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Abstract: We present a new prospective of the existence of a mild soiuior impulsive fractional neutral integro-differential
equations with nonlocal conditions in Banach spaces. It lij ideas for Banach contraction principle and Krasndsie&chaefer's
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1 Introduction discussed the differential equations with nonlocal
condition and positive outcomes were acquirgd3].

In late couple of decades, the idea of fractional
calculus has turned into a maximum exciting place for  Alternatively, several real world techniques and
scientists because of its huge applicability in sciencels an phenomena which might be subjected for the duration of
engineering for example, material sciences, mechanics, itheir development to quick-time period outside influences
fluid dynamic traffic models, population dynamics, may be model as impulsive differential equations. Their
economics, chemical technology, drug and lots of otherslength is negligible in comparison with the entire length
One of the big programs of fractional calculus is the of the unigue manner and phenomena. The perturbations
hypothesis of fractional evolution equations. certainly,can be moderately well-approximated as being
fractional differential equations can be regarded as as ammstantaneous changes of state, or inside the form of
choice version to nonlinear partial differential equasion impulses. The related equations of those phenomena can
The fractional derivatives provides a extraordinarybe model as impulsive differential equations, which
instrument for defining the memory and genetic allows discontinuities within the evolution of the state.
residences of different substances and system that is @hese days, there has been a growing interest within the
major advantage of fractional calculus. For elementarystudy of impulsive differential equations as those
certainties regarding fractional structures, one createequations provide a natural framework for mathematical
relation to the books4, 15, 18 24], and the papers modelling of many real world phenomena, which include
[2, 3, 11, 12, 14, 20-22, 25|, and the references cited mechanics, electrical engineering, medicine, biology,
therein. chemistry and control theory and so on. Because of the

The investigation of the theoretical nonlocal Cauchy splendid development inside the idea of impulsive
issue can be seer6,[7]. It has been ascertained that differential equations as well as having wide applications
differential equations with nonlocal conditions are extrain varies fields. For this reason, lately qualitative idea of
practical for describing many phenomena and havempulsive differential equations were considered by
preferable impacts in applications over the issue withoutmeans of several authors in literature
nonlocal conditions. Several researchers generally5,9, 13, 16, 19, 23].
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The existence, controllability and alternative Let (X,|| - |lx) denote a Banach space. Let notation
subjective and quantitative properties of FDEs are are€(J,X) : J — X with supremum norm i.e.,
unit the foremost advancing of pursuit, in particular, see||x|c = sup||x(t)|| andL'(J,X) means the Banach space
[3, 8 12, 2022 25 and the references therein. In e ) . .

[20-27], the authors investigated different types of of functionsx : J —>TX which are Bochner1 integrable
fractional neutral integro-differential equations with Normedby(ix[ 1 = Jo [ly(t)[dt, for everyx € L*(J,X). A
impulsive conditions and nonlocal conditions in Banach Measurable functiow : J — X is Bochner integrable if
spaces. The outcomes are gotten by utilizing the suitabl@nd only if [|x|[ is Lebesgue integrable. Let notation
fixed point theorems. Later, Chadha and Pan@y [ B(X):X— Xhaving norm

studied the existence of the mild solution for impulsive )

neutral stochastic fractional integro-differential insion 17 I8y = sup{l[7 (9| + X < 1}
with nonlocal conditions in a separable Hilbert spaces.
The outcomes are gotten by using Dhage’s fixed pointf
techniques for multi-valued operators. ra

Inspired by the above mentioned workd R0] the
principle motivation behind this manuscript is to analyze
the existence results for the following model X[l = 1(—A)7x]|

For 0 < n < 1, assume tha{—A)7 denote the
ctional power of the operatorA with dense domain
D((=A)T) in X. It is simple to verify thaD((—A)") is a

Banach space have the norm

t
°py {x(t) —A (t,x(hl(t)),/ Ki(t,s, x(hz(s)))ds>] For greater info on the fractional powers of closed linear
0 operator, seel[7].

t
= AX(t) +/o B(t —s)x(s)ds Definition 1.[15] The fractional integral of orderr with

t the lower limit zero for a function f is defined as
Ao (LX), [ Kelt s x(hu(s)s)

o 1 t F(S)
I'F() = —_ds t>0, a>0,
+'°~3<t,X(h5(t)),/Ot K3(t,s,x(h6(s)))ds), t F(G)/o (t—9)t

t€J= (0TIt £t,0<T <o, (1.1) provided the right hand side is point wise defined on

[0,+00), wherel™ is the gamma function.

Ax(tk) = |k(X(t|Z)), k= 1727"' ,m, (12)
Definition 2.The Riemann-Liouville fractional derivative
where °Df (1 < a < 2) denote the Caputo fractional DEF(t) = DP'Y™ 9F (t),m—1< a < mme N

derivative of ordera. Assume tha® andB(t),t > 0 are
closed, densely linear operators defined on a commorhere

domain in a Banach space pm — (i—Tn,F € LY((0,T);X),J™°F € W™L((0,T);X).

