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Abstract: A multistart (MS) clustering technique to compute multiptets of a system of nonlinear equations through the global
optimization of an appropriate merit function is presenfBde search procedure that is invoked to converge to a raotirgy from

a randomly generated point inside the search space, is a agantof the harmony search (HS) metaheuristic. The HS slitav
inspiration from an artistic process, the improvisationgass of musicians seeking a wonderful harmony. The newichiAS algorithm

is based on an improvisation operator that mimics the bastdray and uses the idea of a differential variation, borifrem the
differential evolution algorithm. Computational expeents involving a benchmark set of small and large dimensiopmdblems with
multiple roots are presented. The results show that theogemphybrid HS-based MS algorithm is effective in locatingtiple roots
and competitive when compared with other metaheuristics.

Keywords: nonlinear equations, multistart, harmony search, difféatevolution

1 Introduction This study extends the work presented B 6]. Here,
we aim at investigating the performance of a multistart
(MS) method combined with the harmony search (HS)

Some problems in engineering, chemistry, physics,yetaneuristic to compute multiple roots of a system of
medicine and economics aim at determining the roots of %honlinear equations of the form

system of equations. In general, these problems are

nonlinear and difficult to solve. The most popular f(x) =0, 1)
technique to solve nonlinear equations is the Newton’s

method []. It is a computationally expensive method where  f(x) = (f1(x), f2(x),..., fa(X))T, each
since the Jacobian matrix and the solution of a system offi : Q C R" - R, i = 1,...,n is a continuous possibly

linear equations are required at each iteration. On thenonlinear function in the search space aRds a closed
other hand, Quasi-Newton methods are less expensiveonvex set, herein defined as|[,u =
since they avoid either the necessity of computing{x: —co < I < x < u; < o0,i = 1... ,n}. We do not
derivatives, or the need of solving a full linear system perassume that the functiondi(x), i = 1,...,n are
iteration or both tasks?[ 3,4]. However, they assume that differentiable. Thus, we are interested in deriving a
the functions are smooth so that derivatives can bederivative-free technique that does not assume
properly approximated by finite differences. Another smoothness, convexity and differentiability. The problem
disadvantage of the traditional Newton-type methods isof solving a nonlinear system of equations can be
that their convergence and practical performance araaturally formulated as a global optimization problem.
highly sensitive to the provided initial approximations. | Problem () is equivalent to

most practical cases, it is not an easy task to guess a good .

initial approximation. Furthermore, they are only capable ; _ )2

of finding one root at each run of the algorithm. xe?z"c”Rn A X) = I; (97, @
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in the sense that they have the same solutions. These highly accurate solution in a specified and small region,
required solutions are the global minima, and not just thestarting from a randomly selected promising point. Good
local minima, of the function#(x), known as merit local search procedures, like the traditional BFGS
function, in the sef2. Problem ) is similar to the usual Quasi-Newton method, have been used in the past. The
least squares problem for which many iterative methodsvell-known ‘MinFinder’ and the ‘ldeal Multistart’ are
have been proposed. They basically assume that thawvo examples of this kind of multistart paradigniss[17,
objective function is twice continuously differentiable. 19]. Unfortunately they use first derivatives of the
However, the objective.# in (2) is only once involved functions to define the most promising direction
differentiable if some, or just one, of thg, (i =1,...,n) to search for the required solution. However, in the
are not differentiable. Thus, methods for solving the leastpresent study we aim to find multiple solutions as
squares problem cannot be directly applied to sa®ye ( efficient as possible without relying on analytic or
Preventing premature convergence to a local whilenumerical derivatives. Thus, a search procedure has to be
trying to locate global solutions of probler®)(is the goal  implemented that is capable of finding high quality
of the present study. Here, we are concerned with thesolutions targeting reduced computational requirements.
performance of a metaheuristic to solve global The basic HS algorithm that emerged in 2001 relies on a
optimization problems without the use of derivative set of points and is inspired by natural phenomeh [it
information. Metaheuristics are general heuristic method draws its inspiration not from a biological or physical
which can be applied to a wide variety of optimization process like most metaheuristic optimization techniques,
problems. In the last decade, algorithms based orbut from an artistic one — the improvisation process of
metaheuristics have been proposed to solve systems afiusicians seeking a wonderful harmony. HS has efficient
nonlinear equations mainly using the reformulatign[{, strategies for exploring the entire search space, as well as
8,9,10,11,12,13). In general, they do not require any techniques to exploit locally a promising region to yield a
information concerning root location, since they are ablehigh quality solution in a reasonable time. The dynamic
to converge to the solutions starting from points that canupdating of two important parameters in the HS algorithm
be randomly generated in the search space. Furthermorbas improved the efficiency and robustness of the
their performance do not depend on any type of derivativemetaheuristicZ1].
information. In this study, we borrow the ideas present in the global
Although finding a single root of a system of best variant of HS 32|, propose self-adaptive updating
nonlinear equations is a trivial task, finding all roots is rules for two relevant parameters in HS, and hybridize the
one of the most demanding problems. Approaches thaHS algorithm with a mutation strategy quite common in
combine metaheuristics with techniques that modify thethe differential evolution (DE) method introduced 24].
objective function in problem2) have been reported in The herein proposed HS algorithm will be denoted by
the literature §,10]. The technique in§,12] relies on the  hybrid HS algorithm. Previous studies related with the HS
assignment of a penalty term to each previouslyand DE algorithms confirm that these metaheuristics are
computed root so that a repulsion area around the root igffective in computing one single root of systet) [5, 6].
created. In 10, an evolutionary optimization algorithm is However, the present work extends some of the previous
used together with a type of polarization technique toideas to the problem that consists of locating multiple
create a repulsion area around previously computed rootsoots of nonlinear systems likel)( This issue is herein
A multiobjective evolutionary approach is another addressed by using an MS strategy that relies on an
technique available for locating multiple root$4[15]. attraction radius to prevent convergence to previously
MS methods are very popular and simple stochasticcomputed solutions, so reducing the overall required
techniques that emerge when multiple solutions tocomputational effort.
problems are required1f,17,18,19]. When an MS This paper is concerned with computing multiple roots
strategy is implemented, a search procedure is applied tof a system of nonlinear equations using an MS paradigm
a set of randomly generated points of the search spacand the HS algorithm hybridized with a DE mutation as
aiming to converge to the multiple solutions of the an effective search procedure. Thus, Secflarports on
problem in a single run. However, the same solutions maythe hybrid HS algorithm and Sectiéaddresses the MS
be computed more than once. Convergence to previouslgtrategy. Then, some numerical experiments are shown in
computed solutions can be avoided by implementing aSection4 and we conclude the paper in Sectikn
clustering technique which aims to define prohibited
regions based on the closeness to the previously
computed solutions 13,17]. Each time a point is 2 Hybrid HS algorithm
randomly selected from these prohibited regions, it will
be discarded since the implementation of the searclFirst, the main ideas behind the basic HS algoriti2@ [
procedure will eventually produce one of the previously and two other popular versions of the algorithm available
computed solutions. Most MS approaches implement an the literature 21,22] are presented. Second, an
local search algorithm rather than a global one, whenintroduction to the DE algorithn2f3] is included. Finally,
trying to locate a solution. The basic idea is to search forthe hybrid version of the HS algorithm, combining the HS
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paradigm with the DE mutation operator, aiming to subsequently applied with probability PAR to refine only
increase the exploration feature of the HS algorithm, isthe componentisproduced by @, as follows:
described.

