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Abstract: The maximum likelihood and moment estimations of the probability density function (pdf) and cumulative distribution
function (cdf) are derived for the Exponentiated Pareto distribution in the presence of outliers. Also, we calculate the mixture method
of ML and moment estimators. It has been shown that this mixture method is better than the others. Further, we have given anactual
data from an insurance company.
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1 Introduction

The Pareto distribution was originally used to describe the
allocation of wealth among individuals since it seemed to
show rather well the way that a larger portion of the
wealth of any society is owned by a smaller percentage of
the people in that society. It can be shown that from a
probability density function (pdf) graph of the population,
the probability, or fraction, of pdf that own a small
amount of wealth per person, is high. The probability then
decreases steadily as wealth increases.
The other application of this distribution is in On-Line
Analytical Processing (OLAP) view size estimation.
Nadeau and Teorey [10] used Pareto distribution for
OLAP aims at gaining useful information quickly from
large amounts of data residing in a data warehouse. To
improve the quickness of response to queries,
pre-aggregation is a useful strategy. However, it is usually
impossible to pre-aggregate along all combinations of the
dimensions. The multi-dimensional aspects of the data
lead to combinatorial explosion in the number and
potential storage size of the aggregates. They must
selectively pre-aggregate. Cost/benefit analysis involves
estimating the storage requirements of the aggregates in
question. They presented an original algorithm for
estimating the number of rows in an aggregate based on
the Pareto distribution model. They tested the Pareto
model algorithm empirically against four published
algorithms and concluded the Pareto model algorithm is
consistently the best of these algorithms for estimating

view size. Also, the Pareto distribution is useful for
finding the average of annuity and benefit for an
insurance problem. In economics, where this distribution
is used as an income distribution, the threshold parameter
is some minimum income with a known value. Asrabadi
[2] derived the uniformly minimum variance unbiased
estimator (UMVUE) of the pdf, the cumulative
distribution function (cdf) and therth moment for the
Pareto distribution.
Now, if we assume thatY is a Pareto distributed random
variable, then we takeX = ln(Y ) to have the
corresponding exponentiated Pareto distribution as
defined by Nadarajah [9]. Usually, Y is defined on the
positive side of the real line and so one would hope that
models on the basis of the distribution ofX would have
greater applicability. Nadarajah [9] introduced five
exponentiated Pareto distributions and derived several of
their properties including the moment generating
function, expectation, variance, skewness, kurtosis,
Shannon entropy, and the Rényi entropy. Note that
another type of exponentiated Pareto distribution was
considered by Shawky and Abu-Zinadah [11] and
characterized using record values. Afify [1] used Bayes
estimators under squared error and LINEX loss functions
and classical estimators for the two parameters
exponentiated Pareto distribution when a data sample is
available from complete, type I and type II censoring
scheme. However, in this paper we will restrict to the
form defined by Nadarajah [9].
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Let a set of random variables(Y1,Y2, ...,Yn) represent the
claim amounts of an motor insurance company. So the
variables (X1,X2, ...,Xn) have exponentiated Pareto
distribution. It is assumed that claims of some of vehicles
(expensive/severe damaged vehicle) areβ times higher
than normal vehicles.
We know that an application of the Pareto distribution
include insurance where it is used to model claims where
the minimum claim is also the modal value, but where
there is no set maximum (see
http://www.brighton-webs.co.uk/distributions/pareto.asp).
Also, according to Benktander [3], the Pareto distribution
is useful for the automobile insurance problems.
Dixit and Jabbari Nooghabi [5] have given UMVUE and
MLE of pdf, cdf and rth moment for the Pareto
distribution in the presence of outliers. They have shown
that MLE of pdf and cdf are more efficient than their
UMVUE. Also, Dixit and Jabbari Nooghabi [6] estimated
the parameters of the Pareto distribution in the presence
of outliers when all the parameters are unknown. Dixit
and Jabbari Nooghabi [5,6] have presented of an actual
data from an insurance company as an application of the
Pareto distribution in the presence of outliers.
Jabbari Nooghabi and Khaleghpanah Nooghabi [8] have
shown that excluding the outliers from data is losing the
information. In addition, Jabbari Nooghabi [7] have
presented a method to detect outliers in exponentiated
Pareto distribution.
Hence, we assume that the random variables
(X1,X2, ...,Xn) are such thatk of them are distributed with
pdf

f2(x;α,β ,θ ) = α(βθ )α e−αx, ln(βθ )≤ x, α > 0, β > 1,

θ > 0, (1)

and remaining(n− k) random variables are distributed as

f1(x;α,θ ) = αθ α e−αx, ln(θ )≤ x, α > 0, θ > 0. (2)

