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Abstract: In this paper, an analytical solution for the stresses in a homogeneous, transversely isotropic, piezo-thermo-elastic material
has investigated. The generalized theories of thermo-elasticity have used to investigate the problem. The surface subjected to thermally
insulated or isothermal and electrically shorted boundaryconditions. Finally, in order to illustrate the analyticaldevelopment, numerical
solution has carried out piezo - thermo-elastic material. The corresponding simulated results of various physical quantities such as
displacements and stresses have presented graphically.
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1 Introduction

The interaction between the magnetic and thermal fields
plays a vital role in geophysics for understanding the
effect of Earth’s magnetic field on seismic waves. With
the development of active material systems, there is a
significant interest in the coupling effects between the
elastic, magnetic and temperature for their application in
sensing and actuation [1–3] Propagation of waves in
piezoelectric plates has been an active research area for
several decades because of the application in piezoelectric
transducers, resonators, filters, actuators and other devices
such as microelectromechanical systems (MEMS). A
number of exact solutions of the three-dimensional
dynamical equations have obtained for widely used
materials such as ceramics, various crystal cuts of quartz
and materials of other symmetries. Yang et al. [4]
discussed the detailed studies and analysis of
piezoelectric vibratory gyroscopes in the recent
publications. A comprehensive review of the work on
piezoelectricity and related fields has done by Yang et
al. [5,6].

Sharma and Kumar [7,9] have studied the propagation
of plane harmonic waves in piezo-thermo-elastic
materials. Sharma and Othman [8] investigated the effect

of rotation on generalized thermo-viscoelastic
Rayleigh–Lamb waves in plates. Sharma and Pal [9]
investigated the propagation of Lamb waves in a
transversely isotropic, charge and stress-free
piezo-thermo-elastic plate in the context of conventional
coupled theory of piezo-thermo-elasticity. They studied
the wave characteristics, such as phase velocity and
attenuation coefficient of the waves in Cadmium Selenide
(CdSe) material. Sharma and Thakur [10] studied the
effect of rotation on Rayleigh–Lamb waves in
magneto-thermo-elastic plates. Recently, Sharma et
al. [11–14] have studied the effect of rotation on Rayleigh
waves in piezo-thermo-elastic half space. (”Reflection of
piezothermoelastic waves from the charge and stress free
boundary of a transversely isotropic half space).

A.M.Abd-Alla and Mahmoud [15, 16] studied on
problem of radial vibrations in non-homogeneity isotropic
cylinder under influence of initial stress and magnetic
field, influence of rotation and generalized
magneto-thermo-elastic on Rayleigh waves in a granular
medium under effect of initial stress and gravity field.
Mahmoud [17, 18] studied analytical solution of wave
propagation in non-homogeneous orthotropic rotating
elastic media and studied effect of rotation and magnetic
field through porous medium on Peristaltic transport of a
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Jeffrey fluid in tube. Ting, [19] studied surface waves in a
rotating anisotropic elastic half space. Yang [20] studied
piezoelectric vibratory gyroscopes. Zhou and Jiang [21]
studied effects of Coriolis force and centrifugal force on
acoustic waves propagating along the surface of a
piezoelectric half space. Mahmoud [24] discussed
analytical solution for free vibrations of elasto-dynamic
orthotropic hollow sphere under the influence of rotation,.
A.M.Abd-Alla and Mahmoud [23, 25] studied
magneto-thermo-elastic problem in rotating
non-homogeneous orthotropic hollow cylindrical under
the hyperbolic heat conduction model. They also studied
Influence of magnetic field on free vibrations in
elastodynamic problem of orthotropic hollow sphere.

In the present work, the displacement components,
stresses components, electric potential, the temperaturein
a homogeneous, transversely isotropic,
piezo-thermo-elastic material has investigated. The
corresponding numerical results of various physical
quantities have presented graphically.

2 Formulation of the problem

In this work, One assume a transversely isotropic
homogeneous, piezo-thermo-elastic material. The
material’s thickness is 2d at uniform temperatureT0 in
undisturbed state. The origin of the coordinate system
(x,y,z)on the middle surface of the material used in this
work. One have chosen the xy-plane so that it coincides
with the middle surface and z-axis normal to it along the
thickness. The x-axis chosen in the wave propagation
direction to ensure that all the particles on a line parallel
to y-axis are equally spaced. Accordingly, not all the field
quantities depend on yz-coordinates. Material surfaces
are represented byx = ±d which are governed by
isothermal, electrically shorted (closed circuit), stress free
and thermally insulated boundary conditions. Let
u(x, t) = (u,0,0) represents the displacement vector,
φ(x, t) represents the electric potential,ψ(x, t) represents
the magnetic potential andT (x, t)refers to temperature
change in the material. They considered this case in the
non-existence of heat sources, charge density, and body
forces in dimensionless form linear generalized theories
of piezo-thermo-elasticity. The hexagonal crystal
symmetry electric displacement along with the
constitutive relations take the following form:

