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Abstract: In this paper we investigate the dynamics of diseased prey- predator system with nonlinear feedback. A nonlinear feedback
mathematical model is proposed and analyzed to study the predator interaction with infected prey. We showed that the continuous time
diseased prey-predator system can be asymptotically stabilized using nonlinear feedback control. By constructing Lyapunov function,
global asymptotic stability is established. Also we obtained necessary control law for asymptotic stability of this system. Finally, a
numerical simulation supports our analytical findings.
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1 Introduction

Ecological population with diseases has been an area of
interest for ecologists and mathematicians. Mathematical
models of the communities that are afflicted by disease
have been investigated on a wide range. This helps in
analysis of interaction between the prey and predator
populations. Most of the real world systems are
non-linear and are described by differential equation.
These systems are non-linear because of the reason that
they do not abide the principle of superposition.
Controlling the output of such systems by modifying its
input parameter using feedback is referred as nonlinear
feedback control. The general mathematical techniques
that describe these systems include Lyapunov theory.

The influence of epidemics on predation was first
studied by Anderson and May [1,2]. He examined a
modification of Lotka-Volterra prey-predator model with
higher predation and no reproduction on infected prey.
They established that the invading disease tends to
destabilize the prey-predator communities. Venturino [19]
studied the dynamics of a system in which only one
species get sick. Venturio [18] applied multiple
modifications to the Lotka-Volterra model and accounted
for the disease that spreaded among one of the species.
The dynamics of Holling-Tanner model was investigated
by Haque et al [7] with the assumption that the disease

spread only among the prey. Kooi et al [14] exaggerated
the behavior of Lotka-Volterra model that is infected by
non-specified disease using Holling type II functional
response to describe the transformation from susceptible
to infected. Kundu et al [15] analyzed the prey-predator
model with diseased prey and justified the global stability
around the interior equilibrium points under specific
conditions. The global stability of four prey-predator
models was studied by Han et al [6]. Hadeler and
Freedman [5] investigated the prey-predator model in
which the infected prey is more likely to be predated.
Numerous prey-predator models with infected prey have
been explained by many researchers [4,13,16,17,20] and
the models with infected predator was studied by
researchers [8,9,10,11]. They considered that the
predators become infected only by predating the infected
prey. Haque and Venturino [12] discussed the models of
symbiotic communities with disease.

The rest of the paper is structured as follows. In
section 2 we present the mathematical model with basic
consideration. Positivity and boundedness of the solution
of the model are established in section 3. Section 4 deals
with all the possible equilibrium points of the model. In
section 5, the stability of the model at various at
equilibrium points is discussed. Section 6 deals with the
prey -predator model with nonlinear feedback control.
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Computer simulations are carried out to illustrate the
analytical findings in section 7.

2 Mathematical model

In this paper,a continuous time prey-predator system with
two preys viz. susceptible and infected prey and a
predator is taken into account. It is assumed that the
susceptible prey population is developed on the basis of
logistic law and only the infected prey is predated. The
disease is inherited only among the prey population and
they remain infected and do not recover.

Now to mathematically describe the model of a prey-
predator system with diseased prey population, we assume
the following:

1.When the predator population vanishes and the
absence of disease,susceptible prey population grows
logistically with intrinsic growth rater, carrying
capacityk.

2.The occurrence of infection divides the prey
population into two groups namely susceptible prey
X(t) and infected preyY (t) and the total population is
P(t) = X(t)+Y(t).

3.Only the prey population is diseased and is not
genetically inherited and the infected prey populations
do not recover or become immune.

4.The disease transmission follows the simple law of
mass action given byaX(t)Y(t) where a is the
transmission rate.

5.The predator attacks only infected prey which has
Beddington-De Angelis functional response which is
of the form

f (Y,Z) =
bZ

1+ bhY +Z
Where b the total is attack rate for predator or
predation coefficient andh is the handling time of
predator to prey.