In this paper, we assume that onlyθ is known and we have
derived the MLE, moment estimator and Mixture of ML
and moment estimator for pdf and cdf of exponentiated
Pareto distribution in the presence of outliers. At the end,
we have given an example of claims in a motor insurance
company.

2 Joint distribution of (X1,X2, ...,Xn) with k
outliers
The joint distribution of(X1,X2, ...,Xn) in the presence of
k outliers is given by

f (x1,x2, ..,xn ;α ,β ,θ) =
αnθ nα β kα

C(n,k)
e−α ∑n

i=1 xi
n−k+1

∑
A1=1

n−k+2

∑
A2=A1+1

...
n

∑
Ak=Ak−1+1

k

∏
j=1

I(xA j − ln(βθ)), (3)

whereC(n,k) = n!
k!(n−k)! andI(A) represents the indicator

function of the setA.
Note that the marginal distribution ofX is
f (x;α ,β ,θ) = bα(βθ)αe−αxI(x− ln(βθ))

+ b̄αθ α e−αxI(x− ln(θ)), α > 0, β > 1, θ > 0, (4)

where b = k
n , b̄ = 1 − b and (X1,X2, ...,Xn) are not

independent.

3 Maximum likelihood estimator

Let X1,X2, ...,Xn be a random sample of sizen from the
exponentiated Pareto distribution in the presence of
outliers. So, ML estimator of ln(β θ ) is
X(1) = min(X1,X2, ...,Xn), and

β̃ml =
exp(X(1))

θ
. (5)

For finding the ML estimator ofα, we put the ML
estimator of β in the likelihood function. Then, the
likelihood equation for estimatingα is

n
α
+ kx(1)+(n− k) ln(θ )−

n

∑
i=1

xi = 0. (6)

From (6), we can find the MLE ofα and it is given as̃αml

α̃ml =
n

∑n
i=1 Xi − kX(1)− (n− k) ln(θ )

. (7)

Therefore by using the property of MLE, we can obtain
the estimator of pdf and cdf with replacement ofα̃ml and
β̃ml instead ofα andβ in the pdf and cdf, respectively. So

f̃ml(x) = α̃mlθ α̃ml e−α̃mlx
(

bβ̃ α̃ml
ml + b̄

)

, (8)

and

F̃ml(x) = 1−θ α̃mle−α̃mlx
(

bβ̃ α̃ml
ml + b̄

)

, (9)

whereα̃ml > 0, θ > 0 andβ̃ml > 1.
Then, to obtain the expectation of pdf and cdf, we should
know the joint pdf of(X(1),T ), whereT = ∑n

i=1 Xi. The
following lemma represents it.
Lemma 3.1. The joint pdf of(X(1),T ) is

f (x(1), t) =
nαnθ nα β kα

Γ (n−1)
e−αt [t − nx(1)]

n−2, t > nx(1),

x(1) > ln(β k/nθ ). (10)

Proof. We have the joint distribution of(X1,X2, ...,Xn) in

(3). Then, the joint pdf of the order statistics
(X(1),X(2), ...,X(n)) is

fX(1),X(2),...,X(n)
(x(1),x(2), ...,x(n))

= n! fX1,X2,...,Xn(x(1),x(2), ...,x(n)). (11)

To find the joint pdf of(X(1),T ), we set the following
transformation:


































x(1) = x(1),
x(2) = x(2),
.
.
.

x(n−1) = x(n−1),
x(n) = t − (x(1)+ x(2)+ ...+ x(n−1)).
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So, we have
f (x(1),x(2), ...,x(n−1), t) = n!αnθ nαβ kα e−αt . (12)