σxx = c11εxx −β1

(

1+ t1δ2k
∂
∂ t

)

T, (1)

σyy = c12εxx −β1

(

1+ t1δ2k
∂
∂ t

)

T, (2)

Dx = ς11Ex +m11Hx, (4)

Bx = m11Ex + µ11Hx, (5)

where,β1 = (c11+ c12)γ1+ c13γ3, β3 = 2c13γ1
Whereci j are isothermal elastic tensor,σi j is stress

vector,εi j is strain tensor,ςi j is electric permittivity,ei j is

piezoelectric parameter,t1 is thermal relaxation time,
β1, β3 are the isothermal thermo-elastic parameters,γ1, γ3
, k1, is the coefficient of linear thermal expansion and
thermal conductivities along and perpendicular to the axis
of symmetry, respectively. The relation between the
electric field vectorEi and the electric potentialφ , and
Similarly, the magnetic fieldHi is related to the magnetic
potentialψ as: is given by:

Ex =− ∂
∂x φ , Hx =− ∂ψ

∂x , (6)

∂
∂x σxx = ρ ∂ 2

∂ t2
u, (7)

∂
∂x Dx = 0, (8)

∂
∂x Bx = 0, (9)

K11
∂ 2

∂x2 T −ρCe

(

∂
∂ t + t0

∂ 2

∂ t2

)

T = β1T0

(

1+ t0δ1k
∂
∂ t

)(

∂ 2

∂x∂ t u
)

. (10)

Using Eqs. (7-10) and Eqs. (1-6), One get

c11
∂ 2

∂ x2 u−β1

(

∂
∂ x

T +δ2kt1
∂ 2

∂ x∂ t
T

)

= ρ
∂ 2

∂ t2 u, (11)

ς11
∂ 2

∂ x2 φ +m11
∂ 2

∂ x2 ψ = 0, (12)

m11
∂ 2

∂ x2 φ +µ11
∂ 2

∂ x2 ψ = 0, (13)

K11

ρCe

∂ 2

∂ x2 T −
(

∂
∂ t

+ t0
∂ 2

∂ t2

)

T =
β1T0

ρCe

(

1+δ1kt0
∂
∂ t

)

∂ 2

∂ x∂ t
u(14)

In order to simplify, One will implement the following
dimensionless variables.

σ ′
i j =

σi j
β1T0

, β̄ = β1
c11

, K = K11
ρCe

, ρ̄ = ρ
c11

, ∈= β1T0
ρCe

, ε =
T0β 2

1
ρ Cec11

, D′
i =

Di
β1T0

,

β1 = (c11+ c12) γ1+ c13γ3, β3 = 2c13γ1 , m1 =
m11
ς11

, µ1 =
µ11
m11

. (15)

Eqs. (11)- (14) in the non-dimensional forms (after
suppressing the primes) reduce to

∂ 2

∂x2 u− β̄
(

∂
∂ x + δ2kt1

∂ 2

∂x∂ t

)

T = ρ̄
(

∂ 2

∂ t2

)

u, (16)

∂ 2

∂x2 φ +m1
∂ 2

∂x2 ψ = 0, (17)

∂ 2

∂x2 φ + µ1
∂ 2

∂x2 ψ = 0, (18)

K ∂ 2

∂x2 T −
(

∂
∂ t + t0 ∂ 2

∂ t2

)

T =
(

1+ δ1kt0
∂
∂ t

)(

∈ ∂ 2

∂x∂ t u
)

. (19)

where ρ is density, Ce is specific heat at constant
strain, t0, t1, are thermal relaxation times. The
superimposed dots indicate time differentiation and
comma notation has been utilized for spatial derivatives.
The symbolδ jk, j = 1,2, is the Kronecker’s delta in which
k = 1corresponds to Lord and Shulman andk = 2 refers
to Green and Lindsay theory of thermo-elasticity. The
aforementioned theories are abbreviated as GL and SL
respectively. The prime was repressed for simplification.
ϕ ,ψ Di and Bi, are respectively, the electric potential,
magnetic potential, electrostatic displacement and
magnetic induction,ε and µ jk are, respectively, the
dielectric and magnetic permeability coefficients,ek j ,dk j
and m jk are, respectively, the piezoelectric,
piezo-magnetic and magneto-electric material
coefficients.
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3 Solution of the problem

