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Abstract: This paper deals with an inspiring and real-world problenmafing maximal cliques in an intuitionistic fuzzy gragh
where the edges are weighted by the degrees of memberskifhéogvith non-membership values. By using fuzzy catsf) such
that 0< a3 < 1, a modified concept &,z maximal clique is proposed in an intuitionistic fuzzy grapb findC, g maximal cliques
in an intuitionistic fuzzy graph, we present an effectivenimg algorithm based on thi, g is introduced.

Keywords: Intuitionistic Fuzzy GraphC,g maximal clique, degree of non-membership, fuzzy cuts,inality of edges, fuzzy cut
arc.

1 Introduction Last few years, the Fuzzy theory become faded
compare to the Graph theory which dominates completely
The analysis of huge databases and receiving théhe earlier. Fuzzy set has been developed with the concept
knowledge discovery is a critical task in making a suitableof prospective field which is recognized as an Knowledge
decision in real time industry problems. Large data setshase. In 1965, ‘fuzzy sets’ was published by Zad&HR [
frequently contain information that is unreliable in n&ur as his inspirational work, in which he thoroughly
Identification of dense substructure is a very importantexplained the fuzzy set theory. The fuzzy set and fuzzy
task that comes from the graph. There are manyrelations are put in to argumentative discussion by
applications in data processing which incorporates theKaufmann B]. The concept of fuzzy analogues on various
cluster and community detection in social and biologicalgraph theoretic concepts is identified by Azri@d] in
networks p]. Its additionally potential that the foremost 1975. Some important clarifications are introduced on
fundamental dense sub structure in an exceedingly grapfuzzy graphs by Rosenfeld Bhattachargh Moreover he
will unremarkably employed in a band a wholly obtained fuzzy graph theory outcomes as concerning
connected sub graphld. Naturally, maximal cligues center and eccentricity. The representing information and
attract us due its special character that it never berelationships between objects of Sunitha and Mathesy [
contained within the other clique. are suitably displayed by the fuzzy graph theory.
It is one of the largest issues to identify the all
maximal cliques in a graph from the graph mining which ~ Atanassov ] has taken much efforts in the analysis
has been used in several settings probably from sociabf fuzzy sets and defined it. The identical factor is more
networks the overlapping communities are foundoutlined by Zadeh, that he significantly extended the
out [5, 13], the e-mail networks are analysed and the conception of “Intuitionistic Fuzzy Sets” and explored
bio-informatics issues are recognized. The relationshipsheir basic properties. This applications of Intuitiorst
themselves become a probabilistic naturally in a numberfuzzy sets is originated by him that is employed in
of the cases as we tend to face the link of one persorknowledgeable systems, systems theory. In addition to
influences another person in an exceedingly sociathat a plenty of operations and relations over intuitigoist
network. fuzzy sets are has explained by him.
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Atanassov’s intuitionistic fuzzy graph is identified as R 20209 PR
O

an exceptional case and analysed the modules by %% &
Parvathy and Karunambigai 1]]. Operations on

&
6(0.6,0.4)
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Intuitionistic Fuzzy Graphs (IFGs) are also done by N

them [12]. Antony Shannon and Atanassovly & “a,
deliberate a original generalization of the intuitiorgsti ) 0
fuzzy graphs. The fuzzy graph model has fascinated

plenty of responsiveness who works on data mining from Fig. 1: Graph with fuzzy cut, .

the societies of data science and fuzzy logic. In this paper,
we design a novel methodology on maximal clique in
IFGs and its properties are studied. Example 3.3Consider Figl:

Consider, the set of vertices and edge¥as {v;; i =
1,2,....6}andE={ej; j=1,2,...,9} inG.

Leta = 0.1 andB = 0.7 be the fuzzy cuts for cliques
degree of membership and non membership respectively.