Then, using(n− 2) integrations forx(2),x(3), ...,x(n), the
joint distribution of (X(1),T ) is found and the proof is
complete.
If we define W = α̃ then by using the joint pdf of
(X(1),T ), we can find the joint pdf of(X(1),W ) as

f (x(1),w) =
n2αnθ kα β kα

(n−2)!w2 e−α( n
w+kx(1))

×
[ n

w
− (n− k)x(1)+(n− k) ln(θ )

]n−2
,

w > 0,x(1) > ln(β k/nθ ).
Theorem 3.2. A) f̃ml(x) is a biased estimator off (x) and

E( f̃ml(x)) =
n3αn−2β kα b̄

k(n−2)!
An−2

i (n− k)Bi−1
j (α,n)

× Dn−2−i
m (ln(θ ))

{

bG j
l (x)H

m+l
p (kα ln(β k/nθ ))

+ b̄(ln(θ )− x) jΓ (m+1)(kα)−m

× Hm
p (kα ln(β k/nθ ))

}

, (13)

B) F̃ml(x) is a biased estimator ofF(x) and

E(F̃ml(x)) = 1−
n2αn−2β kα b̄

k(n−2)!
An−2

i (n− k)Bi
j(α,n)

× Dn−2−i
m (ln(θ ))

{

b G j
l (x)H

m+l
p (kα ln(β k/nθ ))

+ b̄(ln(θ )− x) jΓ (m+1)(kα)−m

× Hm
p (kα ln(β k/nθ ))

}

, (14)

where

An
i (x) =

n

∑
i=0

C(n, i)(x)n−i,

Bi
j(α,n) =

i

∑
j=0

n j−1

j!
Γ (i− j+1)α j−i,

Dn
m(x) =

n

∑
m=0

C(n,m)(−1)m(x)n−m,

G j
l (x) =

j

∑
l=0

C( j, l)(−x) j−lΓ (l +m+1)(kα)−l−m,

and

Hm
p (x) =

m

∑
p=0

xp

p!
.

Proof. A) We have
E( f̃ml(x)) =

∫

x(1)

∫

w
f̃ml(x) f (x(1),w)dwdx(1)

=
n2αnθ kα β kα

(n−2)!
×
{

b
∫ ∞

ln(β k/nθ )
e
−kαx(1)

∫ ∞

0

e
−w(x−x(1) )

w
e−

αn
w

×
[ n

w
+(n− k) ln(θ)− (n− k)x(1)

]n−2
dwdx(1)

+ b̄
∫ ∞

ln(β k/nθ )
e
−kαx(1)

∫ ∞

0

e−wxθ w

w
e−

αn
w

×
[ n

w
+(n− k) ln(θ)− (n− k)x(1)

]n−2
dwdx(1)

}

.

Then for calculating these integrals, we put

e−w(x−x(1)) =
∞

∑
j=0

w j [x(1)− x] j

j!
,

θ we−wx = ew[ln(θ)−x] =
∞

∑
j=0

w j[ln(θ )− x] j

j!
,

and set the transformationz = n
w , hence

E( f̃ml(x)) =
n2αnθ kα β kα

(n−2)!

∫ ∞

ln(β k/nθ)
e−kαx(1)

∞

∑
j=0

n j

j!

[

b(x(1)−x) j

+ b̄(ln(θ )−x) j
]

∫ ∞

0
z− j−1e−αz[z+(n−k) ln(θ )

− (n−k)x(1)]
n−2dzdx(1).

So, we put

[z+(n− k) ln(θ )− (n− k)x(1)]
n−2

=
n−2

∑
i=0

C(n−2, i)zi[(n− k) ln(θ )− (n− k)x(1)]
n−2−i.

Therefore

E( f̃ml(x)) =
n2αnθ kα β kα

(n−2)!

[

b
n−2

∑
i=0

C(n−2, i)(n− k)n−2−i
i−1

∑
j=0

n j

j!
Γ (i− j)

× α j−i
∫ ∞

ln(β k/nθ )
(ln(θ)− x(1))

n−2−i(x(1)− x) je
−kαx(1) dx(1)

+ b̄
n−2

∑
i=0

C(n−2, i)(n− k)n−2−i
i−1

∑
j=0

n j(ln(θ)− x) j

j!
Γ (i− j)

× α j−i
∫ ∞

ln(β k/nθ )
(ln(θ)− x(1))

n−2−ie
−kαx(1) dx(1)

]

.

