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Abstract: The present paper deals with the peristaltic motion of a non-Newtonian nanofluid with heat transfer through a porous
medium inside a vertical tube. The system is stressed by a uniform magnetic field. The viscous dissipation, internal heatgeneration
with radiation effects are considered. A Rung-Kutta-Merson method and a Newton iteration in a shooting and matching technique are
used to find the solutions of the momentum, temperature and nanoparticles equations. The numerical formula of the axial velocity,
temperature and nanoparticles are obtained as functions ofthe physical parameters of the problem. Numerical calculations are carried
out for these formula. The effects of physical parameters ofthe problem on this formula are discussed numerically and illustrated
graphically througth a set of figures.
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1 Introduction

Peristaltic pumping is the transport of a fluid via traveling
waves imposed on the walls of a tube or channel. The
study of peristaltic flow is of special interest for several
applications in industry and physiology. Especially the
peristaltic transport of non-Newtonian fluids is a topic of
major interest of the researches in the field of
physiological world. Such interest is stimulated because
of its occurrence in several physiological processes
including chyme movement in the gastrointestinal tract,
urine transport from kidney to bladder, transport of bile in
bile duct, in roller and finger pumps, in vasomotion of
small blood vessels.

Mekheimer and Arabi [1] studied the non linear
peristaltic transport of MHD flow through a porous
medium. Kumari et al. [2] studied peristaltic pumping of
a conducting Jeffrey fluid in a vertical porous channel

with heat transfer. The effect of wall properties on the
peristaltic flow of a non-Newtonian fluid is studied by
Hayat et al. [3]. Eldabe et al. [4] studied effects of
chemical reaction with heat and mass transfer on
peristaltic motion of power-law fluid in an asymmetric
channel with wall properties. Also, Eldabe and Abou-zeid
[5] analyzed the problem of magnetohydrodynamic
peristaltic flow with heat and mass transfer of micropolar
biviscosity fluid through a porous medium between two
co-axial ducts.

Effects of chemical reaction, heat, and mass transfer
on non-Newtonian fluid flow through porous medium in a
vertical peristaltic tube have been studied by El-Sayed et.
al. [6]. Effects of heat and mass transfer on MHD
peristaltic flow of a non-Newtonian fluid through a porous
medium between two co-axial cylinders have been
discussed by Shaaban and Abou-zeid [7]. Eldabe and
Abou-zeid [8] examined the wall properties effect on
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peristaltic transport of micropolar non-Newtonian fluid
with heat and mass transfer. Hall effects on peristaltic
flow of Maxwell fluid in a porous medium are discussed
by Hayat et. al. [9].

There has been great interest of researches about the
transport of nanofluids due to its properties to enhance the
thermal conductivity as compared to base fluid. Nanofluid
is a liquid containing nanometer-sized particles (having
diameter less than 100 mm), called nanoparticles. The
nanoparticles are made up of metals, oxides and carbides
or carbon nanotubes. Nanofluids are used to increase the
rate of heat transfer of microchips in computers,
microelectronics, transportation, fuel cells and
manufacturing.

Most of liquids such as water, glycol and oil have
low-thermal conductivity. To increase the thermal
conductivity of such fluids suspended nanosized metallic
particles (titanium, copper, gold, iron or their oxides) in
the fluids. Choi [10] was the first who initiated this
nanofluid technology. Peristaltic flow of a nanofluid under
the effect of hall current and porous medium has been
studied by Nowar [11]. The problem of mixed convection
of gliding motion of bacteria on power-law nanoslime
through a non-Darcy porous medium has been analyzed
by Abou-zeid et al. [12], they considered non-Darcian
and viscous dispersion effects in their analysis. Abou-zeid
[13] studied homotopy perturbation method to MHD
non-Newtonian nanofluid flow through a porous medium
in eccentric annuli with peristalsis, Endoscopic effects on
peristaltic flow of a nanofluid have been discussed by
Akbar and Nadeem [14], Ellahi et. al. [15] studied a
theoretical study of Prandtl nanofluid in a rectangular
duct through peristaltic transport.

The aim of this paper is to investigate the peristaltic
flow of an electrically conducting non-Newtonian
nanofluid in a vertical symmetric tube through a porous
medium. Jeffry non-Newtonian constitutive model is
employed for the transport fluid. The system of non-linear
partial differential equations which describe this motion
subjected to the appropriate boundary conditions are
solved numerically by using Rung-Kutta-Merson method
with shooting and matching technique. Numerical results
for the axial velocity, temperature and nanofluid
phenomena are determined. The effects of different
parameters on these expressions have been discussed
through several graphs.