X, Ik[:)X 5 X’OA: o<ty < <tErm <tme1 T‘T are ﬁxeg Here the notation V*1((0,T);X) stands for the sobolev
numbers, Xt = X)) — X)) and  space defined as
X(t5) = lim x(tc+h) andx(t, ) = lim x(t+h) denote

h—0+ h—0—

the right and left limits ok(t) att = t, respectively. The W™((0,T);X) = {xe X:3ze LY((0,T);X)

functionsA;, hj, Ki, wherei = 1,2,3 andj =1,--- ,6 and

g are appropriate continuous functions to be determined m-1  tk

later. X(t) = %dkﬁ +
In this paper, we present an appropriate idea of mild k= :

solution for new class of framework (1.1)-(1.3) in Section

2. Based on fractional calculus, the resolvent operatordVe recall that &) = y™(t). d = y*(0).

with semigroup theory, we study the existence of mild

solution of framework (1.1)-(1.3) under Banach

contraction and Krasnoselskii-Schaefer's fixed point

1 t
. . Cnha _ _ o\m—a—-1lpm
hypothesis in Section 3. DiF(t) = Fm—a) /O (t—s) FT(s)ds

tm—l
(m—1)!

sz2(t),te (O,T)}.

Definition 3.The Caputo fractional derivative is given by

_ wherem-1<a <m FecC™1((0,T);X)NLY((0,T);X)
2 Basic Tools and the following holds

Below some basic definitions of fractional calculus, m-1 ¢k
theorems, lemma and notations aboatresolvent JCDIF(t)) =F(t) - > FF (0).
operators are given. k=0 "
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To take a look at the impulsive differential equation,  t >0 andx € D(A), there existsl(-) € LL (RT) such

we gharacterize .the spacBQ(J,X,_,) : .J.—> X,].' A that d(A) exists for RgA) > 0 and

functionx : J — X is a normalized piecewise continuous || f(t)x|] < d(t)||x|]|1. Moreover, the operator valued

function if x is piecewise continuous and continuougin function T : S0 — Z([D(A)],X) has an analytic
2

In similarly, we define the spadeC: J — X, such that extension which is denoted bfyto ¥, ensure that
X(t) = X(t) and x(t7) exists for k = 1,---,m Tl < [T ¢ I o D(A q
Throughout the papePC is assumed to be endowed with ”_( i IFA)NlIxlly for all x € D(A) an
the nom [|x|ec = sup|x(t)]l,. Thus, (PC.]| - [ec) [T)] =0(ff) asr — .
teJ (P3)There exist positive constafitsi = 1,2 and subspace
D C D(A) dense in [D(A)] such that
AD) c DA),TA)D) c DA  and
|AF(A)x|| < Ca|/x]|| for everyxe D,A € 3¢,

denotes that Banach space. For a function PC(J,X)
and k = {0,1,--- ,m}, we characterize the function
Yk € C([tk, tkr1], X) ensure that

Besides, we conclude that fére (7,n) andr > 0,
X(t), fort e (t,tc+ 1],

Y(t) = {x(tk*), fort =ty.

Now, we presentr- resolvent operator which appeared in

%:{)\ €C:A#£0,r<|A,0> Iarg(/\)l}

[1]. and forf; g

Definition 4.A one-parameter family of bounded linear N ={td:t>r},
operators g(t),t >0 on X is said to be arx-resolvent i

operator for ryg ={re'*: —-6<{ <6},

t LS ={te%:t>r},
CDIX(t) = AX(t) + / Bit-sx(9ds  (2.1) _
0 wherell'g,i = 1,2,3 are the ways with the end goal that

X(0) =0, (0) =0, (2.2) lo= u?zll'rfe situated counterclockwise. In addition, we
i present after sei$(Gy) as
(@)The function &(-) : [0,00) — L(X) is strongly P(Ga)={A €C:Gq(A)
continuous; _ya-lnay _a_ aAFa -1
(b)S (0)x=x, forallx € Xanda € (0,1); =ATTAT - A-ATA) e Z(X)}
(c)For Define the operator familg, (t),t > 0 by
x € D(A),Su(-)x € C([0,00);[D(A)]) N CH((0,0);X)
and A./ MGy (A)dA,t >0
SX(t) _ 2m he a( ) ) ) (23)
I t=0.
Cha _
DU'Su(t)x=A% (t)x+/o B(t —5)Su(s)xds Lemma 1[2] Assume that conditiongPl) — (P3) are
t fulfilled. Then there exists a uniqueresolvent operator
=S (t)Ax+ /O Su(t—s)f(s)xdst > 0. for problem (2.1)-(2.2).

Lemma2[2] The function § : [0,0) — Z(X) is
gStrongly continuous andeS (0, ) — £ (X) is uniformly
continuous.

As a way to see the existenceaf resolvent operator
for system (2.1)-(2.2), we have taken consideration th
following conditions

(P1)LetA: D(A) C X — X be a closed, densely linear Lemma3[2] If the function &(:) is exponentially
operator. Letr € (0,2). For a fewgy € (0, 7] foreach ~ bounded in Z([D(A)]), then Ri(-) is exponentially
@ < @, there exists &y = Co(¢) > 0 ensure that bounded inZ([D(A)]).

A € p(A) for every Definition 5[10] Let a € (1,2), we define the family
_ : Ra(t),t > 0 by
A€ Z ={AeC:A#0,]argA)| < an},

0,an t
Ra(t)x:/ ha_1(t — S)Sy(s)xdst > 0.
heren = ¢+ 7 and||R(A,A)|| < % forall A € 3o.qn- 0
(P2)For eacht > 0,f(t) : D(f(t)) C X — X is a closed Lemma 4[2] The operator families §(t) and Ry(t) are
linear operator withD(A) C D(f(t)) and f(-)x is  compactforallt>0if R(A§,A) is compact for soma§ €
strongly measurable of®),«) for eachx € D(A). For  p(A).
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Theorem 1[2, 10] Suppose that the conditions
(P1) — (P3) are satisfied. Letr € (1,2) and n € (0,1)
such thatan € (0,1), then there exists a positive number
Cy; such that

[(~A)1S (1) < Cpettan,
1(—A)"Rq (t)]| < Cet a1,

forallt > 0. Ify € [D((—A)")], then

(—A) 1Sy (t)x = Sa (t)(—A)TX,
(—A)TRy (t)x= Ry (t)(—A)x, forall t > 0.