Therefore our model becomes:

dX
dT

= rX

(

1−
X
k

)

− aXY

dY
dT

= aXY −
bYZ

1+ bhY +Z
− d1Y

dZ
dT

=
ebYZ

1+ bhY +Z
− d2Z − ξ Z2 (1)

With initial data

X(0) ≥ 0,Y (0) ≥ 0,Z(0) ≥ 0 and the positive
coefficientsr,k,a,b,e,d1,d2,ξ in the model (1). Here the
parameters X(t),Y (t),Z(t) denote the susceptible,
infected prey and predator population respectively. The
parametersr,k,a,e denotes the growth rate of susceptible
prey population, the environmental carrying capacity, the
rate of transmission from susceptible to infected prey
population and the conversion efficiency rate respectively.

The parametersd1,d2 denotes death rate of infected prey
and death rate of predator respectively.

To minimize the number of parameters involved with
the model system, it is extremely useful to write the
system in non-dimensionalized form. For this purpose
introduce the variablesX ,Y andT as follow

x →
X
k
,y →

Y
k
,z →

Z
bhk

andt → Tr (2)

In terms of the non-dimensionalized variables the model
system (1) become
dx
dt

= x(1− x)−αxy

dy
dt

= αxy−
β yz

c+ y+ z
− γ1y

dz
dt

=
δyz

c+ y+ z
− γ2z−ηz2 (3)

Where the relation between the dimensional and
non-dimensional parameters are given by:

α =
ak
r
,β =

b
r
,e =

e
rh

,γ1 =
d1

r
,γ2 =

d2

r
,η =

bhkξ
r

Now we will analyze the system of (3) with the following
initial conditions:
x(0)≥ 0,y(0)≥ 0,z(0)≥ 0 (4)
The equation (4) represents the conditions for positivity
of susceptible prey, infected prey and predator
populations respectively.

3 Positivity and Boundedness of Solution

It is significant to analyze the positivity and boundedness
for the system (3). Positivity indicates the survival of
population and boundedness may be interpreted as a
natural restriction to growth as a consequence of limited
resources. The model system (3) can be put into the
matrix form X = F(X) where X = (x,y,z)T ∈ R3 and
F(X) is given by

F(X) =





F1(X1)
F2(X2)
F3(X3)



=











x(1− x)−αxy

αxy−
β yz

c+ y+ z
− γ1y

−ηz2+
δyz

c+ y+ z
− γ2z











Let R3
+ = [0,+∞)3 be the non-negative octant inR3, the

G : R3
+ → R3 is locally Lipschitz and satisfy the condition

Gi(X)|Xi(t)=0,X ∈ R3
+ ≥ 0

WhereX1 = x,X2 = y,X3 = z
Due to Lemma in [15] and any solutions of (3) with
positive initial conditions exist uniquely and each
component ofX remains the interval[0,b) for some
b > 0. Furthermore, if b < +∞, then
limsup[x(t)+ y(t)+ z(t)] = +∞.

Theorem 3.1.
All the positive solutions of the model system (3) that

state inℜ3
+ are uniformly bounded.
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Proof.
Since the densities of population can never be

negative, obviously the solutionsx(t),y(t) and z(t) are
positive for allt ≥ 0.
From the first equation of model (1), we have

dx
dt

≤ x(1− x)

This gives lim
t→∞

supx(t)≤ 1

ConsiderL = x+ y+ z
Then
dL
dt

=
dx
dt

+
dy
dt

+
dz
dt

(5)

Substituting (3) in equation (5), we get

dL
dt

+mL ≤ x(1+m)+ (m− γ1)y+(m− γ2)z

If m < γ1,m < γ2 then

dL
dt

+mL ≤ (1+m)

≤ φ
Applying Lemma on differential inequalities Birkoff [3],
we obtain

0≤ L(x,y,z) ≤
φ
m
(1− e−mt)+

L(x(0),y(0),z(0))
emt

Thus fort → ∞ we have

0≤ L(x,y,z) ≤
φ
m

Thus all solutions of system (3) enter into the region

Γ =

{

(x,y,z) ∈ R3
+ : 0≤ x ≤ 1,0≤ L ≤

φ
m
+ ε,∀ε > 0

}

This completes the proof.