- Jyi£rand()BW, if rand() < PAR 4)
" v otherwise
2.1 The HS algorithm where BW is an arbitrary distance bandwidth. Finally, the

HM is updated. The new harmony is compared with the

The HS algorithm was developed to solve global Worst harmony in the HM, in terms of# values. The
optimization problems in an analogy with the music "eW harmony is included in the HM, replacing the worst
improvisation process where music players improvise the?ne if it is better than the worst harmony. Algorithin
pitches of their instruments to obtain better harmdg [ Presents the main steps of the basic HS algorithm. As
24]. An overview of the existing variants of the HS is
presented by Alia and Mandava iR5. At each iteration
k, the basic HS algorithm provides a set of solution| Data: HMS, NI, HMCR, PAR, BW

vectors from which the best and the worst solutions, in|  Setk=1 '

terms of their fitness - objective function values - are| Initialize HM: randomly generate!, j = 1,... . HMS
selected. Tablel lists the most relevant nomenclature |  Evaluate HM, select®®Standx"orst

used in the basic HS algorithm. while k < NI do
Improvise a new harmonyand evaluate

Update HM and seleaf®Standxorst

Setk=k+1

Table 1: Nomenclature for the HS algorithm if Xb;St i(s)sufficiently accuratéhen
HM harmony memory elnd ToP
HMS size of the HM end
NI number of allowed improvisations/iterations
xbest the best solution in HM Algorithm 1: HS algorithm
xWorst— the worst solution in HM
HMCR harmony memory considering rate
PAR the pitch adjusting rate shown in @), the classical HS algorithm uses fixed value
BW distance bandwidth for both PAR and BW. However, small values of PAR

with large values of BW can considerably increase the
number of iterations required to converge to an optimal
The HM is a memory with HMS solution vectors that solution of £). Experience has shown that BW must take
are maintained in memory throughout the iterativelarge values at the beginning of the iterative process to
process. The HMCR and PAR parameters are used to finé@nforce the algorithm to increase the diversity of solution
globally and locally improved solutions, respectively. vectors. However, small BW values in the final iterations
After generating the HM randomly in the search sp@ge  increase the fine-tuning of solution vectors. Furthermore,
xI, j =1,...,HMS, the vectors are evaluated and the bestlarge values of PAR combined with small values of BW
harmony, xbest and the worst, X't in terms of usually cause the improvement of best solutions in the
objective/merit function value are selected. Thereatter, final stage of the process. To eliminate the drawbacks due
new harmony is improvised meaning that a new vegtor to fixed values of PAR and BW, an improved HS (I-HS)

is generated using three improvisation operators: algorithm is proposed in2[l]. The I-HS uses parameter
values dynamically dependent on the iteration nuniper

O1.HM operator; as shown:

O,.random selection operator; PARmax— PARn,

Os.pitch adjustment operator. PAR(K) = PARmin + K aXNI ) (5)

The HMCR parameter varies between 0 and 1 and givesvhere PAR,, and PAR.x are the minimum and

the probability of choosing the component of the new maximum pitch adjusting rate respectively, and
harmony/vector from the HM (operator;D Otherwise,

the component is randomly generatedIr(operator Q): In( BWmin)
_ BW(K) = BWmae™, for c= ———ma.  (g)
[ x!,jrandome {1,...,HMS}, if rand() < HMCR NI
Yi= li +rand()(u —1;), otherwise where BW,in and BWhnax are the minimum and maximum
3) bandwidth respectively.
for i = 1,...,n, where rand() represents a random In [22], a new variant of HS, called the global-best

number in the range(0,1). The operator @ is harmony search (gh-HS), is proposed. The
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pitch-adjustment step of the HS is modified in a way thatcomponents of the mutant point. Thus, the crossover point,
the new harmony can mimic the best harmony in the HM, called trial pointy’, is formed as:

adding a social dimension to the HS and replacing the . _

BW related parameters altogether. Thus, the new pitch i _ {Vij_7 if rand() <CRori=s; (10)
adjustment operator, £ is applied with probability : x/, otherwise

PAR(Kk), computed from %), to refine only the

components produced by;Qin the following way: fori=1,...,n, whererand() denotes a random number in
(0,1) and aims to perform the mixing of the component

best i of the pointsCRe [0, 1] is the parameter for crossover, and
,trandome {1,...,n}, if rand() < PAR(k ) )
Vi = {Q { } othervv(i)se (k) the indexs;j, randomly selected fronfl,...,n}, ensures
’ 7 thaty! gets at least one component fren

wherebestis the index of the best harmony in the HM.
2.3 The hybrid HS algorithm

2.2 The DE algorithm To develop a new hybrid HS algorithm, the ideas from the
gh-HS algorithm to improvise a new harmony and the
Algorithm 2 contains the pseudocode of the basic DE mutation operator present in DE to increase the
algorithm R3]. This is an evolutionary population-based explorative power of the classical HS are used. The new
technique that relies on three operatorsmutation proposal replaces the improvisation operatof ©y
crossoverand selection— to define them points for the  another one that mimics the best harmony and uses the
next iteration. The most commonly usedutation is mutationoperator of the DE algorithn®2[3]. Basically, the
idea is to generate a trial point by adding the weighted
difference between two points to a third o% [Thus, the
parameter HMCR sets the probability of choosing the
component of the new harmony from the best harmony in
HM adding a differential variation, i.e., for each

Data: m, F, CR Kmax
Setk=1 '
Randomly generate target pointss Q,i=1...,m

Evaluate the points and sele@fst I=1...n
while k < Kmax do i .
Performmutationto generate the mutant points XS F (!t —x?), if rand() < HMCR
Performcrossoverto generate the trial points _ andji # j2
Evaluate the trial points vi x,trandome {1,...,n}
Performselectionto define target points, seledest ! jrandome {1,...,HMS}, if rand() < HMCR
Setk =k+1 andji = j2
if xPestis sufficiently accuratéhen li +rand()(u — I;), otherwise
| STOP (11)
end is used instead of3}, whereF < [0,2] and the indiceg,
end j2 are randomly chosen values from the &t .. ,HMS}.
Algorithm 2: DE algorithm However, when these indices are not different, a randomly

chosen component of a point randomly selected from the
HM is selected, to diversify the search.

