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Abstract: The maximum likelihood and moment estimations of the prdtpttlensity function (pdf) and cumulative distribution
function (cdf) are derived for the Exponentiated Parettrithstion in the presence of outliers. Also, we calculate thixture method
of ML and moment estimators. It has been shown that this meéxtuethod is better than the others. Further, we have giverctaal
data from an insurance company.
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1 Introduction view size. Also, the Pareto distribution is useful for
o o . finding the average of annuity and benefit for an
The Pareto distribution was originally used to describe theinsurance problem. In economics, where this distribution
allocation of wealth among individuals since it seemed tojs used as an income distribution, the threshold parameter
show rather well the way that a larger portion of the js some minimum income with a known value. Asrabadi
wealth of any society is owned by a smaller percentage of2] derived the uniformly minimum variance unbiased
the people in that society. It can be shown that from aestimator (UMVUE) of the pdf, the cumulative
probability density function (pdf) graph of the population gjstripution function (cdf) and thet" moment for the
the probability, or fraction, of pdf that own a small pgreto distribution.
amount of wealth per person, is high. The probability thennow, if we assume that is a Pareto distributed random
decreases steadily as wealth increases. _ variable, then we takeX = In(Y) to have the
The other application of this distribution is in On-Line corresponding exponentiated Pareto  distribution as
Analytical Processing (OLAP) view size estimation. gefined by Nadarajah9]. Usually, Y is defined on the
Nadeau and Teoreyl{] used Pareto distribution for positive side of the real line and so one would hope that
OLAP aims at gaining useful information quickly from models on the basis of the distribution Xfwould have
large amounts of data residing in a data warehouse. T@reater applicability. Nadarajah9][ introduced five
improve the quickness of response to queries,exponentiated Pareto distributions and derived several of
pre-aggregation is a useful strategy. However, it is uguall their properties including the moment generating
impossible to pre-aggregate along all combinations of thefunction, expectation, variance, skewness, kurtosis,
dimensions. The multi-dimensional aspects of the datashannon entropy, and the Rényi entropy. Note that
lead to combinatorial explosion in the number and gnother type of exponentiated Pareto distribution was
potenyal storage size of the aggregates. They Musgonsidered by Shawky and Abu-Zinadatl] and
selectively pre-aggregate. Cost/benefit analysis in®lve characterized using record values. Afify] jused Bayes
estimating the storage requirements of the aggregates igstimators under squared error and LINEX loss functions
question. They presented an original algorithm forang classical estimators for the two parameters
estimating the number of rows in an aggregate based oRxponentiated Pareto distribution when a data sample is
the Pareto distribution model. They tested the ParetQyailable from complete, type | and type Il censoring

model algorithm empirically against four published scheme. However, in this paper we will restrict to the
algorithms and concluded the Pareto model algorithm isorm defined by Nadarajat@[.

consistently the best of these algorithms for estimating
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Let a set of random variabld¥s,Y,, ..., Y,) represent the where b = % b=1-Db and (X1,Xp,...,Xy) are not
claim amounts of an motor insurance company. So theéndependent.

variables (Xi1,Xz,...,X,) have exponentiated Pareto

distribution. It is assumed that claims of some of vehicles

(expensive/severe damaged vehicle) Aréimes higher 3 M aximum likelihood estimator

than normal vehicles.

We know that an application of the Pareto distribution | ot X1,Xs, ..., Xn be a random sample of sizefrom the

include insurance where it is used to model claims Whereexponentiated Pareto distribution in the presence of
the minimum claim is also the modal value, but Whereoutliers. So, ML estimator of KB6) is

there is no set maximum (see o
http://www.brighton-webs.co.uk/distributions/paretsp). X(2) = min(Xg, Xz, ..., Xn), and

Also, according to Benktande3]; the Pareto distribution . exp(X(1))

is useful for the automobile insurance problems. Bm = —5 (5)