For calculating the above integrals, we can put

(ln(θ)− x(1))
n−2−i =

n−2−i

∑
m=0

C(n−2− i,m)(−1)mx(1)
m(ln(θ))n−2−i−m,

and

(x(1)− x) j =
j

∑
l=0

C( j, l)(−x) j−l(x(1))
l .

Then by using some elementary algebra, the proof is
complete.
B) We have

E(F̃ml(x)) =
∫

x(1)

∫

w
F̃ml(x) f (x(1),w)dwdx(1).

To calculate the integral similarly to case A, we have

E(F̃ml(x)) = 1−
n2αnθ kα β kα

(n−2)!

n−2

∑
i=0

C(n−2, i)(n− k)n−2−i

×
i

∑
j=0

n j−1

j!
Γ (i− j+1)α j−i−1

[

b
∫ ∞

ln(β k/nθ )
[ln(θ)

− x(1)]
n−2−i(x(1)− x) je

−kαx(1) dx(1)+ b̄[ln(θ)− x] j

×

∫ ∞

ln(β k/nθ )
[ln(θ)− x(1)]

n−2−ie
−kαx(1) dx(1)

]

,

and the proof is obvious.
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4 MSE of ML estimator

In the previous section, we found the MLE off (x) and
F(x). Now, we try to find the MSE of them.
Theorem 4.1. A)

MSE( f̃ml(x)) =
n3αn−1β kα b̄

k(n−2)!

{

n
α

An−2
i (n−k)Bi−2

j (α,n)

× Dn−2−i
m (ln(θ ))

{

[b22jG j
l (x)+2bb̄G j

l

× (ln(θ )−2x)]Hm+l
p (kα ln(β k/nθ ))b̄22j

× (ln(θ )−x) jΓ (m+1)(kα)−mHm
p

× (kα ln(β k/nθ ))
}

−2θ α e−αx(bβ α + b̄)

× An−2
i (n−k)Bi−1

j (α,n)Dn−2−i
m (ln(θ ))

×
{

bG j
l (x)H

m+l
p (kα ln(β k/nθ ))

+ b̄(ln(θ )−x) jΓ (m+1)(kα)−mHm
p

× (kα ln(β k/nθ ))
}

}

+ α2θ 2α e−2αx

× (bβ α + b̄)2. (15)

B)

MSE(F̃ml(x)) =
n2αn−2β kα b̄

k(n−2)!
An−2

i (n−k)Bi
j(α,n)Dn−2−i

m

× (ln(θ ))
{

[

b22j −2bθ α e−αx(bβ α + b̄)
]

× G j
l (x)H

m+l
p (kα ln(β k/nθ ))+

[

b̄22j −2b̄θ α

× e−αx(bβ α + b̄)
]

(ln(θ )−x) jΓ (m+1)(kα)−m

× Hm
p (kα ln(β k/nθ ))+2bb̄G j

l (ln(θ )−2x)

× Hm+l
p (kα ln(β k/nθ ))

}

+θ 2α e−2αx

×
(

bβ α + b̄
)2

. (16)

Proof. In case A, we must find E( f̃ml(x))2. So

E( f̃ml(x))
2 =

∫

x(1)

∫

w
( f̃ml(x))

2 f (x(1),w)dwdx(1)

=
n2αnθ kα β kα

(n−2)!
×

{

b2
∫ ∞

ln(β k/nθ)
e−kαx(1)

×
∫ ∞

0
e2w(x(1)−x)e−

αn
w

[ n
w
+(n−k) ln(θ )

− (n−k)x(1)
]n−2

dwdx(1)+ b̄2
∫ ∞

ln(β k/nθ)
e−kαx(1)

×
∫ ∞

0
e−2wxθ 2we−

αn
w

[ n
w
+(n−k) ln(θ )

− (n−k)x(1)
]n−2

dwdx(1)+2bb̄
∫ ∞

ln(β k/nθ)
e−kαx(1)

