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Abstract: This paper deals with an inspiring and real-world problem ofmining maximal cliques in an intuitionistic fuzzy graphG
where the edges are weighted by the degrees of membership together with non-membership values. By using fuzzy cuts(α,β ) such
that 0≤ αβ ≤ 1, a modified concept ofCαβ maximal clique is proposed in an intuitionistic fuzzy graph. To findCαβ maximal cliques
in an intuitionistic fuzzy graph, we present an effective mining algorithm based on thisCαβ is introduced.
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1 Introduction

The analysis of huge databases and receiving the
knowledge discovery is a critical task in making a suitable
decision in real time industry problems. Large data sets
frequently contain information that is unreliable in nature.
Identification of dense substructure is a very important
task that comes from the graph. There are many
applications in data processing which incorporates the
cluster and community detection in social and biological
networks [5]. Its additionally potential that the foremost
fundamental dense sub structure in an exceedingly graph
will unremarkably employed in a band a wholly
connected sub graph [13]. Naturally, maximal cliques
attract us due its special character that it never be
contained within the other clique.

It is one of the largest issues to identify the all
maximal cliques in a graph from the graph mining which
has been used in several settings probably from social
networks the overlapping communities are found
out [5, 13], the e-mail networks are analysed and the
bio-informatics issues are recognized. The relationships
themselves become a probabilistic naturally in a number
of the cases as we tend to face the link of one person
influences another person in an exceedingly social
network.

Last few years, the Fuzzy theory become faded
compare to the Graph theory which dominates completely
the earlier. Fuzzy set has been developed with the concept
of prospective field which is recognized as an Knowledge
base. In 1965, ‘fuzzy sets’ was published by Zadeh [17]
as his inspirational work, in which he thoroughly
explained the fuzzy set theory. The fuzzy set and fuzzy
relations are put in to argumentative discussion by
Kaufmann [8]. The concept of fuzzy analogues on various
graph theoretic concepts is identified by Azriel [14] in
1975. Some important clarifications are introduced on
fuzzy graphs by Rosenfeld Bhattacharya [2]. Moreover he
obtained fuzzy graph theory outcomes as concerning
center and eccentricity. The representing information and
relationships between objects of Sunitha and Mathew [16]
are suitably displayed by the fuzzy graph theory.

Atanassov [1] has taken much efforts in the analysis
of fuzzy sets and defined it. The identical factor is more
outlined by Zadeh, that he significantly extended the
conception of “Intuitionistic Fuzzy Sets” and explored
their basic properties. This applications of Intuitionistic
fuzzy sets is originated by him that is employed in
knowledgeable systems, systems theory. In addition to
that a plenty of operations and relations over intuitionistic
fuzzy sets are has explained by him.
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Atanassov’s intuitionistic fuzzy graph is identified as
an exceptional case and analysed the modules by
Parvathy and Karunambigai [11]. Operations on
Intuitionistic Fuzzy Graphs (IFGs) are also done by
them [12]. Antony Shannon and Atanassov [15]
deliberate a original generalization of the intuitionistic
fuzzy graphs. The fuzzy graph model has fascinated
plenty of responsiveness who works on data mining from
the societies of data science and fuzzy logic. In this paper,
we design a novel methodology on maximal clique in
IFGs and its properties are studied.

2 Related work

Now-a-days a large amount of recent work on
demonstrating fuzzy on possibility of communities
recognition and clustering using fuzzy logic. The problem
of finding most fuzzy cliques in fuzzy graphs is generated
by Bandyapadhyay. Then, the proposed problem was
treated to reach the quadratic of 0-1 programming
problem which should be unconstrained. A clique that can
attain other vertices with greater membership degrees and
combine them into cliques is defined as the maximum
fuzzy clique. The problem of counting top-k cliques with
the top-k highest likelihood of existence from unsure
graph, that differs from [8], a current research work
aiming on mining the maximal cliques form unsure
graph [10] is explained by the Zou et al. [18]. A new
concept, namedα-largest clique in an unsure graph is
also defined by them. Roberto De Virgilio et al. [13] for
computing all largest cliques of an arbitrarily massive
network in a distributing environment and theoretical
results showing the correctness and completeness over the
sparse graphs. Obviously, the weights on the edges of a
fuzzy graph refer to the degrees of membership.
Motivated by those differences this paper explores a new
approach of mining (α,β )-maximal cliques from
intuitionistic fuzzy graphs.

3 Main Results

Definition 3.1. In an intuitionistic fuzzy graph G, the set
of vertices C⊆ V the degree of membership of C termed
as cdm of(C,G) and the degree of non-membership of C,
termed as cdnm(C,G). Let C⊆ V be the set of vertices.
Letα andβ intuitionistic fuzzy cuts, then C is called Cαβ -
clique ifcdm(C,G) ≥ α andcdnm(C,G)≤ β .