Let us take{ey, es, cE.
Now-a-days a large amount of recent work on cdm{es ese{egeiﬁne{ggz 07,02 =0.2> a.

demonstrating fuzzy on possibility of communities _ _

recognition and clustering using fuzzy logic. The problem cdnmies, &, &} =max{0.3,03,0.3} =0.3< .

of finding most fuzzy cliques in fuzzy graphs is generatedDefinition 3.4. Let G= (V,E) be an intuitionistic fuzzy
by Bandyapadhyay. Then, the proposed problem wagjraph with fuzzy cud, an edge e= E(G) is said to be

treated to reach the quadratic of 0-1 programmingintuitionistic fuzzy cut arc if cardinality of that edge
problem which should be unconstrained. A clique that cangreater tham .

attain other vertices with greater membership degrees and

combine them into cliques is defined as the maximumExample 3.5Consider Fig2

fuzzy clique. The problem of counting tdpeliques with

the top-k highest likelihood of existence from unsure

graph, that differs from §], a current research work 10301

aiming on mining the maximal cliques form unsure *
graph [LQ] is explained by the Zou et allf]. A new

2 Related work

€3(0.3,0.4) €,(03,0.4)

concept, namedr-largest clique in an unsure graph is s e s 0502

also defined by them. Roberto De Virgilio et al3] for

computing all largest cliques of an arbitrarily massive Fig. 2: Graph with fuzzy cut arc.

network in a distributing environment and theoretical

results showing the correctness and completeness over the HereV = {v;;i = 1,2,3} andE = {¢j; j = 1,2,3}.

sparse graphs. Obviously, the weights on the edges of ket A = 0.6 be the intuitionistic fuzzy cut. The cardinality
fuzzy graph refer to the degrees of membership.of three edges{e;,ey,e3} are (0.45, 0.55, 0.85)
Motivated by those differences this paper explores a newespectively. Here the edgs is the fuzzy cut arc irG.
approach of mining (a,B)-maximal cliques from Hence the cardinality af3 = 0.85> A.

intuitionistic fuzzy graphs.
yarap Theorem 3.6.Let C be a Gg-clique in G. Then for every

edge e= Eg, p(e) > a andy(e) < 8 holds.

3 Main Results Proof. Let G be an IFG and be the set of vertices M.
Since(a, 8)-clique satisfies a condition that the nienc
Definition 3.1. In an intuitionistic fuzzy graph G, the set Ec/u(e)} should be greater thamand maxec E;/y(e)}
of vertices CC V the degree of membership of C termed should be smaller thgf. Obviouslyu(e) > a andy(e) <
as cdm of(C,G) and the degree of non-membership of C, .
termed as cdnii€,G). Let CC V be the set of vertices. ) )
Leta and intuitionistic fuzzy cuts, then C is called g Theorem 3.7.Let vy and v be two set of vertices in
clique ifcdm(C,G) > a andcdnm(C,G) < B. Intuitionistic fuzzy graph G, if
1.cdm(vy,G) < cdm(vp,G), then
Definition 3.2. For an intuitionistic fuzzy graph cdm(vy Uvz, G) = cdm(vo, G)
G = (V,E,u,y) and a intuitionistic fuzzy cutéa,f), a  2.cdnmvy,G) > cdnm(vo,G), then

set MCV is defined as a gz-maximal clique if cdnm(vy Uy, G) = cdnm(vy, G)

1. Mis a_Q,ﬁ-clique inG. . Proof. (i) Consider the two set of vertices,v» € G.

2. There is no vertex& (V /M) such that MJ{v} is Cgp- Let dy(v1) anddy(v2) represent the minimal degree
clique in G. of membership inG. Let o be the fuzzy cut inG.
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cdm(vy, G) represent the minimum of each edge E,,,
such that cdrfv;, G) > a. Also cdm(v», G) represents the
minimum values of each edge € E,, such that
cdm(v2,G) < a. Suppose dy(v1) < dy(v2) then
cdmivi U vo,G) = cdm(vy,G), since the value of
cdm(vy, G) is less than the value of cdm,G). That is

we are considering minimal degree of membership.

Hence the results holds good.

(i) Similarly dy(v1) anddy(v2) represents the degre
of non-membership inG. Here cdnniv;,G) > 3 and
cdnmv,,G) > B. If  dy(vai) > dy(v2), then
cdnmvy U v2,G) = cdnm(vy,G), since the value of
cdnm(vy, G) is greater than the value of cdiiw, G).

e

Example 3.8Consider Fig3.
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Fig. 3: Graph with clique degree of membership and non

membership.

Take IFG G = (V,E) with vertices

V={v;i=12..,9tandE={e; j=12,...,14}.
Letvs C V be the set of verticeg, = {vs,vg,V7}. Let

o = 0.1 be the fuzzy cut ire.