We note that when defining some components can
be generated outside the dom&inThus, each component
should be checked and a projection to the bounds is carried
out:

referred to as DE/rand/1 and defines the mutant puint,
as follows:

vl = X1 4 F (X2 —x3) (8)

with uniformly chosen random indices,r»,r3 from the i . i .
set {1,2,...,m}, mutually different andF is a real Yi :max{li,mln{yi,ui}}, fori=1,....n.  (12)
parameter iff0,2] which controls the amplification of the
differential variation x2 — x'3. The indicesr1, ro andrs
are also chosen to be different from the index< is

In the HS context, to further explore the search space
for a promising region where a global solution lies, the
called the base point. There are other frequently usetﬁ"tCh adjustment operator gDis maintained although the
mutation strategies, for instance, the DE/best/1, whichParameters PAR and BW are updated according to new

: : ... self-adaptive rules. The proposed updating rule for the
uses the best point of the population as the base point probability PAR ensures that the larger values appear in

the final iterations and are combined with small values of
the bandwidth BW (as shown below i3)):

wherexP®stis the best point in the current population. The PAR — 1
crossoveroperator aims to increase the diversity on the T 1+ (xwors

Vj _ Xbest+ E (Xrl _ sz) (9)
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wherex"orst js the worst harmony in the HM in terms of sayN times, as the number of global solutions 2. (If a

the merit function (at the currentiteration). For the BW, an generated poirt € [I,u] belongs to a region of attraction
adaptive value for each componért 1,... . nis assigned A; then the solutiony; would be obtained when the
as follows hybrid HS algorithm starts with a HM which includes the
pointx. The idea is to apply the hybrid HS algorithm only

BW = BW <1 _ ) (13) whenx does not belong to any of the regions of attraction

max 1+ . (xworst) )7 of already computed solutions, or equivalently to the

_ union of those regions of attraction, since they do not
where BW,,,, = Ui —li depends on the lower and upper overlap. The probabilityp that a randomly generated
bounds of each component point will not belong to the union of the regions of

attraction of r already computed solutions, can be
estimated by

3 Multistart algorithm r
r ~

MS methods are mainly used to locate multiple solutions = Problx ¢ UiaAl = iElProb[x # Ai] ~ Probix ¢ Ad
of bound constrained optimization problen5[17,18,
19,26], although they can be used to locate multiple whereA, is the region of attraction of the nearestxo
solutions of other kind of problems 8[10,13]. MS solution x, (see details in19)). The region of attraction
repeatedly invokes a search procedure starting from a sé%, of a solution), could be estimated by an exhaustive
of randomly generated points of the search space aimingnumeration of all starting points that convergex@
to converge to the multiple solutions of the problem. Alternatively, an a priori estimation involves the
However, the same solutions may be computed over angrobabilityProb[x ¢ B(Xo,Ro)] whereB(x, R) denotes the
over again. To avoid convergence to previously computedyper-sphere (henceforth denoted by sphere) centered at
solutions, a clustering technique that defines prohibitedy with a radiusk.
regions based on the closeness to the previously located Let the maximum attractive radius of the minimizgr
solutions may be integrated into the multistart algorithm.be defined by:
This way, points that are generated from these prohibited
regions are discarded since the search procedure would R = max{HXi(D _XiH}’ (15)
converge most certainly to a previously located solution. i

Hence, to compute multiple roots of a set of nonlinear ,
equations like the one in 1), computing global wherexi(” is one of the generated points that made the
minimizers of the problem2), the herein implemented hybrid HS algorithm to converge tg. Givenx, letd, =
MS methodology uses a clustering technique to avoid||x— xi|| be the distance ofto x;. We remark that:
convergence to an already located solution. The
exploration feature of the MS strategy is carried out by 1.if di > R thenx is likely to be outside the region of
generating points randomly spread all over the search attraction ofy;;
spaceQ. The exploitation of promising regions is carried  2.on the other hand, i < R and the direction fronx
out by invoking a search procedure starting from each of  to x; is descent ther is likely to be inside the region
the randomly generated points. In contrast to the line  of attraction of;; however, if the direction fronx to

search BFGS method presented 1][ our proposal for Xi is ascent them is likely to be outside the region of
the search procedure relies on a global search heuristic  attraction ofy;.

that is capable of computing global minimizers of a merit .

function with high quality and reduced computational !N case 1., the hybrid HS search procedure could be

effort. invoked, withx as one of the points in the HM, since a
The presented clustering technique also uses th&ew solution could be obtained with high probability.

concept of regions of attraction of previously identified However, when the direction fromto ; is descent, there

solutions. First, the region of attraction of a minimizer, 1S @ high probability that the search procedure will

associated with a search procedure, herein denoted b§enverge to the previoys, thus the hybrid HS procedure
HS, is defined as: might not be invoked. Thus, the probability thag A; is

estimated by:
i = {xell,u:HS(X,Z,[l,u]) =X}, 14
A=txellu ( . ul) = xi} (14 1, if di > R or the direction fronx to x;

where x; is the global, eventually a local (non-global), Prob(x¢ A) ~ is ascent
minimizer produced by the hybrid HS algorithm which is @, otherwise
applied in the search spafleu], starting withx € # and
randomly generating the remaining HMS-1 points of thewhere ¢ € [0,1). It is reasonable to expect that the
HM inside the regionZ. The ultimate goal of the MS probability ¢ is larger at the beginning of the iterative
algorithm is to invoke the procedutS as many times, process and smaller towards the final iterations since at
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Data: kmax, Yp € (0,1), e <1, 1
Set>=0,r=1

Randomly generate< [I, U]

SetZ — B(x, 7’“'”‘{;‘ ity

Computex; = HS(x, %, [I,u]), sett =1
ComputeRy = ||x— x1|, setX = S U x1, setk=1

the beginning there is a higher chance that the hybrid HS
procedure will converge to a new solution. Thus, a
dynamic updating scheme fa is proposed, depending
on the iteration numbé¢c> 0,

a=(1- ) (16)
max

whereyy € (0,1) is a constant anllmax is the maximum

number of iterations defined for the process. The smallef

the parametey,, the lower the likelihood of invoking the

search procedutdS when the direction from to x; is not

ascent.