Lemma 5A setX C PC is relatively compact in PC if and
only if the setX, is relatively compact in Gty ti1]; Xp ),
foreveryk=0,1,--- ,m.

Definition 6.[8] A continuous function xJ — X, is said
to be a mild solution of systen{l.1l) — (1.3) if
x(0) X + 9(x),X(0) 0, the function

s — ARy (t — 9)A; (S,X(hl(s)),fOSKl(S,T,X(hz(T)))dT)
J3B(s I)Ralt
s>A1(r,x(h1<r>>,fJ Kl(T,E,X(hz(E)))dE)dr

integrable on t € (0, T] and
Ax(tc) = Ik(x(t ).k =1,---,m and X-) satisfies the
following integral equation

and s —

are

Su () X0 +9(x) — Atl(O, x(h1(0)),0)]
+A1<t,x(h1(t)),/0 Kl(t,s,x(hz(s)))ds>

+ /0 ARs(t—9)
A (809, 3K (6. x(Pa(r)) ) ) s

+/0t/OSB(s—r)Ra(t—s)

Sult -t [Xt) + ()
(1) [ Kt sxha(s))os) |
+Aq t,X(hl('[)),/Ot Kl(t,s,x(hz(s)))ds)

+ /ttARa(t—s>

A (8 x(0(9). 5K 8 x(Pe(r)) ) ) s
[ [Bs- Rt

A <T7X(hl(T))afoT K1<ns,x<hz<s>>>ds)drds
+ /ttRa(t—s)
A2<S,X(h3(8)),ﬁ>s|<2($aTax(h4(T)))dT>dS
+ /ttRa(t—s)
As<s,x<hs<s>>,13+<3<s,nx(hs(rmdr)da

te (tl,tz],

Su(t —tm) {X(tn‘q) +Im(X(tm))
(1Pt [ a5 ()|
A t,x(hl(t)),/ot Kl(t,s,x(hz(s)))ds)
+/t;ARa(t—S)

A (8 x(0(9). 5K . x(Pe(r)) ) ) s
<[ [Tes-oRatt-s

A (X)) J§ Kafr € X(he(€)d s
+ /tn:Ra(t_s)

Ao (8x(Rs(9). 3ol Tx(ns(r)) ) ) s

+/tn:Ra(t—s)

| A (s, x(hs(). J$Ka(s r,x<h6<r>>>dr)da
X(t) = Al<r,x(hl(r)),jor Kl(r,E,x(hz(E)))dE>drds 0
‘ t € (tm, T].
+/0 Ra(t—9)
Ao (S’ X(hs(s)), Jo Ka(s, Tvx(h“(r)))dT)dS 3 Existence of mild solutions
t
- / Ra(t—s) : .
0 In this area, we exhibit and set up our fundamental come
Ag(S,X hs(s)), [SKa(s, T,x(he(T dr)d about by utilizinga-resolvent semigroup hypothesis. Let
(hs(s)). Jo Kl (he(T))) s n € (0,1). Presently, accept the assumption to establish to
t € [0,ty], set up the required outcome:
(@© 2018 NSP
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(H1)Let&(t),t > 0 andRy (t),t > 0 be compact and there (H8)The function Iy @ X, — X,k = 1,2,---,m are

exist constantsMs > 0 and Mr > 0 such that continuous functions and we can observe constants
1S () llLxy < Ms and [|Ra(t)[[Lx) < Mgr for each N, > 0 andN;" > 0 ensure that
t>0and
[(=A)TRy (1) < Mpt®@=M-1 t € (0, T]. M) = (X [[n < Ni[[x=X||pc  and
* o 2
(H2)For eachx € [D((—A)*1)], B(-)x € C(J; X) and there max||lk(0)lln <N/, (xX) € X5
is a functionu(-) € L1(J;R*) and a constaritlg such
that

Presently, we are in position to show the principle
1B(S)Ra () [[L(p((-aym)ix) < Mgu(s)t?1~1 0<s<t<T. resultof this section.

(H3)For 0< B < 1, The functionA; : J x X x X — Xg
is a continuous function and we can find constantsTheorem 2Assume that hypotheses (H1)-(H8) are
,N; > 0 andN; > 0 ensure that—A)P*1A; satisfies  fulfilled and
the Lipschitz condition:

I (AP A (51,30, %) — (—A)P 1A (52, %0, %) | L* = Ms[1+MsNi] + (Ms+ 1) [ (—=A) P[IN1(1+ Ni,)
TaP _
< N1(|31—52| + X1 —Xaln + |x2—>—<2||,7), * B Ni1(1+ N ) (MR +Ms|(=A) 7 [[| ] )
. . ) Ta(l-n)
for any 0< 51,9 < T,%,% € Xpp, i =1,2; and the + Mg|N2(1+ Ni, ) + Na(1 4 Ni,)] <1,
inequality {2J&1)¢|(—A)B+”A1(t,0, 0)[] <Nj. a(l—n) )