2 Mathematical formulation

Let us consider the peristaltic flow of a Jeffry fluid
through a vertical tube, the cylindrical polar coordinates
system(R,Z) are used, whereR is along the radius of the
tube andZ coincides with axis of the tube. The geometry
of the tube wall is given by

h = a+ bcos[
2π
λ

(Z − ct)], (1)

wherea is the radius of the tube,b is the amplitude of the
peristaltic wave,λ is the wave length,c is the wave
propagation speed, andt is the time.
The constitutive equations for an incompressible Jeffry
nanofluid are given by:

τ =−PI+ S, (2)

S =
µ

1+λ1
(γ̇ +λ2γ̈). (3)

whereS is the extra stress tensor,P is the pressure,I is
the identity tensor,µ is the dynamic viscosity,λ1 is the
ratio of relaxation to retardation times,λ2 is the retardation
time, γ̇ (vector quantity) is the shear rate, and dots denote
the differentiation with respect to time. The fundamental
equations governing the flow of an incompressible Jeffry
nanofluid are given by:

∇.V = 0, (4)

ρ f
dV
dt

= ∇.τ + µeJ∧B−
µ
κ∗

V +F, (5)

(ρc) f
dT
dt = kc∇2T + τ.∇V

−(ρc)p

[

DB∇φ∇T +
(

DT
T0

)

(∇T )2
]

+Q0T,
(6)

dφ
dt

= DB∇2φ +

(

DT

T0

)

∇2T, (7)

J = σ(E +V ∧B),∇.B = 0,

∇∧B = µm J, ∇ ∧E =−
∂B
∂ t

}

, (8)

whereV is the velocity,κ∗ is the permeability,J is the
current density,B = (B0,0,0) is the magnetic field,σ is
the electrical conductivity, µm is the magnetic
permeability,E is the electric field,τ is Cauchy stress
tensor and is defined by Eqs. (2) and (3),F is the body
forces,ρ f is the density of the fluid,ρp is the density of
the particle,(ρc) f and(ρc)p are heat capacity of the fluid
and effective heat capacity of the nanoparticle material,T
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is the temperature of the fluid,φ is the nanoparticle
phenomena,kc is the thermal conductivity,DB is the
Brownian diffusion coefficient,DT is the thermophoretic
diffusion coefficient,Q0 is the constant heat addition and
absorption.

Let U andW be the respective velocity components in
the radial and axial directions in the fixed frame,
respectively. For the unsteady two-dimensional flow, the
velocity components and the temperature may be written
as follows:

V = (U(R,Z),0,W (R,Z)), and T = T (R,Z).

Introducing a wave frame(r,z) moving with velocityc
away from the fixed frame(R,Z) by the transformation

r = R,z = Z − ct,
u =U,w =W − c.

(9)

The governing continuity, momentum, temperature,
and nanoparticles equations become

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0, (10)

ρ f

(

u ∂u
∂ r +w ∂u

∂ z

)

=−
∂P
∂ r +

1
r

∂
∂ r (rSrr)

+ ∂
∂ z (Srz)−

Sθθ
r −σ B2

0 u− µ
κ∗ u ,

(11)

ρ f

(

u ∂w
∂ r +w ∂w

∂ z

)

=−
∂P
∂ z +

1
r

∂
∂ r (rSrz)+

∂
∂ z (Szz)

−σ B2
0w−

µ
κ∗ w−ρ gα (T −T0)−ρ gα (φ −φ0),

(12)

ρ cp

(

u ∂ T
∂ r +w ∂ T

∂ z

)

= kc

(

∂ 2T
∂ r2

+ 1
r

∂ T
∂ r + ∂ 2T

∂ z2

)

+ 1
1+λ1

(

2
(

∂ u
∂ r

)2
+2

(

∂ w
∂ z

)2
+
(

∂ u
∂ z +

∂ w
∂ r

)2
)

+ (ρ c)p [DB(
∂ φ
∂ r

∂ T
∂ r + ∂ φ

∂ z
∂ T
∂ z )+(

DT
T0

)[( ∂ T
∂ r )

2+( ∂ T
∂ z )

2]]+Q0 T ,

(13)

(

u ∂φ
∂ r +w ∂φ

∂ z

)

= DB

(

∂ 2φ
∂ r2 + 1

r
∂φ
∂ r +

∂ 2φ
∂ z2

)

+
(

DT
T0

)(

∂ 2T
∂ r2 + 1

r
∂T
∂ r +

∂ 2T
∂ z2

)

.