4 Existence of Equilibrium Points

The existence of equilibrium points for the system (3) as
follows:

1.The trivial equilibrium pointE0(0,0,0) always exists.
2.In no predation condition, since the prey population

expands to the carrying capacity, the fixed point
E1(1,0,0) always occurs.

3.The survival of both prey species is ensured in the
absence of predator species. Hence the fixed point
E2(x,y,0) exists in the interior of positive quadrant of
xy plane, wherex,y are given as follows:

x =
γ1

α
,y =

α − γ1

α2 , provided thatα > γ1.

4.The positive stationary pointE3(x∗,y∗,z∗) occurs in
the interior of the first octant if and only if the
following algebraic non-linear system yields a
positive solution.

1− x−αy= 0

αx− γ1−
β z

c+ y+ z
= 0

δy
c+ y+ z

−ηz− γ2 = 0 (6)

Solving the system of equation (6) we get
If x∗ is fixed (independent) andy∗,z∗ becomes

y∗ =
1− x∗

α
with 1> x∗

z∗ =
(αx∗− γ1)(1+ cα − x∗)

α(β + γ1−αx∗)
provided with the conditionsαx∗ > γ1,β + γ1 > αx∗ and
1+ cα > x∗.

5 Local and Global Stability Analysis

5.1 Local Stability Analysis

In this section the stability of the system (3) is examined
by constructing the variational matrix relating to every
equilibrium point.

Lemma 5.1.
The stationary pointE0 is asymptotically stable in the

y− z direction and is unstable inx direction.

Proof.
The variational matrix for the equilibrium point at

E0(0,0,0) is

V (E0) =





1 0 0
0 −γ1 0
0 0 −γ2





The eigenvalues ofE0 are
λ1 = 1,λ2 =−γ1,λ3 =−γ2
Sinceλ2,λ3 are negative,E0 is asymptotically stable in
they− z direction and sinceλ1 is positive,E0 is unstable
in x direction. This completes the proof.

Lemma 5.2.
The equilibrium pointE1 is asymptotically stable in

thex− y− z plane ifα < γ1. But if α > γ1 in this case it is
stable iny− z direction and is unstabley direction.

Proof.
The variational matrix for the equilibrium point at

E1(1,0,0) is

V (E1) =





−1 0 0
0 α − γ1 0
0 0 −γ2





The eigenvalues ofE1 are
λ1 =−1,λ2 = α − γ1,λ3 =−γ2.

If α < γ1, in this case all the eigenvalues are negative.
Hence E1 is asymptotically stable in thex − y − z
direction. But ifα > γ1 in this case two of the eigenvalues
λ1,λ3 are negative so it is stable inx − z direction and
unstabley direction. This completes the proof.
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Lemma 5.3.
The equilibrium pointE2 is asymptotically stable in

thex− y− z plane ifα > γ1 andcα2+α < γ1.

Proof.
The variational matrix for the equilibrium point atE2

is

V (E2) =















−γ1

α
−γ1 0

1−
γ1

α
0

β (α − γ1)

cα2+α − γ1

0 0
δ (α − γ1)

cα2+α − γ1
− γ2















The corresponding characteristic equation forE2 is
λ 3+ p1λ 2+ p2λ + p3 = 0 (7)
Where

p1 =
γ1

α
+

δ (α − γ1)

cα2+α − γ1
+ γ2

p2 =
γ1γ2

α
−

δ (γ1−α)

cα2+α − γ1
+ γ1

(

1−
γ1

α

)

p3 =
δ (γ1−α)γ2

1

α(cα2+α − γ1)
−

δ (α − γ1)γ1

cα2+α − γ1
−

γ2
1γ2

α
+ γ1γ2

By using Routh-Hurwitz criteria
If p1 > 0, p3 > 0 and p1p2 − p3 > 0 thenE2 is locally
asymptotically stable.

straight forward calculation gives ifα > γ1 and
cα2+α < γ1 thenE2 is locally asymptotically stable.