(HAA; 1 J x Xy x Xy — X, is continuous and we can _
observe the positive constarits,N; ensure that the L™ =Ms[r + Ms(Nir +Ny)] + (Ms+ 1) || (—=A) P

function fulfills the Lipschitz condition: [l[N2(L1+ Ng,)r + NlNil +N;j]
Ao (s1,X1,%2) — Ao(Sp, X1, X TaB
(| Az(S1,X1,%2) — A2(S2, X1, %2) || 4 ab [Np(L+ Nie )r + NzNg, + Ny
< N2(|81—SQ| + %1 —Xallp + |X2—>_<2|n)7 _
(Mr+ M| (—A) ||| ul|2)

for any 0< s1,% < T,x,% € Xp, i = 1,2; and the + Mg[N2(14 Ni, )r + NaNg, + N3
inequality {n?MAz(t,O, 0)[| <N5. TOo(l-n)

S * *

(H5)A5: J x X,y x X, — X, is continuous and we can find FNa(L4Nico )1+ NaNi, + N3] at-n) ="
positive constantsNz,N3 ensure that the function (3.2)
fulfills the Lipschitz condition:

Il Ag(s1,%1,X2) — Ag(S2, X1, %2) | At that point, the framework (1.1)- (1.3) concedes a mild
solutionin J.
< N3(|81—32| + X —=Xalp + |X2—>_<2|n)=
for any 0< 51,9 < T,%,% € X, i =1,2; and the ProofAssume that the space
inequality ma>¢|A3(t 0,0)|] <Nj. = {x:[0,T] = X : X|jp1) € PC} with the uniform

(HB)K; : I x J >< Xn — Xp.i = 1,2,3; are continuous and Convergence topology. To demonstrate the outcome, we
we can find constanfs, > 0 andNKI ~0tosuchthat characterize the operatet: % — %

| [tsn —tsxids <, Su(0)ba-+ 90~ A0X(1(0)), 0
(t,s) €IxJ, (XX) € Xr;’ =123 +Aq <t,X(h1(t)),/0 Kl(t,S,X(hz(S)))dS>
t
and ma JoKi(t,s,0)ds| < Ng.. +/ ARq(t—s)
(H7)The funct|ong Xpn — X is continuous function and Wx(t) = )
we can find constnantsig l 0 andNg > 0 ensure that Aa 8 x(ha(9)), JoKa(s T.X(a(1)))dT ) ds
1909 ~ 9(®) Iy < Ngllx %l and o], B oRitts
max||g(0)flp <Ng,  (xX) € X3 A1<r,x(h1(r)),fg Kl(r,E,x(hz(E)))dE>drds
@© 2018 NSP
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t
+/o Ra(t=9) The map‘I’ 1 B — Ais awell defined. With a specific
Ao (s x(ha(s)), [SKa(s T x(h4(r)))dr>ds end goal to show that there exists a mild solution for the
t’ 1o Y issue(1.1) — (1.3), it is adequate to demonstrate th#t
+/ Ry(t—s) admits a fixed point.
9 Let {¢n : n € N} be a decreasing sequence in
Ag (s,x(h5(s)),fosK3(s,T,x(he(r)))dr>ds (0,T) D (0,t1) ensure thatniiogfn = 0. For setting the
t (0,1, above hypothesis, we consider the issue represented as
Ser(t—to) | X(ty) +1a(x(t; )
! [ ' ! Y ! °py {x(t) - A (t,x(hl(t)),/t Kl(t,s,x(hz(s)))ds>]
A (txhut ). [ Katta sx(he(s)ds)| o
{0 — AX(t) + / B(t — s)x(s)ds
+A; t,x(hl(t)),/o Kl(t,s,x(hz(s)))ds) 0 t
+/‘ARa(t _g +Ao(tx(malt)). | Kz(t,s,x(h4(s)))ds)
t
A (8x(0(8). 3K (8T x(Pe(r)) I ) s A (txths(0), [ Ka(t s x(hs(5)ds).
+/‘/SB(S_T)Ra(t_S) teJ=[0,T]t#t,0< T <o, (3.3)
G /0 , AX(t) = Sa (&) lk(X(t ), k=1,2,---,m, (3.4)
A <‘r,x(h1(r)),jOT Kl(r,é,x(hz(é)))df)drds X(0) =X+ g(x) €X, X(0)=0. (3.5)
t
+/ Ry (t—9)
! Presently, we need to demonstrate that there exists at
Ay <s,x(h3(s)),fosK2(s, T,X(h4(T)))dT> ds least one mild solutiox, € %,n € N for the framework
" (3.3)-(3.5). To demonstrate the outcome, we characterize
~ +/ Ry (t—9) the operato : # — £ by the arrangement of € &
wx(t) t ensure that
Ag <s, x(hs(s)), [SKa(s, T,X(he(T)))dT> ds
t c (tlytZ]a SY(t)[XO_F g(X) —At]_(O,X(hj_(O)),O)]
. <A (X0, [ Kalt sx(na(s)ds)
: . A 0
St o) () Il + [ ARa(t—9)
A (i), [l s | A (8((9). 3K (6 x(Pa(r)) ) ) s
t ,s
+A t,x(hl(t)),/ot Kl(t,s,x(hz(s)))ds) +/o /O B(s—1)Ra(t—s9)
+/t ARs(t—9) A (r,x(hl(r)), o Ka(T, E,x(hz(f)))df) drds
tm t
A s,x(hl(s)),fOSKl(s,T,x(hz(r)))dr>ds ) - + [ Ralt=9
f e o Az(ts,x<hs<s>>,f5r<2(s,r,x<h4<r>>>dr)ds
Al(r,x(m(r)),fg K1<r,f,x<hz<f>>>df)drds + JyRatt=3
+/t Re(t—9) Az (s,x(h5(s)), f(ng,(s, T,X(he(T)))dT) ds
n . t € [0,t],
Ao 3109, St T St Xt + S @y )
+/tmR"(t -9 At x(ha(t)), /0 " Kl(tl,s,x(hz(s)))ds>]
Az (s, x(hs(9)), Jo Ka(s, r,x(hs(r)))dr> ds A (tx(a), /t Kt x(hz(s)))ds)
t € (tm, T]. 0
(@© 2018 NSP
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For better readability, we break the verification into (=