(14)

The boundary conditions for this system are given by

∂w
∂ r = 0 ,

∂T
∂ r = 0 ,

∂φ
∂ r = 0 at r = 0,

w = 0 ,T = 0 , φ = 0 at r = h

}

. (15)

The appropriate non-dimensional variables for the flow are
defined as

r∗ = r
a , z∗ = z

λ , u∗ = λ u
ac , w∗ = w

c , P∗ = a2P
λ µ c , t∗ = c

λ t,

t∗ = c
λ t, θ = T−T0

T1−T0
, f = φ−φ0

φ1−φ0
, S∗ = aS

µ c , h∗ = h
a , δ = a

λ

ϕ = b
a , M =

√

σ
µ B0 a, Da =

κ∗

a2 , Re =
ρ ca

µ ,

Gr = ρ gα a2(T1−T0)
µ c , Br = ρ gα a2(φ1−φ0)

µ c , ϖ =
(ρ c)p
(ρ c) f

,

Pr =
ν ρ cp

kc
, Ec =

c2

cp (T1−T0)
, Nt = ϖ DT (T1−T0)

ν T0
,

Nb = ϖ DB (φ1−φ)
ν T0















































,

(16)
whereδ is the wave number, Re is Reynolds number,

M is the magnetic parameter,Da is Darcy number,Ec is
Eckert number,Pr is Prandtl number,Gr is the local
temperature Grashof number,Br is the local nanoparticle
Grashof number,Nt is the thermophoresis parameter, and
Nb is Brownian motion parameter.

After dropping the star mark for simplicity, Eqs. (10)-
(14) under the assumptions of long wavelength and low-
Reynolds number approximations take the form

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0, (17)

∂P
∂ r

= 0, (18)

∂P
∂ z

=
1
r

∂
∂ r

(r Srz)− (M2+
1

Da
)w−Gr θ −Br f , (19)

∂ 2θ
∂ r2 + 1

r
∂θ
∂ r =−

PrEc
1+λ1

(

∂w
∂ r

)2
−PrNt

(

∂θ
∂ r

)2

−PrNb
(

∂ f
∂ r

∂θ
∂ r

)

+PrQ0θ ,

(20)

∂ 2 f
∂ r2 +

1
r

∂ f
∂ r

=−

(

Nt
Nb

)(

∂ 2θ
∂ r2 +

1
r

∂θ
∂ r

)

, (21)

where

Srr = Sθθ = Szz = 0, Srz =
1

1+λ1

(

∂w
∂ r

)

, (22)

Thus, the boundary conditions in their dimensionless form
read

∂w
∂ r = 0 ,

∂θ
∂ r = 0 ,

∂ f
∂ r = 0 at r = 0,

w = 0 ,θ = 0 , f = 0 at r = h

}

. (23)

where
h = 1+ϕ sin(2πz). (24)
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3 Method of solution

Let w =Y1,θ =Y3, and f =Y5. Hence equations (19)-(21)
can be written as follows:

Y ′

1 = Y2,Y ′

2 =−
1
r Y2

+(1+λ1)
(

∂P
∂ z +

(

M2+ 1
Da

)

Y1+GrY3+BrY5

)

,

Y ′

3 = Y4,Y ′

4 =−
1
r Y4

−Pr
(

Ec
(1+λ1)

Y 2
2 +NtY 2

4 +NbY4Y6+Q0Y3

)

,

Y ′

5 = Y6,Y ′

6 =−
1
r Y6−

Nt
Nb

(

Y ′

4+
1
r Y4

)

,































,

(25)
where prime denotes to differentiation with respect tor
and the system (25) is subjected to the boundary conditions

Y2 = 0,Y4 = 0,Y6 = 0, at r = 0
Y1 = 0,Y3 = 0,Y5 = 0, atr = h

}

. (26)

To apply shooting method, we use the subroutine
D02HAF from the NAG Fortran library, which requires
the supply of starting values of the missing initial and
terminal conditions. The subroutine uses
Rung-Kutta-Merson method with variable step size in
order to control the local truncation error, then it applies
modified Newton-Raphson technique mentioned before to
make successive corrections to the estimated boundary
values. In this problem, we start our solutions in the
neighborhood ofr = 0, namely,r = 10−4 to avoid the
singularity atr = 0. The process is repeated iteratively
until convergence is obtained i.e. until the absolute values
of the difference between every two successive
approximations of the missing conditions is less thanε.
(in our caseε is taken= 10−7).

4 Discussion and results

To observe the quantitative effects of the parameters of the
non-Newtonian fluid, nanofluid and heat transfer on the
solutions obtained, a numerical computations are carried
out for the formula of the axial velocity, temperature and
nanoparticles.