1. Consider a clique degree of membership:
Clique degree of membership
(V1,G) =min(0.1,0.2,0.1) = 0.1 > a.
Let v, C V be the set of vertice®, = {v4,Vs,v;} then
cligue degree membership,
cdm(V2,G) = min(0.2,0.5,0.2) = 0.2 > a.
Also consideiv; UV, C V be the set of vertices.
ViUV, = {va, Vs, Vg, v7} cliqgue degree of membership
cdm({V1 UV,},G) = min(0.1,0.2,0.5,0.1,0.1,0.2) =
01>a.
This implies cdr§ (V1,G)} < cdm{(V2,G)}.
Hence, cdriiv, UV,, G) < cdm(Vy, G).
. Consider a clique degree of non-membership.
Let 3 = 0.7 be the fuzzy cut irG.
Clique degree of non-membership

cdnmV1,G) = max0.4,0.7,0.7) = 0.7 > (3,
cdnmV,,G) = max0.6,0.6,0.6) = 0.6 > 3.
cdnm({V1UV2},G) = max0.6,0.6,0.6,0.6,0.7,0.4)
=07>aq.

Here cdnnVy,G) < cdnmV2, G).
Therefore, cdnii(V1 UV, G)} = cdnm(V1, G).

Theorem 3.9.An IFG G is maximal clique graph if it
contains fuzzy cut arg and there exist at least one clique
after mining.

Proof. Let A be the fuzzy cut of the edge <€tin G.
Case(i): If Intuitionistic fuzzy graph is complete. Then
after mining the results holds good. Her@@és a maximal
clique graph.

Case(ii): Supposé is not complete. To prove this theorem
we consider the edges &f(G). Let n =number of edges
of E(G). After mining together with fuzzy cu.

1. 1f n=1 obviously it is a clique, then the theorem holds
good.

2. If n=2 and each vertex is connected then theorem does
not holds. Since by the definition of Intuitionistic fuzzy
graph, the graph does not contain self loop and parallel
edges.

3.If n= 3 and each vertex is connected with each other.
Then we get a complete graph. The theorem holds good.

Therefore, In general, maximal clique graph is obtained
only by choosing fuzzy cut ar& properly in such a way
that it should not violate the condition that the graph with
at least one clique.

4 Modified Fuzzy formal Analysis

The Modified Fuzzy Formal Analysis (MFFA) is fully
explained in this section. It executes both membership
and non-membership values. Mainly the provides the
definition of it and concentrate on the structure and
construction procedure of Fuzzy formal Analysis lattice.

Definition 4.1(Fuzzy formal context with membership
and non-membership values).

A fuzzy formal context represented as a four tupleM
(O,A/R S) where R= ¢(0,A), O is the set of objects, A is
a set of attributes and R is a fuzzy set on domairn A
Each relation(o,a) € R, o€ O, a€ A has a membership
valuepi(o,a) in [0,1] under the relation R, S (O, A) is
a fuzzy set on a domainA. Each relationo,a) € S has
a membership valug(o,a) € (0,1) under the relation S.

Definition 4.2. Suppose M= (O,A/R'S) is a modified
fuzzy formal concept and, 3 is a confidence threshold
for X € O and YC A are defined in the following
operations:

For membership values,
X*={acA\Yoe X: u(o,a)>a
andY*={oecO\VaeY: u(o,a)
For Non-membership values
X*={aeA\WVoe X:y(o,a) <B}
andY* ={ocO\VaeY:y(o,a) <fB}

}
>a}

Definition 4.3. A Fuzzy concept of a fuzzy formal context
M with a fuzzy cutr, in a pair {Xj = @(x),Y} where

XCO,YCO,YCA X =Y, YY=Xand X*=Y, Y
X for both membership and non-membership values. Each
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object Oe ¢(x) is def

ined aglp = Minacy U(0,a).

Similarly yp = minaey y(0,a).
Particularly, if Y = { }, then My = 1 for every O.

Definition 4.4.

A collection of all GM) of a fuzzy formal context £

(C(M), <) with the partial order<.

Definition 4.5.