+/ttARa(t—S)

Ar( s.x(hi(9)), JoKa(s T,x(hz(1)))dT |ds
[ [Bs-Rat-9
A1<T7X(h1(T)),foTKl(T,E,X(hz(E)))dE>deS
+ /ttRaa—s)
Méwm@xﬁ@@nmmm»m}m

+ /ttRaa—s)
Aﬂgmm@yﬁ&@nmmu»mﬁda

te (tl,tz],

tr) + Sa (dn)Im(X(ts))
— At x(Ps / K1 (tm, S X(ha( )))ds)]
+Aq t,X hl ,/ Kl t,S,X(hz( )))d )

; 0
+ /t AR (t—S)
Au <s,x(h1(s)),fosK1(s,r,x(hz(r)))dr)ds

t S
+/tm/o B(s— T)Ru(t—9)
Al(nxauuvmjgKluus»«hxs>»ds)drds
+/ttRa(t—s)
Ao <s,x(h3(s)), fg‘Kz(s,r,x(m(r)))dr)ds
+/ttRa(t—s)

A3 (S, X(h5(S)), fOSK3(Sv T,X(hG(T)))dT) dS,
t € (tm, T,

éa—wﬂ<

following steps:

Step 1:We demonstrate th&¢ has bounded values in
2. Fort € [0,t1] andx € B; (0, %) =

we have

{xe Z:|xln <r},

1(=A)T (X))
< : [j.
=1

(3.6)

1= [|Sa (t)(—A)[x0+g(x)]]|
< Ms[[|xoln + Ngr + Ng]

2= | Su (t)(—A)A1(0,x(h1(0)),0)]|
< M| (—A) P[]t + Nar +N]

I=w—MWM@MNML£Km§NMSm¢9
—A) P [NL (14 Niy )r + NaNg, + N

I4:H(—A ”/tARa (t—9)

< I(

At (s x(ha(9) / Ka(s T, x(ha(T )))dr)d%’

TaB
<M
> RaB

:H(—A”/t/SBs—r Ry (t—9)

Al(rxru ) [ fx@u(f»)df)drd{

[Nl(l-l- NKl)r + N1N|21 + NI]

ap

— * * T
a) ﬁH[Nl(l—'_NKl)r+N1NK1+N1]HIJ”L1—GB
t
IG:H(—A”/ Ry(t — )

Ao (s x(hs(s) / Ka(s, T, x(ha(T )))dr)dsﬂ
TO(l-n)
a(l-n)

< Mg||(

< MR[N2(1+ NKz)r + Nszzz + N;]

I7:H(—A’7/tRat—s

As (s,x hs(s) / Ka(s, T, x(he(T )))dr)d%’
To(-n)
a(l—n)

< MR[N3(1+ Nicg)r + N3N, + N3]

Using(l1) — (I7) in equation(3.6), we obtain

AT (Wx) ()]
< M[[[%ol 7 + Ngr + Ng ] +Ms| (—A) P [[[[t| + Nar + Ny]
+ {1 (=A)PI[NL(1+ Niey )1 + NaNg, + Nj ]

T"B

GB [N1(1+Ni, )r + NaNg, + Nj]

(Mg -+ Mal|(—A) |||l )
+ MR[N2(1+ NKZ)r + N2N|jz2 + N;
Tal-n)

a(l-n)

+N3(1+ NKB) + N3NK3 + N3]
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For eacht € (tj,t.1),i=1,2,---,m

[(=A)T (X))
< Mgr +Ms(Nir +Nf)] + (Ms+ 1) || (—
[N1(1—|— NKl)r + Nllel + NI]
TC!ﬁ * *
ap [N1(1—|— NKl)r + Nj_NK1 + Nl]
(Mr+Ms||(—A) P |[[[u 1)
+MR[N2(1 4 Ni, )r +NaNig,, + N3
TOa(l-n)
a(l—n)

AP

_|_

+N3(1+ NK3)T + N3N|23 + Ng]

Therefore¥ is bounded.
Step 2: We show that is a contraction in%Z. For
t € [0,t1] andx,X € &, we have

[(=A)T¥x(t) —
14
< -zgli.

lg = [|Su (1) [(—A)T9(X) -
<M5Ngsup||x(s) X(

(=A)Tx(t)
(3.7)

(=A)Tg®)
S)lln

lo < [[(=A)" ﬁllMlesupllx(S)
seJ

—X(8)ln

110 < [|(—A) P|INg[L+ N ] 1JJIOHX(S) —X(9)lln

l11<M [1+ Nk, | sup||x(s) -

X(8)In

l12 < Ms||(=A)" ﬁHHu”Ll

X(9)]ln

a(l-n)

BNlN
B1[+K1]

sup||x(s) —
sed

-
l13 < MRrN;

ali=n) X(9)lln

[14 Ni,] supl|x(s) —
sed

a(1-n)
a(l-n)