Theorem 5.1.
The positive equilibrium point E3 is locally

asymptotically stable if satisfy the following conditions
(i) 1−αy∗ < 2x∗.

(ii) αx∗ < γ1+
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2 .

(iii) δ (cy∗+ y∗
2
)< 2ηz∗(c+ y∗+ z∗)2+ γ2(c+ y∗+ z∗)2.

Proof.
The variational matrix of (3) atE3 is given below:

E3 =





a11 a12 0
a21 a22 a23
0 a32 a33





Where
a11= 1−2x∗−αy∗;a12=−αx∗;

a21= αy∗;a22 = αx∗− γ1−
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2 ;

a23=
β (cy∗+ y∗

2
)

(c+ y∗+ z∗)2 ;

a32=
δ (cz∗+ z∗

2
)

(c+ y∗+ z∗)2 ;a33=
δ (cy∗+ y∗

2
)

(c+ y∗+ z∗)2 −2ηz∗− γ2

Then corresponding characteristic equation becomes
λ 3+A1λ 2+A2λ +A3 = 0 (8)
Where
A1 =−(a11+ a22+ a33)

=−(1−2x∗−αy∗)+

(

αx∗− γ1−
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

)

+

(

δ (cy∗+ y∗
2
)

(c+ y∗+ z∗)2 −2ηz∗− γ2

)

=

(

2x∗+αy∗+2ηz∗+ γ2+ γ1+
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

)

−

(

δ (cy∗+ y∗
2
)

(c+ y∗+ z∗)2 +1+αx∗
)

A2 = a11a22+ a22a33+ a11a33− a12a21− a23a32

=

[

(1−2x∗−αy∗)

(

αx− γ1−
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

)]

+
[

(

αx∗− γ1−
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

)

×

(

δ (cy∗+ y∗
2
)

(c+ y∗+ z∗)2 −2ηz∗− γ2

)

]

+

[

(1−2x∗−αy∗)

(

δ (cy∗+ y∗
2
)

(c+ y∗+ z∗)2 −2ηz∗− γ2

)]

+[α2x∗y∗] −





(

β δ (cy∗+ y∗
2
)(cz∗+ z∗)2

)

(c+ y∗+ z∗)4





A3 =−[(a11a22a33− a11a23a32)− a12(a21a32)]

= a11a23a32+ a12a21a32− a11a22a33

=

[

(1−2x∗−αy∗)

[

(β δ (cy∗+ y∗
2
)(cz∗+ z∗

2
))

(c+ y∗+ z∗)4

]]

+

[

αx∗
(

−αδy∗(cz∗+ z∗
2
)

(c+ y∗+ z∗)2

)]

−

[

(1−2x∗−αy∗)

(

αx∗− γ1−
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

)

×

(

δ (cy∗+ y∗
2
)

(c+ y∗+ z∗)2

)]

According to Routh Hurwitz criterion, for all values of
the parameters, we notice that
A1 > 0,A3 > 0 and∆ = A1A2−A3 > 0.
A straight forward calculation gives
If a11< 0 gives

1−αy∗ < 2x∗

If a22< 0 gives

αx∗ < γ1+
β (cz∗+ z∗

2
)

(c+ y∗+ z∗)2

If a33< 0 gives Therefore, the positive interior equilibrium
point is locally asymptotically stable. Hence, the theorem
is proved.
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5.2 Global Stability Analysis

In this section, we shall study the global dynamics of the
system (3) around the equilibrium pointE2 and the positive
equilibrium pointE3(x∗,y∗,z∗).