Since derivative information is not used in the
algorithm, the direction fronx to ¥; is considered to be
ascent if.Z (x+ B(Xi — X)) — .# (x) > 0 for a sufficiently
small positive . The pseudocode of the herein
implemented MS method is presented in Algoriti8n
whereZ denotes the set where the computed minimizers
are saved. To identify a solution that has not been
previously locatedy ¢ X, one of the following conditions
must hold:[|x — x;| > tol or |.#(x) — .#(x;)| > tol for
all xj € Z, wheretol is a small tolerance.

There are two important issues that should be noted
whenever the HS search procedure is invoked in the
Algorithm 3. First, the region# from which the
remaining HMS-1 points of the HM are randomly
selected is a sphere centered afith a specified radiuR,
B(x,R). This way, the likelihood that the hybrid HS will
converge to the nearest xaninimizer (not yet located) is
higher than that of any other far away previously located
minimizer. Also, in the HS context, the (hyper-)box from
which the new harmony is generated (sed.{) and (2))

while k < kmax do

Randomly generatec ||, ul

Seto=argmini—y _rdj = [|x— Xjl|
if do < Rp then
if the direction from x tg(, is ascenthen
Setp=1and

(r7 0) = (maX{I yX— RO}7 min{x—|— R07 U})
else
| Setp= g using @6) and(i,d) = (I,u)
end
else
Setp=1and
(l ’ 0) = (maX{I yX— RO}7 min{x—|— R07 U})
nd
rand() < pthen
SetZ = B(X,Ro) A
Computey = HS (x, %, [1,0]), sett =t+1
if x ¢ Z then
Setr=r+1,x=X,2=2UXr
ComputeR; = [|x— xr||
else
| UpdateR, =max{R;, |x— x|}
end
else
| UpdateR, = max{Ro, [[X— Xo }
end
Setk=k+1
if Us < gthen
| STOP
end

= D

depends on the closenessxab x,. If the likelihood ofx
being inside the region of attraction af is high, the
entire box is used; otherwise, a more restrictive box is
defined [max{l,x— Ry}, min{x+ Ry, u}]. Algorithm 3 is
thus termed ‘sphere-based MS’ algorithm.

Although this type of algorithm is simple, it would
not be effective if a stopping condition that prevents an4 Numerical results
exhaustive search of the search space is used. Besides
allowing a reasonable number of iterations to be
performed, kmax, the algorithm has an alternative
stopping rule. The goal is to make the algorithm to stop

end

Algorithm 3: ‘sphere-based MS’ algorithm

In this section, we investigate the performance of the
proposed ‘sphere-based MS’ method that uses the hybrid
when all roots have been located with certainty. ES ?}lgor'tkhm a‘lf thdelsear(éh prO(_:edulre Ot?l a S?I:th of
Furthermore, it should not need to invoke the search?€Nchmark smail and largeé dimensional problems. 1hey

procedure a large number of times to decide that all root&'® “Stted b?'&"v ?S If;rr]oblemﬁic " 10. We set the
have been found. A simple condition uses an estimate oP2'@Meters of the aigorithms as foflows:

the fraction of uncovered space, -in the MS algorithm: = 0.05, y, = 0.5, 8 = 0.001,

tol =0.5e-2 ankmax = 30 (unless otherwise stated);
U — rr+1) —in the hybrid HS, HMS= {2n,5n}, HMCR= 0.95,
F =09, NI is set to depend on the problem
(NI = 1000 in Problemd, 2 and 6, NI = 50000 in
wherer is the number of different computed roots and Problem3, NI = 2000 in Problenv, NI = 10000 in
represents the number of times the search procedure has Problems4 and5, NI = 100001 in Problems3 and9
been invoked19]. The MS algorithm then stopslids < &, andNI = 200 in Problem10), andx”®stis identified
for a smalle > 0. as a global minimizer if the merit function value falls

(@© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 21-32 (2018) www.naturalspublishing.com/Journals.asp %ﬁ NS p) 27

below 1e-10. We consider 1e-08 instead when solving
Problems3-10.

—in I-HS, additionally to the values described above,
PARmin=0.35, PARhax=0.99, BWyin=0.000001 and
BWmax=5.

The experiments were carried out on a PC Intel Core 2
Duo Processor E7500 with 2.9GHz and 4Gb of memory.
The algorithms were coded in Matlab Version 8.0.0.783
(R2012b).

4.1 Comparative tests with small dimensional

problems Fig. 1: lllustration of the ‘sphere-based MS’ on the merit function
of Probleml

We now consider a set of seven small dimensional

problems. First, we use three examples to illustrate the

behavior of the ‘sphere-based MS’ algorithm when trying

to locate multiple roots.

Problem 1. [14]: A simple nonsmooth nonlinear system with
two roots(—0.5,0.5), (0.5,—0.5) in [-3,3]%

2 2 g
f)={X=%=0
1—|x1—x2|=0

Fig. 1 illustrates the method on the merit function to
locate the two global solutions. The generated points
correspond to a specific run withhax = 10 and five calls
to the hybrid HS algorithm. Solution .
(—0.5000040.500002 was obtained three times. The
first time that .the solution was located’ the SearChFig.z:IIIustrationofthe‘sphere-based MS’ on the merit function
procedure required 337 function evaluations (f.e.) and ¢ p opiem2
0.019 seconds (sec.) to reach a merit value of 4.08e-11.

Solution (0.499993—-0.500000 was reached twice and
the first time it was located a merit function of 8.73e-11
was obtained using 442 f.e. and 0.044 sec. The figurg ) e of 3.11e-11. Finally, the root

displays for each solution the initial point that converged (0.999991—1.00002Q was located twice and the first

for the first time to the solution (black«’) the initial time required 760 f.e., 0.050 sec. with a merit value of
points that converged in second (or in third) place to theg gge-11.

solution (blue %) and the points that were discarded and o _
were not used to call the search procedure (magefjta © Problem 3.  [12] This s, the Himmelblau problem and the
Overall, the ‘sphere-based MS' algorithm required 2135"umber of roots ifi—5,5]“ is nine:

f.e. and 0.147 sec. = 4xi+4xle+ZX§—42X1—14:0
TG+ 28 +Axgxp — 26%p —22=0 "

Problem 2. [10] This system of two nonlinear equations has

th t50,—2),(1,—1),(0.7071,—1.5) in [-3,3]% . . .
ree rootg0, -2), (1, ~1), ( 1-15)in[-33 Fig. 3 shows the nine located roots and displays the