Usinglg — 114 in equation(3.7), we get

l14 < MrN3

[+ Nis] iJJPIIX(S) —=X(8)]ln-

[(=A)T®x(t) — (=A)TWX(1)]|

< {Ms[Ng+ 1(=A)P[INg] + [[(—A) P Ng[1+ Ny

_ TaB
+ (Mr Ml () P ) Nl N

a(l-n)
;-(1;_77) (N2[1 4 Nk, + Na[1 4 Nks]) }

ingHX(s) —=X(s)llp-

+ Mg

Similarly, fort € [tj,tj 1], i=1,---
1= (WR)(1) — (—A (@R

< {Ms[1+MsN|] + (Ms+ D[ (—=A) PNy (14 Ny

ap

S T:

+MR[N2(1+ Nk,) + N3(1+ Nks)]

,m, we have

N1(L+Ni,) (MR +Ms(|(—A) || |2)

a(l-n)

T o
m}W—XHPC'

In this manner, we finish up
[(=A)T(Wx)(t) = (=A)T(WR) (V)] < L*[Ix—X|lpc, Yt € J.
Taking supremum over we get

I(=A)T(¥x) = (=A)T(¥X)[lpc < L*[Ix—X|[pc,

By the inequality(3.1), we havelL* < 1, it shows that
the map W is contraction on%. Hence, by Banach
contraction principle, we understand thét includes a
unique fixed poink € X, which is a mild solution of the

issue (3.3) — (3.5) in (—,T]. The proof is now
completed.
Our next outcome depends on the following

Krasnoselskii-Schaefer’s type fixed point hypothesis.
In order to use this theorem, we have to expect another
arrangement of presumptions Ap andAs.

(H9) (WA : Xy x X = Xpp,i = 2,3 are uniformly strongly
continuous for everye J, andx € X, the function
A (-, XY) : J—= X, are strongly measurable tp
(iwe can find functiongp(t) > 0 and a continuous
increasing function : [0, ) — (0, ), ensure that
forany (t,x,y) € J x X, x X, we have

1A < aOW(KIn + ¥l i =23
(H10)The functionsk; : J x J x X, — Xn,i = 2,3; are

continuous and there exists constants
Mk, > 0,i = 2,3; ensure that

IKi(t;$,%)[ln <My (t;9)[IXlln and
t
Mk, = max A Mk, (t,s)ds

Theorem 3SupposéH1) — (H3),(H7)— (H10) holds. If
=1 Mo+ MEN: +(Ms + 1)[[(~A) PNy (14 Ney) +
(Mr+Ms||(—A) Pl ull2) 5 N1(1+NK1)] and

® ds
/0 m(s)ds< e 209

where nft) = max{w@(t)(1+ Mg,), wes(t)(1+ Mg, )}

and C = M2/ + (Ms+ 1)J|(—A) P[[[N:Ng, + N;] +
_ ap
(Mg + M| (—A) P[4/l T [NiNg, + N, then there

exist at least one mild solution of the system (3.3)-(3.5) on
[0,T].
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Proof Consider an operat®¥ : 4 — % as in Theorem 2.
From the Theorem 2, we observe that the miHpis
well-defined on4. It is enough to prove our result for

t € (tm, T]. We showt has at least one fixed point.

We introduce the decompositiéh= %4 + Y4 such that

and

(#ox)(t)

S (OA0X(M(0),0)
+A1(t,x<h1<t>>, / K1<t,s,x<hz<s>>>ds)

t
+/OARa(t—s)

Ay s,x<h1<s>>,f5r<1<s,r,x<hz<r>>>dr)ds

+/Ot/OSB(s—T)Ra(t—
Al(nx(hl(r)w‘of Kl(nax(hz(f)))df)drds
te [07111]7

'—Sa(t—tm)

Al(tm7 / Ka tms 5 X(ha( )))d)
A (Lx(hl( ) [ Kl(t7S7X(h2(S)))d5)

+ :ARa(t—sJ

Al (&X(hl(S))JSKl(&T7X(hz(T)))dT)dS

+/t't/(;sa(s—r)Ra(t—s)
A (X (1), 3 K. £ x(ho(£))) ) s
te (tm, T]

t) %o+ 9(x)]

+/Rat—

Ao (809, 3ol Tx(ns(r)) ) ) s

t—tm)[( )+Sa(zn) m(X(tm))]

+/t:]Ra(t_s)

t e (tm, T].

o >>,fér<z<s,r,x<h4<r>>>dr)ds

Ag<s, x(hs(9)), [SK(s, T,x(he(r)))dr>ds

Now, we divide the proof into four steps.

Step 1: We will prove that the operatd#; is continuous.
Firstly, we shall show tha# is a contraction inA. For

te[t,tir1],i=1,---,m andx,X € 4, we get

1A (X)) — (—A)T (UR)]
< {(Ms+ 1)/ (~A) PNy (1 + N,

TR
T

N1 (L4 Nigy ) (MR A+ MB|(_A)_E””IJ|Ll)}|x_)_(”PC'

Since {(MS + DJJ(=A)P|INg(1 + Ng,) + aﬁ Nl(l

Nk, ) (Mr + MB||(—A)‘B||||u|L1)} < 1. This shows that

W is contraction inZ.

