs
== i= numerically to find MLE estimates af" ", u""Yand
(27)  (62)(+D of subpopulatioi.
(@© 2017 NSP
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3.3 NLMRR for estimating the parameters of wherek is a control variable adjusts how far to move
mixture models in the direction opposite to the gradient for updating the
parameter values, but this method can not specify how far
Here, the parameter optimization can be implemented fofd0 move for finding the optimal solution.
LMD and WMD models using the Levenberg-Marquardt Levenberg-Marquardt technique treats this problem by
a|gorithm_ The Levenberg-Marquardt a|gorithm is a using Gauss-Newton method. This method assumes that
non-linear iterative optimization method that can be usedR(6) can be expanded i space by using Taylor series
to minimize the sum of squares for the residuals due toabout6p as follows:
error, SSH 15]. When regression analysis is applied to the
WMD model to estimate its parameterSATLAB R(8) =R(60)+X.(6 — 6o) + ... (41)
program can be used for non-linear median rank
regression (NLMRR), which is based on the modified
Levenberg-Marquardt algorithm and median rank
method. Estimates of the parameters in Eg). and Eq.
(16) are required to fit lifetime data with the WMD or
LMD models. These parameters can be evaluated by ! !
usingSSRwhich can be defined as: X [R(60)+X.(6 — Bo)] =X R (42)

By taking under consideration only the linear terms in
the above equation and assuming tifatre the exact
parameter values i.e there’s no error, therfore by the aids
of Eqg. (39), one can deduce that:

n Consequently, the updating formula of Gauss-Newton
SSR= zi(Ri —R)? (37) method can be written as:
i=

. , B.1=6+(XX)tXE (43)
where R denotes the approximated value of the

reliability function which can be calculated using Eqs. ~ The Levenberg-Marquardt algorithm combines these
(7), (16), (17) and (18) andR, is the actual value of the two methods through the following general formula:
reliability function attj, which can be determined by , ,
plotting a probability graph for the given lifetime data on B1=8+(X X+A1) X E (44)
WPP using various methods, such as the median rank
method, Kaplan—Meier, or Benard’s median raBkLp].
The required parameter estimatésare the values that
minimize SSR

whereA is the scaling parameter which balances the
gradient-steepest-decent and Gauss-Newton methods.
The optimal solution is obtained by adjustirg and
taking a good initial values for the parameters. The
Levenberg-Marquardt algorithm is a stable, efficient and

Eq. (37) can be written as: easily programmable.

SSR=E .E (38)

El 4 Goodness of fit (GOF) tests
2
: . The goodness of fit is implemented by using different
g, | @dE isthetranspose  gtatistical methods such as the Kolmogorov-Smirnov
) (KS), Akaike’s Information Criterion (AIC) tests and

correlation coefficient to show the best fit for modeling

L En survival data. When inferences are to be based on a

of E ) o . statistical model, it is of course important to be satisfied
Marquardt techniques depends on finding the gradienks 1o the appropriateness of the model. As a minimum the

of SSRwith respect to the set of parametéras follows:  \1,0del should be consonant with data in regard to
goodness of fit tests and other assessment procedures [2].
1 d(E/ E) ) ) Inference for the selected model also depends on sample
= — = -X.R+X'R()=—X.E (39) sizes and in what the model is used. Goodness of fit tests
2 06 are necessary for making a decision for selecting the best
where X is m xn matrix including the partial model but not sufficient. Studying physical failure
derivatives ofR with respect to the parameted$,— g_g, analysis and prior engineering experience are required.
and E is n x 1 matrix including the error at each data
point. The gradient method can be used to determine the
best direction of moving in thé} space to obtain the 4.1 The Kolmogorov-Smirnov (KS) test
smallest sum of squares for the residuals due to error as

whereE =R —R ,E =

follows: Consider X be a random variable with distribution
) functionF (x), letx1, X2, ..., X, ..., Xn be an ordered random
6i1=6+kX.E (40)  sample
(@© 2017 NSP
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then the empirical distribution function can be defined 5 Application

as )
I:]()q):'ﬁ,lsisn
and the Kolmogorov-Smirnov (KS) statistics can be

defined as

(45)

Dn = max[i— —Fo(x)]

1<i<n'n

(46)

where Fo(x) stands to a specified family of

In Wire Fatigue Experiment6], forty-eight stranded
stainless steel wire was ruptured by clamping the wire in
needle nose pliers and hanging.&3. pound weight on it,
using 34 liter of water, followed by a 2 pound weight
on it, using one liter of water. The pliers were rotated
through 180 degrees, alternating clockwise and
counterclockwise. The number of half twists to total
rupture (failure) was recorded. The wire data in Table 1
represent the number of half twists to total rupture for

distribution models that can fit complete (uncensored)Wire Fatigue Experiment. Table 2 presents the GOF tests:

data, i.e., the parameters &f(x) are determined. It's

KS, AIC and r estimates obtained for different competing

clear that KS statistics measures the distance betweegistribution models: 2p WD, 2p LND, 3p WD, 3p LND,

Fn(xi) andFo(x;), the best fit has the smallest distance.