X —x—2=0 merit function value and the number of function
f(x) = {x1+sin(@) —0- evaluations (inside parentheses) for each found root in a
2 single run of the algorithm. The ‘sphere-based MS’

The ‘sphere-based MS’ algorithm located three roots2/90rithm run for 30 iterations and thélS search

in 0.476 sec. and required 8526 f.e.. During this singleProcedure was invoked 13 times. The first located root
run of 10 iterations, the hybrid HS search procedure wasvas (3.584428, -1.848126) with merit value of 9.99e-11
called five times. Fig2 illustrates the multistart method and after 0.858 sec. and was located again in the third
on the merit function to locate the three roots. The rootiteration. The second root was (-0.270845, -0.923039)
(—0.000009 —1.999999 was located twice, and the first with merit 4.44e-11 and after 0.848 sec. and was again
time required 512 f.e. and 0.036 sec. to reach the meritecovered in the 7th, 10th, 13th, 17th, 18th and 29th
value 9.99e-11. The solutiai®.707120—1.499983) was iterations. The third root (-2.805118, 3.131312) with

located just once after 799 f.e., 0.043 sec. with a meritmerit 9.94e-11 was located after 0.302 sec., the fourth
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where ko = 3.9852k; = 88575k, = —10039ks =
20.091 ks = 7.2338 ks = —11.177,kg = —1.17775.

Problem 5. (Geometry problem)d,10] The system has two
roots in[0,50/°

X1X2 + (X1 — 2X3) (X2 — 2x3) — 165=0

00 = X (X1 —2x3) (xp— 2x3)3 9369=0

12 ) 122
2(x2 —X3)“ (X1 — X3)“X3
X1+ X2 — 2X3

—6835=0

Problem 6. (Floudas problem)d,12,13] This system has two
roots in[0.25,1] x [1.5,27]
Fig. 3: Merit function values and number of function evaluations

. X2
for the located roots of Problef f 0.5sin(x1%2) —0.25-= —0.5% =0
X) = )
) (1—%) (exp(2x1)—e)+ex—r2[—2ex1:0

was (-3.779310, -3.283186) with merit 1.79e-11 andProblem 7. (Merlet problem) $,12,13] The system has 13
0.676 sec., the fifth was (-0.127961, -1.953715) withroots in[0, 27
merit 9.92e-11 and 0.306 sec. (and recovered again in the . . _
14th and 20th iterations), the sixth was (3.000000, f(x) {:igﬁs(&l)cqs(x@ :Zcps(xl)sm(xz) B 0
. ) 1)Sin(xz) —2sin(x1) cogxz) =0

2.000000) with a merit value of 9.73e-11 and 0.441 sec.,
the seventh (0.086677, 2.884255) with merit 8.57e-11  Table 2 aims to show the effect of two HS variants,
was located after 0.664 sec. and the last two (3.385154he proposed hybrid HS and the I-HS, on the results
0.073851) with merit 9.85e-11 and (-3.073026, produced by a more classical MS algorithm where
-0.081353) with merit 9.56e-11 were located after 1.645% — [I,u] is the search space to generate the points of the
and 0.407 sec., respectively. Overall, this run requiredHM and the constrainfi, u] is the box to create the new
241724 f.e. and 10.541 sec. to locate all the roots of theharmonyy. It is possible to conclude that both variants
problem. perform almost evenly although the hybrid HS is more

To analyze further the convergence performance ofefficient since it requires less function evaluations and
the proposed algorithm, 30 independent runs were carrie¢PU time mostly, and I-HS is more consistent in finding
out and the average values of three performance criteria new roots.
number of located roots, ‘n.r’, number of function
evaluations, ‘n.f.e’, and CPU time in seconds, ‘time’ —
are reported. Thg results prod_uged by the algorithm ar&_ e 2- MS with 7 —
also compared with other heuristics. To analyze the effect
of different HS variants as well as some parameter values MS + hybrid HS MS + I-HS
on the algorithm’s convergence behavior, the next three ~_Prob. nr.  nfe. tme nr  nfe time

[I,u], yp =0.5: comparison of HS variants

tables contain the results of 1 1.9 10506 0.426 2.0 12254 0.469

_ , o 2 26 26026 1074 26 28289 1.091
Table2 i) MS with % = [I,u], yp = 0.5 invoking the 3 6.3 491116 20.209 7.0 683488 26.259

hybrid HS as search procedure; 4 50 159007 5521 45 135745 4.313

i) MS with % = [l u], yp = 0.5 invoking I-HS 5 19 90128 4.418 1.9 134951 5.801

as search procedure; 6 18 12664 0542 1.2 15277 0623
Table3 i) Algorithm 3 with (I,0) = (I, u) in all cases, and 7 6.5 33817 1520 7.8 29052 1.150

Yp = 0.5; .

i) Algorithm 3 with (I,0) = (I,u) in all cases, and

Yp = 0.05; Table 3 reports the results produced by the
Table4 i) Algorithm 3 as it is, withy, = 0.5; ‘sphere-based MS’ algorithm, in which the regighis a

i) Other results from the literature. sphere and the constraifit u] is always used as the

. . . ) . search space to define the new harmowy i.e.,
Besides the previously described, other small dmensmnaﬂr G) = (I,u) in all the three considered cases (see

problems are the following. Algorithm 3). Results from the second, third and fourth

Problem 4. (Application in robotic) 1L0] This equation has six ~columns correspond tgp = 0.5 and the remaining

roots in[1,1] correspond tg, = 0.05. As previously stated, the lowest
’ value ofyy, yields fewer calls to thélS search procedure
ko + kox2 + kax* + kX8 + (kX + kax® + ksx®)v/1—x2 = 0 and consequently less function evaluations and smaller
(@© 2018 NSP
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Table 3: Algorithm 3 with (I,0) = (I,u) in all three cases Table 4: Comparative results
Yp=05 yp = 0.05 Algorithm 3 other works

Prob. nr. nfe. time n.r. nfe time Prob. nr. nfe. time runs n.r. n.f.e time

1 2.0 7265 0.321 2.0 5000 0.218 1 2.0 7283 0.323 14 Al - -

2 3.0 14159 0.613 2.8 9824 0.450 2 3.0 15908 0.719 10 1 3 - -

3 5.4 388304 16.888 4.6 291348 12.922 3 7.4 460192 19917 1] 30 9 253877 5

4 44 96165 3.728 4.3 76227 3.039 4 5.3 147664 5.345 1[0] 1 6 - -

5 1.9 58257 3.027 1.7 35240 1.879 5 2.0 83187 4367 9 - 2% - -

6 20 12928 0.575 1.7 8448 0.386 [10] 1 1 - -

7 4.4 881 0.038 4.1 575 0.024 6 20 10968 0.505 g 100 2 - 0.461
[13 30 2 69627 0.53