Definition 3.2. For an intuitionistic fuzzy graph
G = (V,E,µ ,γ) and a intuitionistic fuzzy cuts(α,β ), a
set M⊆V is defined as a Cαβ -maximal clique if

1. M is a Cαβ -clique in G.
2. There is no vertex v∈ (V/M) such that M∪{v} is Cαβ -

clique in G.

Fig. 1: Graph with fuzzy cutα,β .

Example 3.3.Consider Fig.1:
Consider, the set of vertices and edges asV = {vi; i =

1,2, . . . ,6} andE = {ej ; j = 1,2, . . . ,9} in G.
Let α = 0.1 andβ = 0.7 be the fuzzy cuts for cliques

degree of membership and non membership respectively.
Let us take{e4,e5,e9} ∈ E.
cdm{e4,e5,e9}min{0.2,0.7,0.2}= 0.2≥ α.
cdnm{e4,e5,e9}= max{0.3,0.3,0.3}= 0.3≤ β .

Definition 3.4. Let G= (V,E) be an intuitionistic fuzzy
graph with fuzzy cutλ , an edge e∈ E(G) is said to be
intuitionistic fuzzy cut arc if cardinality of that edge
greater thanλ .

Example 3.5.Consider Fig.2

Fig. 2: Graph with fuzzy cut arc.

HereV = {vi; i = 1,2,3} and E = {ej ; j = 1,2,3}.
Let λ = 0.6 be the intuitionistic fuzzy cut. The cardinality
of three edges{e1,e2,e3} are (0.45, 0.55, 0.85)
respectively. Here the edgee3 is the fuzzy cut arc inG.
Hence the cardinality ofe3 = 0.85> λ .

Theorem 3.6.Let C be a Cαβ -clique in G. Then for every
edge e∈ Ec, µ(e)≥ α andγ(e)≤ β holds.

Proof. Let G be an IFG andC be the set of vertices inV.
Since(α,β )-clique satisfies a condition that the min{e∈
Ec/µ(e)} should be greater thanα and max{e∈ Ec/γ(e)}
should be smaller thanβ . Obviouslyµ(e)≥ α andγ(e)≤
β .

Theorem 3.7. Let v1 and v2 be two set of vertices in
Intuitionistic fuzzy graph G, if

1. cdm(v1,G)≤ cdm(v2,G), then
cdm(v1∪v2,G) = cdm(v2,G)

2. cdnm(v1,G)≥ cdnm(v2,G), then
cdnm(v1∪v2,G) = cdnm(v1,G)

Proof. (i) Consider the two set of verticesv1,v2 ∈G.
Let dµ(v1) and dµ(v2) represent the minimal degree

of membership inG. Let α be the fuzzy cut inG.
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cdm(v1,G) represent the minimum of each edgee∈ Ev1,
such that cdm(v1,G) ≥ α. Also cdm(v2,G) represents the
minimum values of each edgee ∈ Ev2 such that
cdm(v2,G) ≤ α. Suppose dµ(v1) ≤ dµ(v2) then
cdm(v1 ∪ v2,G) = cdm(v1,G), since the value of
cdm(v1,G) is less than the value of cdm(v2,G). That is
we are considering minimal degree of membership.
Hence the results holds good.

(ii) Similarly dγ (v1) anddγ(v2) represents the degree
of non-membership inG. Here cdnm(v1,G) ≥ β and
cdnm(v2,G) ≥ β . If dµ(v1) ≥ dµ(v2), then
cdnm(v1 ∪ v2,G) = cdnm(v1,G), since the value of
cdnm(v1,G) is greater than the value of cdnm(v2,G).

Example 3.8.Consider Fig.3.

Fig. 3: Graph with clique degree of membership and non
membership.

Take IFG G = (V,E) with vertices
V = {vi ; i = 1,2, . . . ,9} andE = {ej ; j = 1,2, . . . ,14}.

Let v1 ⊂V be the set of verticesV1 = {v5,v6,v7}. Let
α = 0.1 be the fuzzy cut inG.

1. Consider a clique degree of membership:
Clique degree of membership
(V1,G) = min(0.1,0.2,0.1) = 0.1≥ α.
Let v2 ⊂ V be the set of verticesV2 = {v4,v5,v7} then
clique degree membership,
cdm(V2,G) = min(0.2,0.5,0.2) = 0.2≥ α.
Also considerV1∪V2⊂V be the set of vertices.
V1∪V2 = {v4,v5,v6,v7} clique degree of membership
cdm({V1 ∪V2},G) = min(0.1,0.2,0.5,0.1,0.1,0.2) =
0.1≥ α.
This implies cdm{(V1,G)} ≤ cdm{(V2,G)}.
Hence, cdm(V1∪V2,G)≤ cdm(V1,G).