Next, we present thath is completely continuous in
4

Step 2: We demonstrate tha# : 4 — % maps
bounded. It is sufficient to show that there exists constant
I* > 0 ensure that for everye B = {xe€ #: ||x||z <r}
and||46x|| < I*. Let x € By then for everyt € (tm, T], we
get

17
A0 < 3 (3.8)

By the hypothesi$H7) — (H10), we get

|15 = [|Sa (t — tm) (—=A) T [X(ty,) + Sa () Im(X(te )]
< Ms[ + Ms(N| r-+ Nﬁ)]

Ta (1-n)
|16S|V|R / @S Y(r + M, r)ds

Ta (1-n)
l17 < MR / G(S)Y(r +Mg,r)ds

Fromlys— |17, we get the equatio(8.8)

([ (=A)T(¥5x) (1)
< Ms[r +Ms(Nir +N)]

a(l-n)
iR
+ @(S)Y(r +Mg,r)lds

:|>~<

+ Mg

This implies that the set is boundeddn

Step 3: We demonstrate that maps bounded sets into
45 is equicontinuous oB;. Lettm < g1 < g2 < T, for each
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! _Qa(l-n)-1
X € By, +MR/tm(t )N
[[(=A)T(¥ox)(a2) — (—=A)T(¥%x) ()| ‘ Ay (s,xn(hg(s)), / SKZ(S, r,xn(h4(r)))dr>
< HSa(CIZ—tm) Sa(ql—tm)ll[r+Ms(N|r+N|*)]
+/ q2_ )—Ra(Ch—S)]H —AZ(SX h3 / K23TX(h4( )))d ) ds

B(S)P(r +M,r)ds
FMREOB(r + M) = 77

+ [ IARa(t2 =9~ Raa =)l
@ >w<r+MK3 )ds

(G — au) @)

(@ =)

Since S (t),t > 0 and Ry(t),t > 0O are compact,
therefore ||(—A)T45x(a2) — (—A)T45x(q1)]| — 0 as

t
+ MR/ (t— S)a(l_n)_l
tm

As (s,xn(h5(s)), / SKg(s,r,xn(he(r)))dr>

—Ag(SX hs(s) / Ka(s, T, x(he(T )))dr) ds

Then by the continuity oA, Az and I,k =21,2,.... m,
and dominated convergence theorem, we get4hai(t)

converges to  Ubx(t) in X, ie.,
Mn (—A)T4x,(t) = (—A)T4x(t) in X, for each

t € (tm, T]. Hence this proves the continuity of the map

02 — g1. The compactness of the operator suggests thét
continuity in the uniform operator topology and the set

{Sa(dn)(=A)Mk(X(t)) = x € B(#)} s relatively
compact inX. It is easy to show that the equicontinuity ar

Step 5: We demonstrate, maps B;(#) into a
relatively compact inX,. To demonstrate it, we present
the disintegration of the mah : 7 — . Right here the

t =0 (S(t) is compact). We can easily verify that
equicontinuity for the casequ < g2 < 0 or
g <0< g <T. Hence, % maps B, into an
equicontinuous family of the functions.

Step 4: We show that4s is continuous. Letx, be
sequence i such thatnﬂgb(n(t) =X(t), i.e.,Xn — x as

n — o in 4. Since Ay,Az and Iy are continuous.

map ¥ : B, — B; is given by means otx, the set
I € % such that

s
t
+/tmRa(t—s)

Therefore, by the continuity of Ay,A3 and M(t) =
I, k=1,2,....,m we deduce that
A;(s, x(hs(9)), [ Ka(s, T,X(he(T)))dT>dS,
Ao (s,xn(hg(s)), / Kz(s,r,xn(h4(r)))dr> te (tm, ],
— Az (s x(hz(s) / Ko (s, T,x(ha(T )))dr) as andsef; € %, we have
n— e, Fa(t) = Sa(t —tm)[X(tm) + Sa (dn)Im(X(ty))],  t€ (tm, T].
%(S7Xn(h5(3))a/ K3(S7T,Xn(h6(T)))dT> Fort € (tm,tmya). Lettm <t < S<tm1 ande be a real
number ensure thatQ € <t. Forx € B; (%), we consider
— Ag (s x(hs(s) / Ks(s, T,x(hg(T )))dr) as
le t-e
n— oo, F(t) = | Ra(t—s)
g(Xn) > g(x) as n-— oo,
IK(a(t)) — Ik(x(t)) as n— o o (S H(0s(9). [ Kals T W‘“)ds
t—
Now for everyt € (tm, T], we receive ) Ra(t—s)
(=AY (9hx0) (1) = (~A)" () (1) As(s x(hs(9), | Ka(s.T.x(he(r >>>dr)ds
< Ms|| (=A) Xty ) — X(tm)] t-e
M3 (A [lm(nlt)) — (8] =Rale) f Ralt=s—2)
@© 2018 NSP
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A2<sx ha(s) / Ka(s, T, x(ha(T )))dr)ds

t—¢€

+Rq(e) Ra(t—s—¢)

tm

Ag(SX hs(s) / Ks(s, T,x(hg(T )))dr)ds

Therefore, we deduce that the 8&(t) = {,"*(t) : x €
Br(#)} is relatively compact irX, for eache,0 < & <t
by utilizing compactness d®y(t),0 < t. Forx € B, (%),
we get

I(=A)TFx(t) = (~A)TIx(t)|

t
<M [ (=97 g (o) + My, r)ds
t—e

t
+ MR/t—a(t — s)"(l*’”*lqos(s)w(r + Mg, r)ds

Absolutely, the right-hand facet of the above inequality

tends to 0 ag — 0. Since there are relatively compact

sets arbitrarily close to the set
V(t) = {r(t) : x € B/(#)}. Hence,l; is a compact by

some 1> A > 0. Thus for each € (tm, T].