30 2 4273 0.03

[127 30 2 211652 0.607

. . . . 7 7.9 18857 0.881 g 100 13 - 20
execution time. Thus, efficiency can be improved by [13 30 13 8033 0.08
reducing the value of the parametgy. However, we 30 13 3297 0.03
observe from the table that the average number of located [12] 30 13 401021 46

roots has slightly decreased. Here the main goal is to
improve consistency (in locating different roots) even if
with additional computational requirements. When a
comparison is made with the results of Talleit is
observed that the efficiency has in general slightly
improved, the consistency has improved with Probléms
2 and6 but has worsened with Probler®s4 and?7. located roots, the average number of function evaluations
Finally, Table4 reports the average results producedand the average CPU time are reported in Tdble
by the ‘sphere-based MS’ algorithm, as it is designed in  The six roots -0.999627, -0.880777, 0.483253,
Algorithm 3, and aims to compare with those from the 0.876481, 0.958852 and 0.991557, with merit function
literature B,9,10,12,13,14], where ‘~ indicates that the Vvalues ranging from 4.86e-12 to 1.11e-10, of the
information is not available. We note that the results Problem4 have been identified in the best of the ten runs
reported in §] are obtained after 100 runs and those in that located six different roots. The run invoked tH&
[10] seem to correspond to one run. i8], a sample size procedure 10 times, required 75186 f.e. and 2.998 sec.
of 20 randomly generated points is used and the two setdhe remaining 20 runs located five roots. On average, the
of values shown in the table correspond to the best andiS search procedure was invoked 18.4 times, and the
the worst results obtained with two different stopping algorithm required 147664 f.e. and 5.345 sec.
rules in the MS algorithm. It is noteworthy that the results ~ When solving Problers the two roots were located in
produced by the Algorithn8 in Table 4 are better than all runs. The best run required 55119 f.e., 2.921 sec. and
those shown in previous tables. 11 calls to theHS procedure. ThedS procedure needed
During these 30 runs, the two roots of Problémvere  0.532 sec. to locate the root (43.154623, 10.128917,
located by the ‘sphere-based MS’ algorithm in all runs. On12.944063) with merit 2.01e-09, and 0.188 sec. to locate
average, each run of 30 iterations invoked ki@ search  (7.602990, 24.541978, 11.576714) with merit 6.97e-12.
procedure 11 times, required 7283 f.e. and 0.323 sec. tdhe worst of the 30 run invoked 15 times thH¢S
locate both roots, as reported in TaBléHowever, the best procedure, required 106218 fe. and 5.508 sec.
run required 4003 f.e. and 0.183 sec. and the worst 944&onsidering all the runs, the average number of calls to

T the reported solutions are not the global minimizers#f
T only the best solutions are reported; one solution is deiSi.

f.e.and 0.416 sec. the HS procedure was 12.2 and the algorithm required an
The ‘sphere-based MS’ algorithm located the threeaverage of 83187 f.e. and 4.367 sec.
roots of Problen® in all runs. Fig.2 displays the position The two roots of Problen® were found in all runs.

of the roots in the search spafe3,3]°. The HS search  The best run invoked theS procedure 6 times, lasted for
procedure was invoked on average 13.1 times, and th€.218 sec. and used 4722 f.e.; the worst invokedHBe
average number of f.e. and time were 15908 and 0.71®rocedure 15 times, lasted for 0.616 sec. and required
sec., respectively. The best run required 7159 f.e and3824 f.e. During the best run, the root (0.299447,
0.320 sec. and the worst 21989 f.e. and 1.165 sec. 2.836914) with merit value 7.27e-11 was located after
The nine roots of Probler@ were located in two out 731 f.e. and 0.032 sec. and (0.499997, 3.141584) with
of the 30 runs. The roots displayed in Fjand reported merit 4.51e-11 was located after 582 f.e. and 0.026 sec.
above when describing Probleghwere obtained in the Overall, each run required on average 0.505 sec., 10968
best of these two runs. The algorithm found eight roots inf.€. to find the two roots (see Tab# and invoked on
11 runs, seven roots in 13 runs and six roots in four runsaverage 12.9 times th&S procedure.
Considering the 30 runs, the hybrid HS algorithm was  When solving Problem7, the 13 roots (0, 0),
invoked on average 16.7 times and the average number B.141582, 6.283185), (4.712388, 4.712389), (6.283185,

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

30 NS 2 G. C. V. Ramadas et al.: Finding multiple roots of systems of.

0), (1.570791, 1.570801), (6.283185, 6.283185),able to locate on average 117.2 roots. The best run found
(9.885e-08, 3.141593), (0, 6.283185), (3.141593,120 roots after invoking thedS procedure 360 times,
3.141595), (1.570776, 4.712411), (6.283185, 3.141584)where each one required on average 36155 f.e. and 1.992
(3.141589, 9.480e-07), and (4.712362, 1.570822) weresec., with a merit function value of 3.524e-09.

obtained although not all in the same run. The best run
that found 10 roots, invoked the hybrid HS algorithm 15
ﬁgi?r’ergql;j;/retge101104i;I(les. a}[gd tlf?eStige?rff? Opfggé;—greetlgg‘?able 5: Results from Algorithn8 and [L3], when solving the 3

fnst f Probler
converged to the 10 different roots were 0.0009, 0.0002, stances of Froble

0.0003, 0.029, 0.094, 0.038, 0.0098, 0.0006, 0.094 and Algorithm3 (13
0.094 sec. Nine roots were found in six runs, eight roots @ nr. nfe. tme nr  nfe time
in 13 runs and seven roots in ten runs. The average 2 1 1.1e+04 0.623 1 4.0e+03 0.04
number of roots found by the ‘sphere-based HS’ 1 3.7e+03 0.03
algorithm was 7.9 after 18857 f.e. and 0.881 sec. (see =~ 10 125 2.82+05 15.63 13 2.0e+04 0.15
Table4). 13 5.3e+03 0.04

100 117.2 1.2e+07 692.1 127 1.6e+05 1.35
127 7.3e+04 0.59

4.2 Problem with a large number of roots

We now aim to analyze the performance of the proposed
‘sphere-based HS' algorithm when a large number of . . )
roots are present. The following problem is particularly 4.3 Tests with large dimensional problems

interesting since the number of roots increases with the . )
magnitude of the se®. To analyze the convergence behavior of the AlgoritBm

when solving large dimensional problems, we use two
Problem 8. [13] This problem is known as Effati-Grosan  problems with varied dimensions. With each problem we
and has been tested for different values afin the set test the algorithm with the following dimensions 10, 20,