4.2 Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion (AIC) is defined as

AIC = -2In(1(8)) + 2K (47)
where Ir{I(8)) is the natural logarithm of the
maximum likelihood for the proposed model akds the
number of independently adjusted parameters for th
model. Since,AIC is dependent on the maximum
likelihood function, it's effective and unbiased for large

WMD and LMD respectively. It's found in Table 2 that
the smallest AIC for WMD, the smallest KS for LMD and
the largest r for LMD, thus LMD is the most closely fit
these data. Figures 1-4 show clearly that 3p WD or WMD
and LMD are reasonable to model the life data. Figure 1
also shows that B-0.1 or 10% life for all illustrated
models is about 12.6. Table 2 also shows MTTF
estimations for the competing distribution models: 2p
WD, 2p LND, 3p WD, 3p LND, WMD and LMD
respectively, clearly, the estimated values are very dlose
Figure 2 shows that the shape of probability density
function is bimodal for both WMD and LMD but it's

Qni-modal for 3p WD. Figure 3 shows a comparison of

estimated reliability functions obtained for 3p LND,
WMD and LMD models. Figure 4 shows the different

sample data of size more than 30. To select the best ﬁttin%ossible shapes for the graph of the hazard function

distribution among competing models, AIC is calculated
for each one, the best fit has the minimicC [12].

4.3 The least squares fit criterion

The objective functiod(6) can be defined as

n

Zl[y(xi: 0) —yil?

3(6) = (48)

wherex; andy; , 1 <i < nj are the transformed values
of the data set ang(x; 8) are the Weibull transformed
values for the model with parameter vecébr

The squared value for the correlation coefficieran
be defined as

J

2
r<=1-
S

(49)

(failure rate), the shape of hazard function is uni-modal
followed by increasing for both WMD and LMD where
it's increasing rapidly for WMD and It's continuous
increasing and concave downward for 3p WD where it
has a horizontal asymptote as—+ o .
Table 1. Wire data set:

373027511024 15 14

343442 25151316 12

272137351817 17 13

352741411417 20 16

2824 322417191520

453927 3318131113

Table 2. GOF tests and MTTF results for different
distribution models:

Model GOF tests MTTF
KS AIC r

2p WD | 0.1458 3641615 09456 | 24.0789

2p LND | 0.0978 3567795 09762 | 24.5654
3p WD | 0.0746 3542064 09909 | 245114

3p LND | 0.0895 3577758 09873 | 24.7562
WMD 0.065335388960.9912 | 24.1536
LMD 0.0486354.10500.9939 | 24.4801

6 Conclusion

whereS represents the sum of squares of the deviation

of y values from their meaw , for the best fitJ ~ 0 and
consequently ~ 1.

This paper presented stable and efficient approaches that

are easily programmable for modeling lifetime data such
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as EM Algorithm and Levenberg-Marquardt algorithm. A failure analysis must be considered besides GOF tests. In
numerical application is implemented through the this paper also, some important features and evidences are
proposed algorithms, accurate parameters estimates af@nsidered to justify the choice of a twofold mixture

obtained. This paper also presents a comparison of thdistribution model for modeling lifetime data_ by using
fitted CDFs, PDFs, reliability functions and hazard WMD or LMD such as the shape of PDF which can be

functions of Weibull, Lognormal, Weibull mixture 2appearedas bi-modaland the graph of the hazard function
(WMD) and Lognormal mixture (LMD) models. foratwofqld mixture d|str|but|9n WMD or LMD which
Goodness of fit (GOF) based on different statistical &N beé uni-modal followed by increasing, WMD or LMD
methods such as the Kolmogorov-Smirnov (KS), C@n never have a bathtub-shaped failure rate.

Akaike’s Information Criteria (AIC) tests and correlation

coefficient are used to select the best distribution for

modeling life data. The WMD and LMD are considered Acknowledgement

as competing distribution models, both of them are

reasonable to fit life data with accuracy. Also, for The author thanks the editor and the anonymous referees
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