Dixit and Jabbari NooghakaB[ have given UMVUE and
MLE of pdf, cdf and r'" moment for the Pareto . . - ;
distribution in the presence of outliers. They have showngestimator of B n the I|Kel|hqod_funct|on. Then, the
that MLE of pdf and cdf are more efficient than their I€lihood equation for estimating is

UMVUE. Also, Dixit and Jabbari Nooghab] estimated n n

the parameters of the Pareto distribution in the presence; +Kx) + (n—k)In(6) — ZiXi =0. (6)

of outliers when all the parameters are unknown. Dixit 1=

and Jabbari Nooghabb[6] have presented of an actual From (6), we can find the MLE of and it is given a$iy
data from an insurance company as an application of the n

Pareto distribution in the presence of outliers. m = ST X — KKy — (N—K) (@) (7)
Jabbari Nooghabi and Khaleghpanah Noogh&phpve =1 &)

shown that excluding the outliers from data is losing the Therefore by using the property of MLE, we can obtain
information. In addition, Jabbari Nooghab¥v][ have the estimator of pdf and cdf with replacementdgf and

presente_d a m_ethod to detect outliers in exponentiate@m' instead ofa andf in the pdf and cdf, respectively. So
Pareto distribution.

For finding the ML estimator ofa, we put the ML

Hence, we assume that the random variablesfyy (X) = @ 6% e*am'x(bﬁrﬁm' + E), (8)

(X1,X2,...,Xn) are such thak of them are distributed with

pdf and

fa(xa,B,0) =a(B6)%e , In(BO) <x, a>0,B>1, Fini (X) = 1 — @m e*a”“x(bﬁn‘zm‘ + Q, (9)
6>0, (1)

wheredy > 0,6 >0 andﬁ,ﬂ > 1.
Then, to obtain the expectation of pdf and cdf, we should
fi(x;a,0) =aB% 9 In(@)<x, a>0,08>0. (2) know the joint pdf of(X),T), whereT = 3L, X. The
. , following lemma represents it.
In this paper, we assume that oflys known and we have | emyma3.1. The joint pdf of (X 1), T) is

derived the MLE, moment estimator and Mixture of ML

and remainingn — k) random variables are distributed as

and moment estimator for pdf and cdf of exponentiated na"gnagka 0o
Pareto distribution in the presence of outliers. At the end,f(X1),t) = me [t—nxq]™%, t>nxq),
we have given an example of claims in a motor insurance K/n
company. X1) > In(B¥"6). (10)
Proof. We have the joint distribution dfX;, Xp, ..., X,) in
2 Joint distribution of (X1, Xa, ..., Xn) With k (3)- Then, the joint pdf of the order statistics
outliers (X(l),X(Z),,X(n)) IS
The joint distribution of(Xy, Xz, ..., X,) in the presence of X X)X (X)X Xm)
k outliers is given by = Ny X0, %0 (X(2)5 X(2)5 -0 X(n))- (11)
o e ) = a:f(;“fk" earliy "’gz To find the joint pdf of (X, T), we set the following
k) AL=L Ap=Rg H1 transformation:
n k
g (% —In(BO)), @) X(1) = X(1)>
A1t = x<2) = X(2),
whereC(n,k) = ﬁlk). andl (A) represents the indicator .
function of the seA. o )
Note that the marginal distribution &f is .
f(x.a.B,0) = ba(B)"e ™I (x~In(86)) Xn-1) = X(n—1)»
+ ba8%e | (x—In(6)), a >0, B> 1, 6 >0, @) Xy =t — (X1 + X2 + - +Xn-1))
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So, we have
f(X(l),X(Z), '-'7X(n71)7t) = n!a”G"O’Bk"e"’t
Then, .usi.ng(r) — 2) integrations forx ), Xs), -, X(n)
joint distribution of (X
complete.
If we defineW = & then by using the joint pdf of
(X(1),T), we can find the joint pdf ofX;),W) as
nZGnekaBka (D k