Figs. (1) and (2) illustrate the change of the axial
velocity w versus the radial coordinater with several
values of the local nanoparticle Grashof numberBr, and
Darcy numberDa, respectively. It is seen, from Figs. (1)
and (2), that the axial velocity increases with the increase
of Br, whereas it decreases asDa increases, respectively.
It is also noted that the difference of the axial velocity for
different values ofBr and Da becomes greater near the
axis of tube and all curves intersect atr = h which the

Br=0.1, 0.2, 0.6

0.0 0.5 1.0 1.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

r

w

Fig. 1: the axial velocity profiles are plotted versusr for different
values ofBr for a system have the particularsM = 1,Da = 0.9,
Gr = 0.1,Br = 0.1,h = 1.8, ∂ p

∂ z = 1.5,Pr = 2.5,Ec = 5.5,Nt =

3.5,Nb = 1.5,λ1 = 0.01 andQ0 = 1

Da=0.9, 2, 9

0.0 0.5 1.0 1.5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

r

w

Fig. 2: the axial velocity profiles are plotted versusr for
different values of for a system have the particularsM =

1,Gr = 0.1,Br = 0.1,h = 1.8, ∂ p
∂ z = 1.5,Pr = 2.5,Ec = 5.5,Nt =

3.5,Nb = 1.5,λ1 = 0.01 andQ0 = 1

axial velocity reaches to maximum value. The result in
Fig. (2) qualitatively agrees with expectations; since it is
well-known that in fluid dynamics through porous media,
Darcy number represents the relative effect of the
permeability of the medium versus its cross-sectional
area, commonly the diameter squared. The effects of both
Gr andNb on the axial velocity are found to be similar to
the effect ofDa given in Fig. (2), while the effects of
other parameters are found to be similar to the effect of
Br given in Fig. (1), but figures are excluded to avoid any
kind of repetition.

The effects of both Eckert numberEc and the ratio of
relaxation to retardation timesλ1 on the temperatureθ
are shown in Figs. (3) and (4), respectively, and it is clear
that the temperature is always positive, and it increases by
increasingEc, while it decreases with the increase ofλ1.
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Ec=3.5, 4.5, 5.5

0.0 0.5 1.0 1.5
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0.3

0.4

0.5

0.6

r

Θ

Fig. 3: the temperature profiles are plotted versusr for
different values ofEc for a system have the particularsM =

1,Da = 0.9,Gr = 0.1,Br = 0.1,h = 1.8, ∂ p
∂ z = 1.5,Pr = 2.5,Nt =

3.5,Nb = 1.5,λ1 = 0.01 andQ0 = 1

Λ=0.01, 3, 5
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0.0

0.1

0.2
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0.6

r
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Fig. 4: the temperature profiles are plotted versusr for
different values ofλ1 for a system have the particularsM =

1,Da = 0.9,Gr = 0.1,Br = 0.1,h = 1.8, ∂ p
∂ z = 1.5,Pr = 2.5,Ec=

5.5,Nt = 3.5,Nb = 1.5 andQ0 = 1

Also, it is noted thatθ increases asr increases till a
maximum value, after whichθ decreases. It is also
observed from Fig. (3), that there is a rise in the
temperature due to the heat created by the viscous
dissipation and it is in conformity with the fact that
energy is stored in the fluid region due to fractional
heating as a consequence of dissipation due to viscosity,
and hence the temperature increases asEc increases. The
following explains the nonlinear variation of heat transfer.
It is known that the effect of viscous dissipation produces
heat due to drag between the fluid particles, this extra heat
causes an increase of the initial fluid temperature. This
increase of temperature causes an increase of the buoyant
force. (This kind of influence on the buoyant force has
been ignored by Gebhart [16]). The increase of the
buoyant force causes an increase of the fluid velocity, the

bigger fluid velocities cause bigger drag between the fluid
particles and consequently bigger viscous heating of the
fluid. The new increase of fluid temperature influences the
buoyant force and this procedure goes on. There is a
continuous interaction between the viscous heating and
the buoyant force. This mechanism produces different
results in the upward and downward flow. In the upward
flow where the fluid is warmer than the ambient, the extra
viscous heat is added to the initial heat (the warm fluid
becomes warmer) and the fluid velocity increases. In the
downward flow the fluid is cooler than the ambient and
the viscous heating causes an increase in the initial fluid
temperature (the cold fluid becomes warmer) [17]. The
results in Fig. (3) are consistent with those obtained by
Abouzeid [13].