2. Consider a clique degree of non-membership.
Let β = 0.7 be the fuzzy cut inG.
Clique degree of non-membership

cdnm(V1,G) = max(0.4,0.7,0.7) = 0.7≥ β ,
cdnm(V2,G) = max(0.6,0.6,0.6) = 0.6≥ β .

cdnm({V1∪V2},G) = max(0.6,0.6,0.6,0.6,0.7,0.4)

= 0.7≥ α.

Here cdnm(V1,G)< cdnm(V2,G).
Therefore, cdnm{(V1∪V2,G)}= cdnm(V1,G).

Theorem 3.9. An IFG G is maximal clique graph if it
contains fuzzy cut arcλ and there exist at least one clique
after mining.

Proof. Let λ be the fuzzy cut of the edge setE in G.
Case(i): If Intuitionistic fuzzy graph is complete. Then
after mining the results holds good. HenceG is a maximal
clique graph.
Case(ii): SupposeG is not complete. To prove this theorem
we consider the edges ofE(G). Let n =number of edges
of E(G). After mining together with fuzzy cutλ .

1. If n= 1 obviously it is a clique, then the theorem holds
good.

2. If n= 2 and each vertex is connected then theorem does
not holds. Since by the definition of Intuitionistic fuzzy
graph, the graph does not contain self loop and parallel
edges.

3. If n = 3 and each vertex is connected with each other.
Then we get a complete graph. The theorem holds good.

Therefore, In general, maximal clique graph is obtained
only by choosing fuzzy cut arcλ properly in such a way
that it should not violate the condition that the graph with
at least one clique.

4 Modified Fuzzy formal Analysis

The Modified Fuzzy Formal Analysis (MFFA) is fully
explained in this section. It executes both membership
and non-membership values. Mainly the provides the
definition of it and concentrate on the structure and
construction procedure of Fuzzy formal Analysis lattice.

Definition 4.1(Fuzzy formal context with membership
and non-membership values).

A fuzzy formal context represented as a four tuple M=
(O,A,R,S) where R= φ(o,A), O is the set of objects, A is
a set of attributes and R is a fuzzy set on domain O×A.
Each relation(o,a) ∈ R, o∈ O, a∈ A has a membership
valueµ(o,a) in [0,1] under the relation R, S= ψ(O,A) is
a fuzzy set on a domain O×A. Each relation(o,a)∈ S has
a membership valueγ(o,a) ∈ (0,1) under the relation S.

Definition 4.2. Suppose M= (O,A,R,S) is a modified
fuzzy formal concept andα,β is a confidence threshold
for X ⊆ O and Y⊆ A are defined in the following
operations:
For membership values,
X∗ = {a∈ A\∀o∈ X : µ(o,a)≥ α}
and Y∗ = {o∈O\∀a∈Y : µ(o,a)≥ α}
For Non-membership values
X∗∗ = {a∈ A\∀o∈ X : γ(o,a)≤ β}
and Y∗∗ = {o∈O\∀a∈Y : γ(o,a)≤ β}

Definition 4.3. A Fuzzy concept of a fuzzy formal context
M with a fuzzy cutα,β in a pair {Xj = φ(x),Y} where
X⊆O, Y⊆O, Y⊆A, X∗=Y, Y∗ =X and X∗∗=Y, Y∗∗=
X for both membership and non-membership values. Each
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object O∈ φ(x) is defined asµ0 = mina∈y µ(o,a).
Similarly γ0 = mina∈yγ(o,a).
Particularly, if Y = { }, then M0 = 1 for every O.

Definition 4.4.
A collection of all C(M) of a fuzzy formal context L=

(C(M),≤) with the partial order≤.

Definition 4.5.
We define intuitionistic fuzzy matrix in G, by assuming

the fuzzy cutsα,β in such a way that the accurate result
of any mining maximal clique has been obtained.
Let αi j = maxi µi j andσi j = mini γi j .
Let us define

γi j =

{

max(αi ,α j ), if µi j 6= 0
0, if i = j

and

Si j =

{

min(αi ,α j), if γi j 6= 0
0, if i = j.

Example 4.1.Consider Fig.4.

Fig. 4: Graph contains matrix valuesγi j andSi j .

Therefore, γi j =







0 0.4 0.5 0.5
0.4 0 0.5 0.5
0.5 0.5 0 0.5
0.5 0.5 0.5 0






and

Si j =







0 0.4 0.3 0.3
0.4 0 0.3 0.3
0.3 0.3 0 0.3
0.3 0.3 0.3 0






.