A w kX))

W) = e

n n—-2
X [V_V—(n—k)x y+ (=K@

(12)
the
), T) is found and the proof is

w> 0,Xq) > In(B¥/").
Theorem 3.2. A) iy (x ) is a biased estimator df(x) and
- n3an72Bkat_) n2 i_q
E(fm(x)) = WAi (n—Kk)Bj ~(a.n)

x D”m’z’i(ln(e)){bGlj(x)H'g‘Jr'(kaln(Bk/”G))
+ b(In(6) —x)I T (m+ 1) (kar)™™
x Hrg(kam(ﬁk/“e))},

B) Fiy (X) is a biased estimator &f(x) and

B ) = 1 OB

k(n—2)!

x D&*Z*i(ln(e)){b G ()HI™ (ka In(B4"6))
+ b(In(8) = X)IT (Mm+1)(ka)™™
X Hg‘(kaln(ﬁk/“e))},

(13)

AM?(n—k)Bj(a,n)

(14)

where
n

e
i ni-
Bj(a,n) = ,Zol

S O(n,m) (1)

m=0

(I_J+1)aj Ia

Dim(X) =

i

Gl (x) = l;C(j,I)(—x)j"I'(I +m+1)(ka) ™,

and

Proof A) We have

1= o L
2qngka gka o0 oo @ WOX(1))
_ MaompT <{of . e [72 e w
(n—2)! in(k/ng) o w
n
L.
w
_ o 00 A—WX QW
+ b/ efknx(l)/ e g 67%?
in(BK/Mg) 0 w

x [vﬂv +(n=K)In(8) — (N~ kx| " dwebx ).

X(1), W) dwaXz)

(n=K)In(8) — (n— kx| " dwelx

Then for calculating these integrals, we put
@ W [Xq) — X!

e—w(x—x<1)) _ :
1= J!

)

OWe WX — ew[ln(e)—x] _ < wi [|n(9) — X]j
J;) It

)

and set the transformatian= Vﬂv hence
nZGn ekaBka
(n—2)!

oonj

A —kax j
e 0y — Ib(xq) —X)’
/|n(l3k/”9) ];) ]I |: ( (1) )

— x)j] /: z 17 9%z4 (n—K)In(H)
— (n—K)x(1)]" 2dzdx .

E(fm (X)) =

+ b(In(8)

So, we put

[z+ (N—K)In(8) — (n—K)xp)]" 2

%C (n—2,)Z[(n—Kk)In(8) — (n—K)x3)]" 2"
Therefore
E(fm(x)): n2<r:‘9k;)3ka [bni (n—2,i)(n— kn2|2DII (i—1})

* ajii/nmk/ne)('”w)’Xu))"’zf'(Xm*X) e “Wdxy

2 L ni(In(@) —x)!

+b20Cn 2,i)(n— k)”z'z0 i
£ !

i [ —2— knx
x gl /In(Bk/”s)<|n<9)7x(l))n ie dxm]

ri-ij

For calculating the above integrals, we can put

on—2-i .
(IN(8) ~x)" 2 = 3 C(n—2—i,m)(~1)™xy"(In(6))" >,

and _
i

;C(j D (X))

(X(1)— X)) =

Then by using some elementary algebra, the proof is

complete.
B) We have

E(Ey(X) = /X() /W Bt () (X2), W) dwaix g

To calculate the integral similarly to case A, we have
nzqngkaﬁka n-2
T %

E(Fm(x) = 1— C(n—2,i)(n—k)"2"

x ;J—r(u j+1al - 1[b/(pk/"9 (In(6)

J

= X" 2 (X —x) e
« [ IN(6) — xp)]" 2 e M dx
Jiing 110 ) )

and the proof is obvious.

0 dxy) +blin(6) !
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4 M SE of ML estimator and to find these integrals similarly to the previous
theorem, we put

In the previous section, we found the MLE 6fx) and © D)yl X1) —x]!