×
∫ ∞

0
ew(x(1)−2x)θ we−

αn
w

[ n
w
+(n−k) ln(θ )

− (n−k)x(1)
]n−2

dwdx(1)

}

,

and to find these integrals similarly to the previous
theorem, we put

e2w(x(1)−x) =
∞

∑
j=0

2jw j[x(1)− x] j

j!
,

θ 2we−2wx = e2w[ln(θ)−x] =
∞

∑
j=0

2jw j[ln(θ )− x] j

j!
,

and

θ wew(x(1)−2x) = ew[x(1)+ln(θ)−2x] =
∞

∑
j=0

w j[x(1)+ ln(θ )−2x] j

j!
.

Hence by using the same transformation as before, we
have

E( f̃ml(x))
2 =

n2αnθ kα β kα

(n−2)!

n−2

∑
i=0

C(n−2, i)(n− k)n−2−i

×
i−2

∑
j=0

n j+1

j!
Γ (i− j−1)α j−i+1

[

b22j

×

∫ ∞

ln(β k/nθ )
(ln(θ)− x(1))

n−2−i(x(1)− x) je
−kαx(1) dx(1)

+ b̄22j(ln(θ)− x) j
∫ ∞

ln(β k/nθ )
(ln(θ)− x(1))

n−2−i

× e
−kαx(1) dx(1)+2bb̄

∫ ∞

ln(β k/nθ )
(ln(θ)− x(1))

n−2−i

× (ln(θ)+ x(1)−2x) je
−kαx(1) dx(1)

]

.

Similarly to the previous theorem, we obtain

E( f̃ml(x))
2 =

n4αn−2β kαb̄

k(n−2)!
An−2

i (n− k)Bi−2
j (α ,n)Dn−2−i

m (ln(θ))

×

{

[

b22jG j
l (x)+2bb̄G j

l (ln(θ)−2x)
]

Hm+l
p

× (kα ln(β k/nθ))b̄22j(ln(θ)− x) jΓ (m+1)(kα)−m

× Hm
p (kα ln(β k/nθ))

}

. (17)

So by using elementary algebra, we can get the MSE of
f̃ml(x).
In case B, we can easily find E(F̃ml(x))2. For this purpose,
We have

E(F̃ml(x))
2 =

∫

x(1)

∫

w
(F̃ml(x))

2 f (x(1),w)dwdx(1)

= 1−2[E(F̃ml(x))−1]+
n2αnθ kα β kα

(n−2)!

×

{

b2
∫ ∞

ln(β k/nθ)
e−kαx(1)

∫ ∞

0

1
w2 e2w(x(1)−x)e−

nα
w

×
[ n

w
+(n− k) ln(θ )− (n− k)x(1)

]n−2
dwdx(1)

+ b̄2
∫ ∞

ln(β k/nθ)
e−kαx(1)

∫ ∞

0

1
w2 e−2wxθ 2we−

nα
w

×
[ n

w
+(n− k) ln(θ )− (n− k)x(1)

]n−2
dwdx(1)

+ 2bb̄
∫ ∞

ln(β k/nθ)
e−kαx(1)

∫ ∞

0

1
w2 e2w(x(1)−2x)e−

nα
w

×
[ n

w
+(n− k) ln(θ )− (n− k)x(1)

]n−2
dwdx(1)

}

.

c© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 4, 1129-1137 (2017) /www.naturalspublishing.com/Journals.asp 1133

So similarly to case A and using some elementary algebra,
we obtain

E(F̃ml(x))
2 = 1+

n2αn−2β kα b̄

k(n−2)!
An−2

i (n−k)Bi
j(α,n)Dn−2−i

m

× (ln(θ ))
{

[

b22j −2b
]

G j
l (x)H

m+l
p (kα ln(β k/nθ ))

+
[

b̄22j −2b̄
]

(ln(θ )−x) jΓ (m+1)(kα)−mHm
p

×
(

kα ln(β k/nθ )
)

+2bb̄G j
l (ln(θ )−2x)Hm+l

p

×
(

kα ln(β k/nθ )
)

}

. (18)

Therefore, we can get the MSE ofF̃ml(x) and the proof is
complete.