Intuitionistic fuzzy formal context reconstruction. Let
α = 0.5 andβ = 0.3 be the fuzzy cuts inG. Here the
membership values that are less thanα are sieved out
from above matrix and the non-membership values that

are greater thanβ are strained out from above matrix.
Hence the refined fuzzy formal context is shown below:

γi j =







0 0 0.5 0.5
0 0 0.5 0.5

0.5 0.5 0 0.5
0.5 0.5 0.5 0






andSi j =







0 0 0.3 0.3
0 0 0.3 0.3

0.3 0.3 0 0.3
0.3 0.3 0.3 0






.

We extend this concept of mining in huge level by
consideringn×n matrix (see Fig.5).

Fig. 5: Chart to get proposed solution ofCαβ -maximal
cliques.

5 Algorithm

We derive an algorithm based on the above definitions and
theorems. Aim of the algorithm is to miningCαβ -maximal
clique from an intuitionistic fuzzy graph.

Modified fuzzy concept analyses based on Cαβ -
maximal cliques mining algorithm

Input:
IFG G= (V,E,µ ,γ) A fuzzy cutα,β

Output:
Cαβ -maximal cliques.

1. Setτ = φ
2. Start
3. Structure a modified formal context MFFCA(G)

via intuitionistic fuzzy matrix
4. Upgrade the MFFC(G) in by straining out the

membership and non membership values.
5. Construct fuzzy latticeL = (C(M),≤)
6. End
7. Fori = 1 to N do

begin
max= argmax(Xi)

end
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8. Fori = 1 toN do
begin

if (Xi ,Yi) ∈C(MFFC(G))
&& (Xi =Yi) && (i = max)

τ ← (Xi ,Yi)
end

9. End.

6 Application

For the discovery and development of drugs between six
multi-national companies and their Scientists located all
over the world (see Fig.6).

Fig. 6: Graph contains with maximal clique.

Let us consider the verticesV = {vi; i = 1,2, . . .6} be
the leading pharmaceutical companies in the world and
E = {ej ; j = 1,2, . . . ,15} be the concerted strength
between companies. We use maximal clique to find strong
collaborative strength between the companies. Let us
assumeα = 0.1 andβ = 0.7 be the intuitionistic fuzzy
cuts.

Let us consider the following sub graphs ofG as
{g1,g2,g3,g4,g5}.
Let g1 = {v1,v2,v6}. Here
cdm(e1,e6,e10) = min(0.2,0.2,0.4) = 0.2> α.
cdnm(e1,e6,e10) = max(0.6,0.6,0.5) = 0.6< β .
Total cardinality of the edges ofg1 = 1.05

Let g2 = {v1,v2,v3}. Here
cdm(e1,e2,e9) = min(0.2,0.3,0.2) = 0.2> α.
cdnm(e1,e2,e9) = max(0.6,0.6,0.4) = 0.6< β .
Total cardinality of the edges ofg2 = 1.05

Let g3 = {v1,v2,v3,v6}. Here
cdm(e1,e2,e11,e6) = min(0.2,0.3,0.3,0.2) = 0.2> α.

cdnm(e1,e2,e11,e6) = max(0.6,0.6,0.5,0.5) = 0.6< β .
Total cardinality of the edges ofg1 = 1.4

Let g4 = {v1,v2,v5,v6}. Here
cdm(e1,e12,e5,e6) = min(0.2,0.4,0.4,0.2) = 0.2> α.
cdnm(e1,e12,e5,e6) = max(0.6,0.6,0.5,0.5) = 0.6< β .
Total cardinality of the edges ofg1 = 1.5

Let g5 = {v1,v2,v3,v4}. Here
cdm(e1,e2,e3,e8) = min(0.2,0.3,0.3,0.2) = 0.2> α.
cdnm(e1,e2,e3,e8) = max(0.6,0.6,0.3,0.4) = 0.6< β .
Total cardinality of the edges ofg1 = 1.55

Let us assume fuzzy arcλ = 1.52, since the
cardinality of g5 > λ . Therefore, the maximal clique is
sub graph g5 = 1.55. Hence the companies
{vi; i = 1,2,3,4} has the resilient collaboration in making
drugs.

7 Conclusion

In this paper, to examine theCαβ -maximal cliques from
an Intuitionistic Fuzzy Graph, the modified fuzzy formal
context analysis algorithm is proposed. The main features
of this algorithm are to analyses the theoretical study over
theCαβ -maximal cliques from computational fuzzy based
approach. It is also anticipated to do these perceptions on
the other extension of mining maximal cliques.
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