F(x). Now, we try to find the MSE of them. 2V ) — —

Theorem 4.1. A) = )

-  mlanlpkabn i2 2w 2wx _ 2win(8)—x _ — 2w [In(8) —x!

MSE(fry (%)) = W{aAi (n—K)B\2(a.n) fWeg= X — W = I;f
x D%’Z’i(ln(e)){[bZZiGlj(x)+2bt_>G|j and
x (In(8) — 2)]H]™ (kat In(B4/"9))b?2) PWeWx1) 20 _ guixa+n(0)-2) _ < W Xo +n(6) -2
% (In(6) = )1 T (m+1) (k) ™HT = !
y (kaln(ﬁk/”e))}—2e“e*“X(b3“+6) Eae\;\é:e by using the same transformation as before, we

x AM2(n— KB} (o, n)Df, 2 (In(8))

. nzqngkaﬁka n-2

A
« {bGE(X)HI’?H (kaln(Bk/”G)) E(fm(x)? = CEP: C(n—2,i)(n—k)"*"
+ B(In(8) —x)I T (m+1)(ka) ™H « z#r(ifjfl)aj’”l[bzﬂ
2,7
x (kaln(Bk/”e))}} + q2g%ag 20X x /I:Bk/ne)(ln(e)7x(1))”’2’i(x(1)—x)je’k”’x(l)dx(l)
x (bB% +b)2. (15) + EZZj(In(Q)7x)j/|n(5k/ne)(ln(9)—x(l))”’z’i
B) Xe«wwdym+ﬂﬁ/;W%$MW)7&Dw4q
B nzan—ZBkaﬁ ) : | kax
MSE(En () = "9 P An-2(n kB (a.nDR > < n(8) 0~ 208 Wy |

k(n—2)!
Similarly to the previous theorem, we obtain

. n4an—2l3ka5
BT (09)° = =g

X

(ln(e)){ [b22j — 2b0%e X (bB + 5)] | |
AT2(n—K)B|%(a,n)D} 2 (In(9))

X

GJ(H™! (ka In(B¥/"8)) + [b?2] — 2007 . .
| (HR™( (B776)) [ x{{b2216|'(x)+2bb_G|'(ln(9)72x)}H’;‘*'

x e (bp” +b)} (In(6) =x)'T" (m+1)(ka) ™™ x (katIn(B¥"8))52) (In(8) — x)1 I (m+ 1) (kar) ™

x H'(ka'In(BY/"8)) +20bG{ (In(6) — 2x) x Hf;<ka|n<;3k/"e))}. an

x H (kaln(ﬁk/”e))} 4+ g2 g2ax So by using elementary algebra, we can get the MSE of

frnt (%).
2 . . ~ 2 .
bB% +b). 16 In case B, we can easily find By (x))<. For this purpose,
8 ( & +7 (16) We have
. i 2 ~ ~

Proof. In case A, we must find @ (X))<. So E(Fm ()2 = /X<1) /W(le (x))zf(x(l),w)dwdx(l)

(007 = [ [ (i 0)%1 (0 Wiy

2 ka nk o
_ n ane aB a « {bz/ ekaX(l)
(n—2)! In(Bk/"6)

X {b2/°° ) e_kaX(l
e an [N n
X/O ixs e [ 21 (n—K)in(8) ] In(B/6) 0 -
(24 (n=K)In(6) — (1~ k)xp) | dwebxy

nzanekaﬁka
(n—2)!