Q= [—a7a}2. Although the exact number of roots is unknown, 30, 40.
it has been reported one root whes- 2, 13 roots whemm = 10 o
and 127 whera = 100 [13]: Problem 9. [13] This is the Yamamutra problem that has three

roots in[—2,2]", and it can be tested for different valuesof
F(x) = {cos(le) —cog2x;) —0.4=0 .
T 2(%2 — Xq) +Sin(2xp) —sin(2x) —1.2=0 " fi(x):xi—i Zx3+i _0i-1 n
2n J:l J ) ) )

Table 5 reports the average results produced by
Algorithm 3 when solving the three instances of Table 6 reports the average results produced by
Problem 8. We compare our results with two sets of Algorithm 3 when solving the four instances of
results reported in1[3]. These correspond to the best and Problem9. We also report the results available ] for
the worst results obtained with different stopping rules incomparison. The ‘emphasized’ values inside parentheses
the MS algorithm. We remark that the therein usedshow the average number of function evaluations and the
multistart approach is based on a quasi-Newton BFGSaverage time in seconds required by each call ofHISe
variant as local search procedure. Thus, the convergencgearch procedure. Besides the criteria ‘n.r’, ‘n.f.edan
speed is expected to be higher than that of our algorithmitime’, the table also shows the ‘HMS’ value used in these
since approximations to first and second derivatives arexperiments. When solving the instance witk- 10, the
used. HS procedure was invoked an average of 10.4 times and

On average, each run of 30 iterations invokedit®  the average number of located roots was 2.6. On the other
search procedure 9 times, required 10785 f.e. and 0.62Band, when solving the instance with= 20, the HS
sec. to locate one root of the instance identified withprocedure was invoked an average of 10.9 times and the
a= 2, as reported in Tabld. When solving the instance average number of located roots was 2.4. When solving
with a set to 10, we allowed the Algorith®ito run for a  the instance witm = 30, the best run found the 3 roots
maximum of 200 iterations. On average, tH& search  after 16 calls to théHS procedure. Overall the averaged
procedure was invoked 59 times and an average of 12.5alues of the three criteria are 1.4 (‘n.r’), 2.1e+06
roots were found. The best run of the set found the 13('n.f.e.’) and 614.04 (‘time’), as shown in Tab& Finally,
roots after invoking theHS procedure 61 times, where when settingh = 40 in Problem9, the algorithm located
each one required an average of 4406 f.e. and 0.258 se@an average of 1.5 roots, after 9.4 calls to 8 search
with a merit value of 3.528e-09. Finally, when the procedure, and required 3.0e+06 f.e. and 1077.1 sec.
instance witha = 100 was solved, the algorithm was Further, the best run that found 3 roots required 5.18e+06
allowed to run for a maximum of 500 iterations, invoked f.e., 1.82e+03 sec. and invoked 16 times thS
on average thélS search procedure 364.6 times and wasprocedure.
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Table 6: Results from Algorithn8 and [L3], when solving the 4 general-purpose and can be applied even to nonsmooth

instances of Probler@ problems.
Algorithm 3 [13]
n HMS n.r. n.f.e. time n.r. nfe time

10 10 2.6 15e+05 41.68 3 1.9e+05 4.47 5 Conclusions

(1.4e+04  (4.0) 3 1.6e+04 0.36 _ ,
20 10 2.4 3.6+05 69.56 3 1.2e+05 7.27 In this paper, a hybrid HS-based MS method to compute

(3.3e+09  (6.39 3 2.3e+04 1.46 multiple roots of a system of nonlinear equations has been
30 30 1.4 2.1e+06 614.04 3 1.5e+05 17.89 presented. The method, denoted by ‘sphere-based MS’

(2.4e+05 (68.99 3 2.8e+04 3.53 algorithm, relies on some new ideas aiming to increase
40 40 15 3.0e+06 1077.1 3 1.7e+05 37.55 the exploration power of an MS algorithm and enhance

(3.2e+09 (114.59 3 3.3e+04 6.89 the exploitation of more restrictive regions of the search
space. The search procedure that is invoked in the MS
paradigm is a global search algorithm from the
metaheuristic class. The name ‘hybrid HS' algorithm
. _ - comes from the hybridization of a classical HS algorithm
Froblen:llo. [571' (;,)(l)nsufjertthet_Broyder?t_tr!;jle;gona‘ldsdys_tt_erln, @ with a mutation operator present in the DE algorithm.
requently used probiem for testing sensitivity o provideiial -, thermore, self-adaptive rules for the parameters PAR
approximations, v_vhlch hna_ts been tested for different vabfes and BW of the pitch adjustment operator are proposed.
and has one root ip-1, 0™ The main differences between the proposed MS-type
{ f1(X) = (3—2x1)X1 — 20 +1=0 algorithm and the others in the literature lie in the regions

) — (2 O% Ny X . Dy —0i— _ 4 that are provided to the search procedure to look for a
IL(()% :((?3_2222;()'(” _X'X;lfl ixlegl 01=2-.n=1 aw solution (instead of the usual search sp@geln the
HS context, those regions that are used to create the HM
Table 7 reports the average results produced byare.spheres centered at the sampleq point with apprqpriate
Algorithm 3 when solving the four instances of radius. Further, phe_ new harmon_y is generated ||_’1$|de a
Problem10 (whenn is set to 10, 20, 30, 40). This table POX that may coincide with the given box constraints of
also includes the average number of calls to the  the problem or a more restrictive box, depending on the

procedure, ‘n.calls’. With this example we aim to analyze Position of the sampled point relative to the previously
the effect of the size of the harmony memory in the hybrid'ocated solutions. From the numerical experiments

) ; arried out with a set of ten benchmark small and large

rwsaﬁarsuer?sa\l/gr?;:[gvrg.r%een%tgtgr?ég tgﬁgth:h;%m ;Vrismfotl;]rﬁimensional problems we may conclude that the proposed
it lude that the HMS d t ffect th ‘sphere-based MS’ algorithm with the hybrid HS search
results we conciuade that the oes not aflect N 5cedure is effective in locating multiple roots and

performance of the ‘sphere-based HS’ algorithm. competitive when compared with other metaheuristics.

f(x)=

Table 7: Results from Algorithn8, when solving the 4 instances Acknowledgement

of Problem10
Algori The authors are grateful to the anonymous referees for their
gorithm 3 ; ; ;
n HMS Tncals nr nfe  fime helpful suggestions to improve the paper. This researclhéas ‘
supported by CIDEM (Centre for Research & Development in
10 10 4.9 1 8.0e+04 7.22 Mechanical  Engineering, Portugal), by COMPETE
20 10 45 1 1.6e+05 21.72 POCI-01-0145-FEDER-007043 and FCT (Foundation for
30 21% 12 11127721%‘2 f_)%%g Science and Technology, Portugal) within the projects
20 44 1 24e+05 44.85 UID/EMS/0615/2016 and UID/CEC/00319/2013.
30 39 1 22e+05 41.11
40 10 3.8 1 2.9e+05 68.64
20 46 1 3.5e+05 82.55 References
30 4.4 1 3.4e+05 79.22 . .
40 34 1 2.6e+05 60.49 [1]J.E. Dennis and R.B. Schnabel, Numerical Methods

for Unconstrained Optimization and Nonlinear Equations,
Prentice-Hall Inc., 1983.