We define intuitionistic fuzzy matrix in G, by assuming
the fuzzy cutsr, B in such a way that the accurate result

of any mining maxim

al clique has been obtained.

Letaij = max pij and ajj = min; ;.

Let us define

{max(ai,aj),
Vij = 0

and

o min(ori,aj),
o1

if wij #0
ifi = |

if yj #0
ifi = j.

Example 4.1Consider Fig4.

5(0.8,0.2)

,(0.2,0.3)

€,4(0.8,0.2)

(s°0'7°0)%

1,4(0.9,0.1)

5(0.6,0.4)

5(0.6,0.4)

Fig. 4: Graph contains matrix valugg ands;.

0 040505
Therefore, yj = 8'3 005 065 (())g and
050505 0
0 040303
0.4 0 0303

Si=|0303 0 03

030303 0

are greater thai8 are strained out from above matrix.
Hence the refined fuzzy formal context is shown below:
0 0 0505 0 0 0303
| 0 0 0505 ds: — 0 0 0303
¥i=los505 0 05| 39S = (0303 0 03
050505 0 0303030
We extend this concept of mining in huge level by
consideringh x n matrix (see Fig5).

/ Intuitionistic Fuzzy Graph G (V, E) >
[

Modified Fuzzy Formal Context Analysis

|

Construction of Lattice

Intuitionistic Fuzzy Matrix

Cq p - Maximal cliques

Fig. 5: Chart to get proposed solution Gf,z-maximal
cliques.

5 Algorithm

We derive an algorithm based on the above definitions and
theorems. Aim of the algorithm is to minir@g, g-maximal
cligue from an intuitionistic fuzzy graph.

Modified fuzzy concept analyses based gp-C
maximal cliques mining algorithm

Input:

IFGG=(V,E,u,y) Afuzzycuta,f
Output:

Cqp-maximal cliques.

1.Settr=¢

2. Start

3. Structure a modified formal context MFFG/&)

via intuitionistic fuzzy matrix

4. Upgrade the MFFCG) in by straining out the
membership and non membership values.

5. Construct fuzzy lattice = (C(M), <)

6. End

Intuitionistic fuzzy formal context reconstruction. Let 7. Fori=1toN do

o = 0.5 andB = 0.3 be the fuzzy cuts irG. Here the
membership values that are less thamrare sieved out

begin
max= argmaxX)

from above matrix and the non-membership values that end
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8. Fori=1toNdo cdnm(er, e, e11,65) = max0.6,0.6,0.5,0.5) = 0.6 < .
begin Total cardinality of the edges of = 1.4
if (Xiv\ﬁ)_G C(MFF,C(_G)) Letgs = {Vv1,V2,Vs5,V6}. Here
&& O_('Y_— Yi) && (i =max) cdm(ey, er, e, ) — min(0.2,0.4,0.4,0.2) = 0.2 > a.
T : (%, Yi) cdnn(ey, er2, 5, e5) = max0.6,0.6,0.5,0.5) = 0.6 < .
9 En?jn Total cardinality of the edges @f = 1.5
' ' Letgs = {Vl,V27V3,V4}. Here
cdm(ep, e, e3,e5) = min(0.2,0.3,0.3,0.2) = 0.2 > a.
6 Application cdnm(ey, e, e3,68) = max0.6,0.6,0.3,0.4) = 0.6 < B.

Total cardinality of the edges of = 1.55

For the discovery and development of drugs between six L€t us assume fuzzy ard = 152, since the
multi-national companies and their Scientists located allc@rdinality ofgs > A. Therefore, the maximal clique is

over the world (see Fig). sub graph gs = 155. Hence the companies
{vi;i =1,2,3,4} has the resilient collaboration in making
drugs.
v,(0.2,0.4)
. 7 Conclusion
@%9
o Y% . . . .
% ° In this paper, to examine thg,z-maximal cliques from
v6(0.4,0.5) i 5(0.7,02) an Intuitionistic Fuzzy Graph, the modified fuzzy formal
RN context analysis algorithm is proposed. The main features
NS of this algorithm are to analyses the theoretical study over
/ » \ theC,g-maximal cliques from computational fuzzy based
ec(040.5) %0 €2(0.3,0.6) approach. It is also anticipated to do these perceptions on
/ )/ 3 l \ the other extension of mining maximal cliques.
> ;
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