5 Method of moment

In this section, we use the expectations ofX and exp(X)
to find the moment estimator of parametersα andβ . By
using some elementary algebra, we can easily find these
expectation as

m1 = E(X) =
1
α
+ b ln(β )+ ln(θ ), (19)

and

m2 = E(eX) =
α

α −1
θ (bβ + b̄). (20)

So from (20), we have

α =
1

m1− b ln(β )− ln(θ )
. (21)

Then by using (21), we can get moment estimator ofβ as

β̃mm =
m2

θ
LambertW

(

θ
m2

exp

{

1
b
(m1− ln(θ)−1−

b̄θ
m2

)

})

, (22)

where LambertW(.) is the LambertW function (see Corless
et al., 1996) satisfies

LambertW(x)exp{LambertW(x)} = x. (23)

Therefore, the moment estimator ofα is

α̃mm =
1

m1− b ln(β̃mm)− ln(θ )
. (24)

It is easy to show that the moment estimator of parameters
α andβ are asymptotically consistent. Now for finding the
moment estimator of pdf and cdf, we can replaceα̃mm and
β̃mm instead ofα andβ in the pdf and cdf, respectively. So

f̃mm(x) = α̃mmθ α̃mme−α̃mmx
(

bβ̃ α̃mm
mm + b̄

)

, (25)

and

F̃mm(x) = 1−θ α̃mme−α̃mmx
(

bβ̃ α̃mm
mm + b̄

)

. (26)

Finding the expectation and the MSE of moment estimator
of pdf and cdf by using the mathematical methods are not
possible.

6 Mixture method of moment and ML
estimators

In this section, we get the estimator ofβ from ML method
as

β̃mix =
exp(x(1))

θ
. (27)

If we put this estimator to (20), we can easily find the
mixture estimator ofα as following

α̃mix =
n

m1− bx(1)− b̄ ln(θ )
. (28)

Therefore, the mixture estimator of pdf and cdf are
respectively of

f̃mix(x) = α̃mixθ α̃mixe−α̃mixx
(

bβ̃ α̃mix
mix + b̄

)

, (29)

and

F̃mix(x) = 1−θ α̃mixe−α̃mixx
(

bβ̃ α̃mix
mix + b̄

)

. (30)

7 Comparison of ML, moment and mixture
estimators and an example

In order to get the idea of efficiency between the three
types of estimator i.e. ML, moment and mixture
estimators, we have generated a sample of size 4(1)25
from the exponentiated Pareto distribution in the presence
of outliers with k=1, 2, 3, α=0.5(0.5)2,β=1.5, 2 and
θ=0.5, 1, 5, usingR software. We have given graphs
based on one thousand independent replication of each
experiments.
Figures 1 to 12 show that the mixture method of ML and
moment estimation of pdf and cdf are more efficient than
the others.

Example 1. In an insurance company, we have the motor
insurance service. A claim can be made of at least
500,000 Rials as compensation for the motor insurance.
The vehicles involved are of different cost of which some
of them may be very expensive. Claim amounts varies
according to the damage occurred to the vehicles. It has
been observed that claims of these vehicles
(expensive/severe damaged vehicle) areβ times higher
than normal vehicles. In this paper, we have drawn 50
random samples of size 20 of the claim amounts. It is
observed that such natural logarithm of claims follow
exponentiated Pareto distribution in the presence of
outliers with parametersα, β andθ , whereα andβ are
unknown,θ=500,000 and the number of outliers (k) is
unknown. One should note that for normal vehicles
claims bellow 500,000 are not entertained.
The natural logarithm of a random data of size 20 of
claims from the Iranian insurance company for the year
2009 is given below:
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Table 1: The estimation results forθ = 500,000

Method of Estimation k α̃ β̃
Maximum Likelihood 0.9877135 1.1600000

Moment Method 1 1.010251 16.534750
Mixture Method 0.8907057 1.1600000

Maximum Likelihood 0.9950067 1.1600000
Moment Method 2 1.010251 4.066294
Mixture Method 0.8966324 1.1600000

Maximum Likelihood 1.002408 1.160000
Moment Method 3 1.010251 2.547608
Mixture Method 0.9026385 1.1600000