. . [2] M.D. Gonzélez-Lima and F.M. Oca, Numerical Algorithms
According to the results presented in the last four 52, 479-506 (2009).

tables, we may conclude that the proposed ‘sphere-basgd] .M. Martinez, Journal of Computational and Applied
MS'’ algorithm is able to locate multiple roots of small as  * Mathematics124, 97—122 (2000).
well as large dimensional systems of nonlinear equationsj4] U. Nowak and L. Weimann, A family of Newton codes for
Since the hybrid HS-based search procedure does not systems of highly nonlinear equations, Technical Repart. T
require any derivative information, the algorithm is 91-10, K.-Z.-Z. Inf. Berlin, 1991.

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

32 ~N SF’ 3 G. C. V. Ramadas et al.: Finding multiple roots of systems of.

Gisela C.V. Ramadas
is an Adjunt Professor at the
Department of Mathematics
in the School of Engineering,
Polytechnic of Porto.
She received the PhD degree
in Production and Systems

[5] G.C.V. Ramadas and E.M.G.P. Fernandes, 13th Intemeitio
Conference Computational and Mathematical Methods in
Science and Engineering, J.V. Aguiar et al. (Eds.), ISBN:
978-84-616-2723-3 \Vol. IV, 1176-1186, June 2013.

[6] G.C.V. Ramadas and E.M.G.P. Fernandes, 11th Intemeitio
Conference of Numerical Analysis and Applied Mathematics
2013 AIP Conf. Proc. Vol. 1558, 582-585 (2013).

[7] C.H. Chen, 2003 Joint Conference on Al, Fuzzy System and Engineering from the
Gray System, Taipei, Taiwan, 4—6 (2003). Y University of Minho in 2004.
[8] M.L. Hirsch, P.M. Pardalos and M. Resende, Nonlinear . Her research interests are

Analysis: Real World Application&0, 2000-2006 (2009). in the area of applied mathematics including the

[STM. Jaberipour, E. Khorram and B. Karimi, Computers and metaheuristics for nonlinear systems of equations. She

Mathematics with Application62, 566-576 (2011). . -
[10] E. Pourjafari and H. Mojallali, Swarm and Evolutionary has published more than 10 research papers in indexed

Computation 4, 33-43 (2012). international journals, book chapters and conference
[11] G.C.V. Ramadas and E.M.G.P. Fernandes. InternationaProceedings in the mathematical and engineering sciences
Journal of Computer Mathemati€9, 1847-1864 (2012). areas.

[12] R.M.A. Silva, M.G.C. Resende and P.M. Pardalos, Jdurna
of Global Optimizatior60, 289—306 (2014).
[13] I.G. Tsoulos and A. Stavrakoudis, Nonlinear Analy§teal
World Applicationsll, 2465-2471 (2010).
[14] C. Grosan and A. Abraham, IEEE Transactions on Systems,
Man and Cybernetics - Part A: Systems and Hung8)698—
714 (2008).
[15] C. Grosan and A. Abraham, International Journal of
Iznnoa/?;i(\)/gsgiomputing, Information and Contrd| 2161— in Systems Engineering and
17 : Industrial Processes from the
[16] M.M. Ali and M.N. Gabere, Journal of Computational and University of Minho in 2002.
Applied Mathematic233 26612674 (2010). At present, her main research interests are in the areas of
[17]C'£‘n'erﬁggi‘i)osn s.{;?ldl GEEl'7 9'-?290538 Computer  Physics gi5ha| optimization and constraint handling. She has
[18] W. Tu and R.W. Ma;yne Internationai Journal for Numatic -pUb“ShEd more than 40 Papers in repu_te_d |nternat|onal
: o : journals of applied mathematics and optimization and 56

Methods in Engineering3, 2239-2252 (2002). apers as book chapters in the field of nonlinear
[19] C. Voglis and I.E. Lagaris, Applied Mathematics and pap P : ! :

Computatior213 1404-1415 (2009). optimization.
[20] Z.W. Geem, J.H. Kim and G. Loganathan, Simulatitf) .
60-68 (2001). Ty - Ana ) Maria AC
[21] M. Mahdavi, M. Fesanghary and E. Damangir, Applied - - \ Rocha is an Assistant
Mathematics and Computatidid8 1567—1579 (2007). Professor at the University
[22] M.G.H. Omran and M. Mahdavi, Applied Mathematics and of Minho. She received
Computationl 98 643—-656 (2008). the PhD degree in Production
[23] R. Storn and K. Price, Journal of Global Optimizatibh and Systems Engineering
341-359 (1997). from the University of
[24] K.S. Lee and Z.W. Geem, Computational Methods and ; Minho in 2005. Her research
Applied Mechanical Engineering94, 3902—-3933 (2004). -.d’h‘-\, ¥ interests include global
[25] O.M. Alia and R. Mandava, Artificial Intelligence Rewe optimization, stochastic
36, 49-68 (2011). methods, penalty techniques and dynamic systems
[26]R. Marti, Multi-start methods, In: Handbook of gptimization. She has published more than 20 papers in
Metaheuristics, F. Glover, G. Kochenberger (Eds), Kluwer jhgexed international journals, 23 as book chapters and 20

Academic Publishers, 355-368 (2003). _ in indexed conference proceedings.
[27] J. More, B. Garbow and K. Hillstrom, ACM Transactions on

Mathematical Softwaré&, 17-41 (1981).

Edite M.G.P. Fernandes
is a retired Full Professor
at the University of Minho.
She received the PhD
degree in  Mathematics
from the University of Oxford
in 1980 and her Habilitation

(@© 2018 NSP
Natural Sciences Publishing Cor.



	Introduction
	Hybrid HS algorithm
	Multistart algorithm
	Numerical results
	Conclusions