If we draw the variation ofθ with r for different
values ofDa andBr, we will obtain a figure in which the
behavior of the curves are the same as that obtained in
Fig. (4), except that the obtained curves are very close to
those obtained in Fig. (4). The effects of the other
parameters are found to be similar to the effect ofEc on
θ ; these figures are excluded here to avoid any kind of
repetition.

Nt=0.5, 2.5, 3.5

0.0 0.5 1.0 1.5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

r

f

Fig. 5: the nanoparticles profiles are plotted versusr for
different values ofNT for a system have the particularsM =

1,Da = 0.9,Gr = 0.1,Br = 0.1,h= 1.8, ∂ p
∂ z = 1.5,Pr = 2.5,Ec=

5.5,Nb = 1.5,λ1 = 0.01 andQ0 = 1

Brownian motion is the random motion of particles
suspended in a fluid resulting from their collision with the
quick atoms or molecules in the fluid. A physical
explanation of Brownian motion was given by Einstein,
who analyzed Brownian motion as the cumulative effect
of innumerable collisions of the suspended particle with
the molecules of the fluid. In Figs. (5) and (6), the
behaviors of nanoparticles phenomenaf versus the radial
coordinate r, for various values ofNt and Nb are
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Nb=0.5, 1.5, 2.5

0.0 0.5 1.0 1.5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

r

f

Fig. 6: the nanoparticles profiles are plotted versusr for
different values ofNb for a system have the particularsM =

1,Da = 0.9,Gr = 0.1,Br = 0.1,h = 1.8, ∂ p
∂ z = 1.5,Pr = 2.5,Ec=

5.5,Nt = 3.5,λ1 = 0.01 andQ0 = 1

presented respectively. It is observed from Figs. (5) and
(6) that the nanoparticles phenomena increases with the
increase ofNt, whereas it decreases asNb increases,
respectively. It is also noted that the difference of the
nanoparticles phenomenaf for different values ofNt and
Nb becomes lower with increasing the radial coordinater
and reaches minimum value, after which it increases. The
effects of bothEc andPr on f are found to be similar to
the effect ofNb on f shown in Fig. (6), except that the
obtained curves are very close to those obtained in Fig.
(6).

5 Conclusion

In this paper, the main aim is to obtain numerical
solutions of the problem of peristaltic flow and heat
transfer of an incompressible, electrically conducting
Jeffry nanofluid in avertical symmetric tube. The flow is
through porous medium. Relevant equations are
modulated and solved numerically for the axial velocity,
temperature and nanoparticles phenomena by using
Rung-Kutta-Merson method in a shooting and matching
technique. Numerical calculations are presented for
physical quantities of interest and their dependence on the
material parameters of the fluid. The effects of these
parameters are discussed by a set of graphs. The main
findings from the current study can be summarized as
follows:

1.By increasingNt, the nanoparticles phenomenaf
increases, while it decreases by increasing values of
Nb, Prand Ec.

2. The temperatureθ is always positive.

3.The temperatureθ has an opposite behavior compared
to nanoparticles behavior except that it increases with
the increase ofNt.

4.The temperatureθ for different values of M,Nt, Nb,
Pr andEc increases and it decreases with the increase
of Da, Gr andBr

5.The axial velocityw increases with the increase each
of M, andBr, while it decreases asDa andGr increase.

6 Applications

1.Peristaltic pumps use flexible tubing to run through
rollers in the pump head. Also, they are suitable for
dispensing, metering and general transfer
applications.

2.Peristaltic pumps confine the media to the tubing, so
that the pump cannot contaminate the fluid and the
fluid cannot contaminate the pump. So, a peristaltic
pump offers easy maintenance and reduced downtime
compared with other pumping technologies.

3.Peristaltic pumps are available in various
configurations, from low-cost fixed-speed pumps to
advanced controlled models suitable for critical
metering and dispensing applications.

4.Peristaltic pumps are useful in the following

• Juice production
• Pizza sauce dispensing
• Vitamin A & D injection
• Ultra-filtration
• Harvesting cell media
• Acid/base dispensing
• Adhesives for cement
• Circuit board manufacturing
• Dispensing glue emulsions
• Transfer of fuels and lubricants
Information science is an interdisciplinary field

concerned with applied sciences, analysis,
collection, classification, manipulation, storage, retrieval,
movement, dissemination, and protection of information.
Practitioners within this field study the applications and
usages of knowledge in organizations, along with the
interaction. Every day, people use computers in new
ways, scientific progress in fields like nanotechnology,
nanofluid and biotechnology is almost entirely dependent
on the use of computers software such as Matlab, Maple
and Mathematica package. Using supercomputers, natural
expectation by using a combination of observations of
physical results from many sources such as mathematical
representation of the behavior of the temperature and
concentration.
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