One consider the solutions of the form:

u = ū(x) eiωt
, (20)

φ= φ̄ (x) eiωt
, (21)

ψ= ψ̄(x) eiωt
, (22)

T =T̄ (x) eiωt
. (23)

where ω is the angular frequency, and prime was
repressed for simplification. ū(x), ϕ̄(x), ψ̄(x) and T̄ (x)
are the displacement componentu, electric potential,
magnetic potential and temperature change respectively.
Using solutions (20-23) into Eqs. (16-19) to get a system
of four coupled equations of components

(

ū(x), ϕ̄(x), ψ̄(x), T̄(x)
)T

,

(

∇2
1−ρω2

)

ū−β1(1+ iω t1) dT̄
dx = 0, (24)

∇2
1φ̄ +m1∇2

1ψ̄ = 0, (25)

∇2
1φ̄ + µ1∇2

1ψ̄ = 0, (26)

ε1
(

iω − t0δ1kc2
)

d
dx ū−

(

∇2
1− (iω − t0ω2)

)

T̄ = 0, (27)

The non-trivial solutions of Eq. (24)-(27) are represented
by:

ū(x) = 1
4λ

(

A1
(

C1e−A2x −C2eA2x
)

+A3(C3e−A4x −A3C4eA4x)
)

, (28)

T̄ (x) = C1e−A5x +C2eA5x +C3e−A6x +C4eA6x
, (29)

φ̄ (x) = C5x+C6, (30)

ψ̄(x) = C7x+C8. (31)

And substituting Eqs. (28-31) into Eqs (20-23), One obtain

u(x, t) =
1

4λ
(

A1
(

C1e−A2x −C2eA2x
)

+A3(C3e−A4x −C4eA4x)
)

ei ω t
, (32)

T (x, t) =
(

C1e−A5x +C2eA5x +C3e−A6x +C4eA6x
)

ei ω t
, (33)

φ(x, t) = (C5x+C6)ei ω t
, (34)

ψ(x, t) = (C7x+C8)ei ω t
. (35)

And substituting Eqs. (32-35) along Eqs. (1-5), One obtain
the stresses

σxx =
−c11
4λ

(

A1A2
(

C1e−A2x +C2eA2x
)

+A3A4(C3e−A4x +C4eA4x)
)

eiω t

−(β1+ iωt1)
(

C1e−A5x +C2eA5x +C3e−A6x +C4eA6x
)

eiω t
, (36)

σyy =
−c12
4λ

(

A1A2
(

C1e−A2x +C2eA2x
)

+A3A4(C3e−A4x +C4eA4x)
)

eiω t

−(β1+ iωt1)
(

C1e−A5x +C2eA5x +C3e−A6x +C4eA6x
)

eiω t
, (37)

σzz =
−c13
4λ

(

A1A2
(

C1e−A2x +C2eA2x
)

+A3A4(C3e−A4x +C4eA4x)
)

eiω t

−(β3+ iωt1)
(

C1e−A5x +C2eA5x +C3e−A6x +C4eA6x
)

eiω t
, (38)

And electrical displacement and magnetic induction as:

Dx =−(ς11C5+m11C7)eiω t
, (39)

Bx =−(m11C5+ µ11C7)eiω t
. (40)

Where Ei , Di Hi , Bi are the electric field, electrical
displacement, magnetic field and magnetic induction
respectively,Ai, i = 1,2,3,4. and are given as following:

A1 = B2
√
−2B1, A2 =

1√
2

√
−B1
c11

,

A3 = B4
√
−B3, A4 =

1√
2

√
−B3
c11

.

B1 = (
√

α1+α1)c11, B2 =−
√

α1+α3,

B3 = (−
√

α1+α1)c11, B4 =
√

α1+α3,

λ =
cερ (i+ t0cδ1k)