Theorem 5.2.
The interior equilibriumE2 is globally asymptotically

stable in the interior of the quadrant ofx− y plane.

Proof.

Let H(x,y) =
1
xy

(9)

Clearly H(x,y) is positive in the interior of the positive
quadrant ofx− y plane.
h′(x,y) = x(1− x)−αxy
h′′(x,y) = αxy− γ1y

Then∆(x,y) =
∂
∂x

(h′H)+
∂
∂y

(h′′H)

=−
1
y
< 0 (10)

By using Bendixson-Dulac criteria, it is brought to light
that ∆(x,y) remains with the same sign and is not
identically zero in the interior of the positive quadrant of
thex− y plane. This completes the proof.

Theorem 5.3.
The co-existence equilibrium pointE3(x∗,y∗,z∗) is

globally asymptotically stable with respect to all solutions
initiating from the interior ofΓ , satisfying the following
conditionsx < x∗ andzy∗ > z∗y.

Proof.
The sufficient conditions for proving the theorem is

given by Lyapunov stability theorem.
Now let us define

L = S
[

x− x∗− x∗ln
( x

x∗

)]

+T

[

y− y∗− y∗ln

(

y
y∗

)]

+U

[

z− z∗− z∗ln

(

z
z∗

)]

(11)

WhereS,T,U are positive constant to be chosen later

dL
dt

= S

[

x− x∗

x

]

dx
dt

+T

[

y− y∗

y

]

dy
dt

+U

[

z− z∗

z

]

dz
dt

(12)

= S[(1− x)−αy](x− x∗)

+T

[

−β z
c+ y+ z

− γ1+αx

]

(y− y∗)

+U

[

δy
c+ y+ z

− γ2−ηz

]

(z− z∗)

= S[(x− x∗)−α(y− y∗)](x− x∗)

+T

[

α(x− x∗)−

[

β z
c+ y+ z

−
β z∗

c+ y∗+ z∗

]]

(y− y∗)

+U(z− z∗)

[

δy
c+ y+ z

−
δy∗

c+ y∗+ z∗
−η(z− z∗)

]

= S[−(x− x∗)](x− x∗)

+T

[

−

[

β (c(z− z∗)+ (zy∗− z∗y))
(c+ y+ z)(c+ y∗+ z∗)

]]

(y− y∗)

+U(z− z∗)

[

δ (c(y− y∗)+ (yz∗− y∗z))
(c+ y+ z)(c+ y∗+ z∗)

−η(z− z∗)

]

(13)

We choose the parameters

T =
Uδ
β

,U = 1
2,S = 1,T = 1,δ = 1 and substitute in

(13) then we get
dL
dt

=−(x− x∗)2−η(z− z∗)2

−
(y∗z− yz∗)

(c+ y+ z)(c+ y∗+ z∗)
(y− y∗)(z− z∗) (14)

Then using the given condition, we see that
dL
dt

is

negative definite.L is a Lyapunov function with respect to
all solutions in the interior of the positive octant which
proves the theorem.

6 A Prey Predator Model with Nonlinear
Feedback Controls

Theorem 6.1.
With the following nonlinear controllers, at the fixed

point, the system (3) is found to be stable
u1 = αxy−2x+ x2

u2 =
β yz

c+ y+ z
−αxy

u3 = ηz2−
δyz

c+ y+ z
(15)

Proof.
The biological model with diseased prey (3)

controlled by nonlinear feedback is described by

dx
dt

= x(1− x)−αxy+ u1

dy
dt

= αxy− γ1y−
β yz

c+ y+ z
+ u2

dz
dt

=
δyz

c+ y+ z
− γ2z−ηz2+ u3 (16)

Wherex,y,z are the state variables andα,β ,δ ,γ1,γ2,η
are positive parameters andu1,u2,u3 are feedback
controllers which are the functions of the state variables.