Table 2: The values of likelihood functions forθ = 500,000

k L(x
¯
; α̃ml , β̃ml) L(x

¯
; α̃mm, β̃mm) L(x

¯
; α̃mix, β̃mix)

1 1.609644e-09 2.345693e-08 1.451694e-09
2 1.864792e-09 2.345693e-08 1.679404e-09
3 2.162741e-09 2.345693e-08 1.944893e-09

Table 3: The pdf and cdf estimates forn = 20, k = 1 andθ =
500,000

Method of Estimation f̃ (x) F̃(x)
Maximum Likelihood 0.7567518 0.2338347

Moment Method 1.3743551 0.3604096
Mixture Method 0.7004814 0.2135659

13.4000, 13.5008, 13.2708, 14.0346, 14.1186
14.8271, 15.5056, 15.1373, 13.7747, 13.6762
14.3041, 14.4986, 14.6085, 14.0144, 14.4521
14.3283, 13.9553, 14.1802, 13.7429, 13.5144.

So α̃ml , β̃ml , α̃mm, β̃mm, α̃mix, and β̃mix for k=1, 2, 3 are
shown in Table1. Also from the likelihood function
corresponding tok, L(x

¯
; α̃ml , β̃ml), L(x

¯
; α̃mm, β̃mm) and

L(x
¯
; α̃mix, β̃mix) for k=1, 2, 3 are shown in Table2. Table2

shows that the likelihood function is maximized fork = 1,
α̃ml = 0.9877135,β̃ml = 1.1600000,α̃mm = 1.010251,
β̃mm = 16.534750, α̃mix = 0.8907057, and
β̃mix = 1.1600000.
Therefore, forn = 20, k = 1 andθ = 500,000 the final
result of MLE, moment estimator and mixture estimator
of f (x) and F(x) corresponding to first observation are
given in Table3.
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Fig. 1: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=1, α=0.5,β=1.5 andθ=0.5 and (b)
for k=1, α=1, β=1.5 andθ=1
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Fig. 2: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=1,α=1.5,β=1.5 andθ=1 and (b) for
k=1, α=0.5,β=2 andθ=5
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Fig. 3: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=2, α=0.5,β=1.5 andθ=0.5 and (b)
for k=2, α=1, β=1.5 andθ=1
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Fig. 4: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=2,α=1.5,β=1.5 andθ=1 and (b) for
k=2, α=0.5,β=2 andθ=5
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Fig. 5: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=3, α=0.5,β=1.5 andθ=0.5 and (b)
for k=3, α=1, β=1.5 andθ=1

5 10 15 20 25

0.
0

0.
4

0.
8

n

5 10 15 20 25

0.
0

0.
4

0.
8

n

5 10 15 20 25

0.
0

0.
4

0.
8

n

M
S

E

ML
MM
MiX

(a)

5 10 15 20 25

0.
00

0.
04

0.
08

n

5 10 15 20 25

0.
00

0.
04

0.
08

n

5 10 15 20 25

0.
00

0.
04

0.
08

n

M
S

E

ML
MM
MiX

(b)

Fig. 6: Comparison the MSE of the estimators of pdf based on
simulation results, (a) fork=3,α=1.5,β=1.5 andθ=1 and (b) for
k=3, α=0.5,β=2 andθ=5
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Fig. 7: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=1, α=0.5,β=1.5 andθ=0.5 and (b)
for k=1, α=1, β=1.5 andθ=1
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Fig. 8: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=1,α=1.5,β=1.5 andθ=1 and (b) for
k=1, α=0.5,β=2 andθ=5
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Fig. 9: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=2, α=0.5,β=1.5 andθ=0.5 and (b)
for k=2, α=1, β=1.5 andθ=1
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Fig. 10: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=2,α=1.5,β=1.5 andθ=1 and (b) for
k=2, α=0.5,β=2 andθ=5
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Fig. 11: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=3, α=0.5,β=1.5 andθ=0.5 and (b)
for k=3, α=1, β=1.5 andθ=1
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Fig. 12: Comparison the MSE of the estimators of cdf based on
simulation results, (a) fork=3,α=1.5,β=1.5 andθ=1 and (b) for
k=3, α=0.5,β=2 andθ=5
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