(

c2
)

c11√
2

,

α1 =−β1t2
1c6ε2t2

0 δ 2
1k +2it0β1δ1kεt1(β1 (t1+ t0δ1k)ε

+t0c11δ2k +ρ)c5 +(β 2
1 (t

2
1 + δ 2

1kt2
0 +4t0δ1kt1)ε2

+2(t2
0δ1kδ2kc11+(t1(δ1k + δ2k)c11+ρδ1k)t0+ t1ρ)β1ε

+(t0c11δ2k −ρ)2c4+(−2iβ 2
1(t1+ t0δ1k)ε2

+2iβ1(((−δ2k − δ1k)c11)t0−ρ − t1c11)ε
−2i(t0c11δ2k −ρ)c11)c3+(−β 2

1ε2−2β1(
c11)ε − c2

11)c
2

α2 = iβ1t1c3εt0δ1k +(β1(t1+ t0δ1k)ε + t0c11δ2k +ρ)c2

−i(β1ε + c11)c,

α3 = iβ1t1c3εt0δ1k +(β1(t1+ t0δ1k)ε + t0c11δ2k −ρ)c2

−i(β1ε + c11)c,

4 Boundary conditions

The surfaces of the material proposed to be electrically
shorted and thermally insulated/isothermal.
Consequently, the following boundary conditions have to
be satisfied at the surface of materialx =±d.

(a) Mechanical condition

σxx = p0eiωt
, (41)

wherep0eiωt is the periodic load.
(b) Electrical conditions

φ= 0, (42)

(b) Magnetic conditions

ψ= 0, (43)

(c) Thermal boundary conditions: Isothermal surfaces

T= 0, (44)

5 Numerical results and discussion

In the light of explaining the analytical results, which One
have got in the previous sections, One are currently
showing set of numerical results for the following, two
Stress free, thermally insulated piezo-thermo-elastic
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Fig. 1: Dispersion curves for displacement u, versus x with
different values for time(U2015t = 2, . . . . . . t = 4,−−t = 6,−t =
8)

Fig. 2: Dispersion curves for temperatureT , versus x with
different values for time (U2015t = 2, . . . . . . t = 4,−−t = 6,−t =
8)

material, electrically shorted. give the physical data for
material

c11= 2.11, c12 = 0.94, c13 = 1.02, m11 = 0.0074,

ς11= 10, µ11=−344.66, e15 = 106.6, Ce = 260,

k11 = 1.5, t1 = 1, ω = 9×10−1
, ρ = 1.858, δ2k = 1,

δ1k = 1, Cv = 420, T0 = 298, β1 = 1.52.

A dimensionless thermal relaxation timet0 = 0.5 andt1 is
selected as multiple oft0. The thermomechanical
coupling factor, specific loss factor and relative frequency
shifts numerically analyzed. The computed results in
respected dispersion curves, Figure 1 shows the
comparison between the displacement componentu. The

Fig. 3: Dispersion curves for normal stressU3c3xx, versus x with
different values for time (U2015t =2, . . . . . . t = 4,−−t = 6,−t =
8)

Fig. 4: Fig. 4 Dispersion curves for normal stressU3c3yy,versus
x with different values for time (U2015t = 2, . . . . . . t = 4,−− t =
6,−t = 8)

computations are carried out for the timet = 2, 4, 6,8, on
the surface plane. Figures 2 shows the comparison
between the temperatureT , the computations are carried
out for the time t = 2, 4, 6,8, on the surface plane.
Figures 3-5, shows the comparison between the normal
stresses componentsσxx, σyy andσzz, the computations
carried out for the timet = 2, 4, 6,8. Figures 6-7 shows
the comparison between the electric displacementDx and
magnetic inductionBx, the computations are carried out
for the time t = 2, 4, 6,8, on the surface medium.
According to the above numerical results, one can
observe that All the physical quantities agree with the
boundary conditions. The significant effect of thermal
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Fig. 5: Dispersion curves for normal stressU3c3zz,versusx with
different values for time (U2015t = 2, . . . . . . t = 4,−−t = 6,−t =
8)

Fig. 6: Dispersion curves for electrical displacementDx, versus x
with different values for time (U2015t = 2, . . . . . . t = 4,−− t =
6,−t = 8)

time relaxation has observed in all the various physical
quantities of the material, since all the profiles of
considered functions are quite distinguishable.

Finally, one can observe that, the analytical solutions
based upon normal mode analysis for piezoelectric
thermo-elastic medium have been developed and utilized
and all the functions are continuous.

6 Conclusion

The mathematical model of the mechanical stresses in a
homogeneous, transversely isotropic,
piezo-thermo-elastic material have investigated. The
generalized theories of thermo-elasticity have used to

Fig. 7: Dispersion curves for magnetic inductionBx, versus x
with different values for time (U2015t = 2, . . . . . . t = 4,−− t =
6,−t = 8)

investigate the problem. It was then subjecting the
conditions, electrical and thermally insulated thermally.
Results in the forms of graphs and so each variables such
stresses and displacements displayed.
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