These control feedbacks stabilize the system (16) and
converges it to zero as the time goes to infinity.
(i.e.) lim

t→∞
||x(t)||= 0

The Lyapunov function is taken as
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F(x,y,z) =
1
2

x2+
1
2

y2+
1
2

z2 (17)

Differentiating (17) along the trajectories of the system
(3) gives

Ḟ(x,y,z) = x(x(1− x)−αxy+ u1)

+ y

(

αxy− γ1y−
β yz

c+ y+ z
+ u2

)

+ z

(

δyz
c+ y+ z

−ηz2− γ2z+ u3

)

(18)

Substituting the equations (15) in (18), then we get
Ḟ(x,y,z) = −x2− γ1y2− γ2z2 which is a negative definite
function.

Thus the prey-predator system with
Beddington-De-Angelis functional response having
competition in predator alone and mortality in both
predator and infected prey is proved to be globally
asymptotically stable.

7 Numerical Solution

Analytical studies justify the novelty of the theoretical
results. A qualitative analysis of the main features in the
system is described by numerical simulations. The
analytical results are gathered for three sets of parameter.
It is found thatunique results are obtained for eachunique
set of parameter gives.

The numerical simulation of phase portraits and the
corresponding time series graph of the system (3) gives
its complex dynamical behavior. The value assumed are
β = 0.9,δ = 0.5,γ1 = 0.3,γ2 = 0.13,η = 0.36,c = 0.5
and the initial densities are
x(0) = 1,y(0) = 0.8,z(0) = 0.6. The figure (1), shows the
dynamic behavior of the uncontrolled system (3) when
α = 0.293 and figure (2) gives the corresponding phase
plot when the system approaches the equilibrium point
E2. The numerical results for the same value of
parameters
β = 0.9,δ1.478,γ1 = 0.4,γ2 = 0.4,η = 0.23,c = 0.2 and
same initial densitiesx(0) = 1,y(0) = 0.8,z(0) = 0.6
altering only the disease transmission rateα.

In figure (3), it is visualized that when the disease
transmission rate isα = 3 the density of infected prey
decreases with an increase in density of the susceptible
prey. Figure (4) gives the corresponding phase plot. When
the disease transmission rate is further reduced to
α = 1.9, in figure (5), there is a deflation in the density of
infected prey indicating a deflation in predator population
and an inflation in the density of susceptible prey. Its
corresponding phase plot is given in figure (6).

In figure (7) the population density approaches the
stable point quickly. All the population densities in the
system (16) approach approximately zero for the above
disease transmission values.
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Fig. 1: Time series of the system (3) approaches asymptotically
to (E2) for α = 0.293
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Fig. 2: Phase portrait whenα = 0.293 for the system (3)
approaches asymptotically toE2

This proves the theoretical work by Lyapunov
stability theory (Hahn, 1967), the dynamics (16) is
globally asymptotically stable and hence the condition
lim
t→∞

||x(t)|| = 0 will be satisfied for all initial conditions

x(0) ∈ ℜn.

8 Conclusion

The eco-epidemiological interactions in the predator-prey
model with disease in prey species have been investigated
and its dynamical behavior has been analyzed. The three
different classes of populations viz the susceptible prey,
the infected prey and the predator have been described by
unique ordinary differential equations. The continuous
time diseased prey-predator system has been
asymptotically stabilized using nonlinear feedback
control. These stability conditions at various equilibrium
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Fig. 3: Time series of the system (3) forα = 3
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Fig. 5: Time series of the system (3) approaches to(E3) for α =
1.9
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Fig. 6: Phase portrait of the system (3) forα = 1.9
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Fig. 7: Time series of the system (16) approaches asymptotically
to (0,0,0) for α = 1.9

points and the boundedness of the solution have been
examined. Lyapunov function is used to illustrate the
asymptotic stability of the controlled system. The results
obtained from the numerical simulations conclude that a
decrease in the contact rate between susceptible prey and
infected prey increases the density of susceptible prey but
decreases the density of predator.
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