%ezwwm—x)ef%

— 1 2E(Fn(x) - 1] +

0
)

n-2 0 X
_ (n— k)X(l):| deX(l) +62/|n ping e*kax(l) b . o1
- (Bme) + b2/ —kC(X(l)/ _efz\NXQZWef%
X / e 22 [ 1 (n—K)In(6) In(B¥/6) 0 W2
° n-2 v ) n n-2
o /Inwk/ne) ok x [V—v +(n—K)In(8) — (n— k)xm} dwdxy)
o © ® 1 na
o0 B (N 2 _MND et Wﬂm—&)fw
X /0 V(X =29 gWe [Vv +(n—k)In(0) + bb/m(ﬁk/”e) e 0 erz €
n—2 n n—-2
— (=] awax, } x [+ (1= K)In(8) — (n—Kxy | cwebiy .
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So similarly to case A and using some elementary algebra6 Mixture method of moment and ML

we obtain

2 n—2pkab
nca
E(Fn(x)? = 1+ P

kn_21 A “(n- KB,

(Cf n)Dn 2—i
x (In(8 )){ [b221 2b] Gl (HT™ (ka In(B*/"6))

+ [p22) - ]In )= x)I T (m+ 1) (ka) "HT

[
« (kaIn(B/"6)) +20BG] (In(8) — 20H
x (kaln(g¥ngy) \.

(katn(B“e))

Therefore, we can get the MSE Bf; (x) and the proof is
complete.

(18)

5 Method of moment

In this section, we use the expectationsXoand expX)
to find the moment estimator of parametersnd 3. By

estimators

In this section, we get the estimator@from ML method
as

~ eXdX(n)

mix = 9

(27)

If we put this estimator to (20), we can easily find the
mixture estimator o&r as following

n
m — bX(j_) —

Omix = . 28
mix e (28)
Therefore, the mixture estimator of pdf and cdf are
respectively of

fmx( ) _ amxec{mD(e—am,XX (bBCImlx 6)’ (29)
and
Frix(x) = 1— e @ (pfioie 1 b). (30)

using some elementary algebra, we can easily find these

expectation as

m =E(X) = %+b|n(ﬁ)+|n(6), (29)
and

mp = E(eX) = %e(bﬁuﬁ). (20)
So from (20), we have

R b|n(1ﬁ) ~in(e)’ (21)
Then by using (21), we can get moment estimatqgB afs
from = %Lambertw(% exp{l<m1 In(9)7175—n2)}>, 22)

7 Comparison of ML, moment and mixture
estimatorsand an example

In order to get the idea of efficiency between the three
types of estimator i.e. ML, moment and mixture
estimators, we have generated a sample of size 4(1)25
from the exponentiated Pareto distribution in the presence
of outliers with k=1, 2, 3, a=0.5(0.5)2,3=1.5, 2 and
6=0.5, 1, 5, usingR software. We have given graphs
based on one thousand independent replication of each
experiments.

Figures 1 to 12 show that the mixture method of ML and
moment estimation of pdf and cdf are more efficient than

where LambertW(.) is the LambertW function (see Corlessthe others.

et al., 1996) satisfies

LambertW (x) exp{ LambertW(x) } = x (23)
Therefore, the moment estimator mfis

o 1

Amm = = . 24
" my—bIn(Brm) — In(6) @9

Itis easy to show that the moment estimator of parameterbeen

Example 1. In an insurance company, we have the motor
insurance service. A claim can be made of at least
500,000 Rials as compensation for the motor insurance.
The vehicles involved are of different cost of which some
of them may be very expensive. Claim amounts varies
according to the damage occurred to the vehicles. It has
observed that claims of these vehicles

o andf are asymptotically consistent. Now for finding the (expensive/severe damaged vehicle) Bréimes higher

moment estimator of pdf and cdf, we can repléagg, and

Brm instead ofa and in the pdf and cdf, respectively. So

fium(X) = rm6%me0m (b 1) (25)
and
Fom() = 1 - %me & (b ). (26)

than normal vehicles. In this paper, we have drawn 50
random samples of size 20 of the claim amounts. It is
observed that such natural logarithm of claims follow
exponentiated Pareto distribution in the presence of
outliers with parametera,  and 8, wherea andf3 are
unknown, 6=500,000 and the number of outlierk) (is
unknown. One should note that for normal vehicles
claims bellow 500,000 are not entertained.

Finding the expectation and the MSE of moment estimatorThe natural logarithm of a random data of size 20 of
of pdf and cdf by using the mathematical methods are notlaims from the Iranian insurance company for the year

possible.

2009 is given below:
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Table 1: The estimation results f& = 500,000

Method of Estimation| k a B
Maximum Likelihood 0.9877135| 1.1600000
Moment Method 1| 1.010251 | 16.534750
Mixture Method 0.8907057| 1.1600000
Maximum Likelihood 0.9950067| 1.1600000
Moment Method 2 | 1.010251 | 4.066294
Mixture Method 0.8966324| 1.1600000
Maximum Likelihood 1.002408 | 1.160000
Moment Method 3| 1.010251 | 2.547608
Mixture Method 0.9026385| 1.1600000

Table 2; The values of likelihood functions fd = 500,000

K | L(Xam,Bm)

L (X-I ammﬁmm)

L (X; Gmix, Bix)

1.609644e-09

2.345693e-08

1.451694e-09

2.345693e-08

1.679404e-09

1
2 | 1.864792e-09
3| 2.162741e-09

2.345693e-08

1.944893e-09

Table 3; The pdf and cdf estimates for= 20, k=1 and6 =

500,000

Method of Estimation

f(x)

F(x)

Maximum Likelihood
Moment Method
Mixture Method

0.7567518
1.3743551
0.7004814

0.2338347
0.3604096
0.2135659

13.4000, 13.5008, 13.2708, 14.0346, 14.1186
14.8271, 15.5056, 15.1373, 13.7747, 13.6762
14.3041, 14.4986, 14.6085, 14.0144, 14.4521
14.3283, 13.9553, 14.1802, 13.7429, 13.5144.

S0 O, Brmis Grm, Brmy Gmix, and Brix for k=1, 2, 3 are
shown in Tablel. Also from the likelihood function
corresponding tok, L (X &m,Bm), L(X;dmm,Bnm) and
L (X; @mix, Bmix) for k=1, 2, 3 are shown in Tab& Table2
shows that the likelihood function is maximized fos 1,
am = 09877135, = 1.1600000, 0mm = 1.010251,

Brm =

Brix = 1.1600000.

16.534750,

an”ix

0.8907057,

and

Therefore, forn = 20, k = 1 and 8 = 500,000 the final

result of MLE, moment estimator and mixture estimator
of f(x) and F(x) corresponding to first observation are

given in Table3.
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Fig. 4: Comparison the MSE of the estimators of pdf based onFig. 6: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fd=2, a=1.5,8=1.5 andd=1 and (b) for ~ simulation results, (a) fdt=3, a=1.5,3=1.5 and6=1 and (b) for
k=2, a=0.5,3=2 andf=5 k=3, a=0.5,3=2 andf=5
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Fig. 7. Comparison the MSE of the estimators of cdf based onFig. 9: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fok=1, a=0.5,3=1.5 and6=0.5 and (b)  simulation results, (a) fok=2, a=0.5, 3=1.5 and6=0.5 and (b)
for k=1, a=1, 3=1.5 andf=1 for k=2, a=1, 3=1.5 andf=1
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Fig. 8. Comparison the MSE of the estimators of cdf based onFig. 10: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fd=1, a=1.5,=1.5andd=1 and (b) for ~ simulation results, (a) fd&=2, a=1.5,3=1.5 and6=1 and (b) for
k=1, a=0.5,3=2 and6=5 k=2, a=0.5,3=2 andf6=5
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Fig. 11: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fok=3, a=0.5, 8=1.5 and6=0.5 and (b)
for k=3, a=1, 3=1.5 andf=1
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Fig. 12: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fd=3, a=1.5,8=1.5 andd=1 and (b) for
k=3, a=0.5,3=2 and6=5
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