X(t) = Sult—tm) [x(tm> T S (&o)m(X())

- Al <tm7

+A1<t,x(h1(t)), /0 Kl(t,s,x(hz(s)))ds)

/ K1 (tm, 5. X(ha )))dsﬂ

t
+/tARa(t—s)

A1 (s x(hy(s) / Ka(s, T,x(ho(T )))dr)ds

+/tn:/ B(s— T)Ra(t—9)

A1<r x(hy (T / Ka(T, €, x(hz(f)))df)drds

+/ttRa(t—s)

Ao (s x(hz(s) / Ka(s, T,x(hg(T )))dr)ds

Az (s x(hs(s) / Ks(s, T,x(hs(T )))dr)ds

Arzela-Ascoli lemma. Subsequent we need to expose that

Vi(t) = {r(t) : x € B/(#)| is relatively compact for

each t € [0,T]. For x € B(#%) and
t € (ti,ti.1],i = 1,--- ,m, we obtain that there exists> 0
such that
Se(t =) [X(t) + Sa (Zn)li (x(t7))],
t € (ti,tisa], X € By (%),
Mol () =q  Su(tise =) X(E) +Sa(Zn)li(x(t7))],

t=ti,1,xe€ By (%),
X(t7) + Sa (dn)1i(X(t7))],t = t, X € By (),

where B, indicates an open ball of rangé From the
compactness of operat&(t),0 < t, it is anything but
difficult to confirm that
{Sa(n)li(X(t7)) : x € By (A),i =1,--- ,m} are relatively
compact inX. Thus, we get thafl 5] (t) is relatively
compact inX for eacht € (t,t41],i = 1,---,m. In this
manner, we reason thdf is relatively compact by
Lemma 2.5. Subsequently, by Arzela-Ascoli lemma, we
understand that is compact. Therefore,4b is
completely continuous.

Step:6 Now, we will
{x():Aw

bounded. Lek(-)

show that Q(¥) =
(%) +A4hx=x, forafewO< A <1} is
€Q(W). ThenA W (X) + Atbx = x for

From the hypothesé$i1) — (H3) and(H8) —
for eacht € (tm, T], we sustain

(H10) Then
IXlln < MsllXllp +Ms(Ni|x]lp +N7) + | (—A) P
[IIN1(L+ Nicy ) [IX]ln 4 NiNg, + N ]

{1 (=A)PIHNL(L+ Nicy ) [IXlly + NaNig, + Ny

Tak
+ ap
(Mr+Mg||(—

s /
%9y <Hx||n+MK3|\x||n>]ds

MgTa(1-m)
a(l-nu

Xy < Br(t) = =

+w/
and B3, (0) =

Bi(t) < w{(g(t)(1+Mg,) +
< o{(@(t)(1+Mg,) +
<2mt)Y(Bi (1))

ING(L+ Ne) Xl + NaNg, -+ N

AP llIkI)

Y([IXlln + Mg, [IXlln )+

wherew = Then for allt € (tm, T], we have

@(t) (14 My, ))w(lIXlln) }
@) (1+ M)W (B (1)}
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From (H9), we note thap is positive and non-decreasing
function. Now, we integrating the above estimation on both

sides, we obtain

B(t) ds /t © ds
—— < [ m(s)ds< —.,ted
Joto 705 = o ™99 [ 555

From this inequality and mean value theorem, we observe

that there exists constantndependent ok € (0,1) such
thatx(t) <r fort € J and hencé|x(t)|| <r fort € J and
consequently, we have

Xl = SUBLIIX(©)]| : t € 3} < r¥xe L(W).

This shows that the sefQ is bounded in Z.
Consequently, by Theorem 2 the operadtbhas a fixed a
pointin %. Thus the problen(3.3) — (3.5) has a solution
on #. The proof is now completed.

4 Application

To exemplify our theoretical results, we consider the

cp¢ [z(t,x) —ay(t)z(sint,x) — @x(t) sinz(t, x)

2

_ﬁ/otas(s)z(sins,x)d% ;2 z(t,x)

02

E {(t-9)
+/ ¢ X2
+ay(t)z(sint,x) 4 ax(t) sinz(t, x)

+ ﬁ /0t az(s)z(sins,x)ds
+ ay(t)z(sint, x) + ax(t) sinz(t, x)

z(s,x)ds

1 t .
+m/0 az(s)z(sins, x)ds (5.1)
Az(ty,x) = z(t,x) — z(t, ,X) = le(2(t,)); (5.2)
Z(t,0) =z(t,m) =0, teJ=][0,1,0<x<m (5.3)

7(0,x) = z(x) + /Onb(x,v)dv, 0<x<m, (5.4)

where®Df denotes the Caputo derivative of order
The functionsy, @, a;,i = 1,2,3; are continuous of0, 1],
ni= sup|a(s)|<1,i=123;m= sup|a(s)| <li=

0<s<1 0<s<1
1,2,3. andm = sup [G(s)| < 1,i=123.b:[0,]] xR
0<s<1

are continuous mapping aagl-) € L2([0, 11)).

Let us consideX = L?(]0, 1]) with the norm|| - ||. We
now defineA: X — X by Az=Z'. The domain ofA is

D(A) =

with  z(0) = z(m) = 0.
Then, we have

{zeX:zZ are absolutely continuous?’ € X}.

z € D(A), where

is the orthogonal set

() Az = 30,n%(zz)2,

Zn(X) =/ 2sin(nx),n=1,2,...,

of eigenvectors oA.
(i) ForeveryzeX,

(A b=y
n=1
(iii)
(~Aiz= 3 nzz)z
n=1
on the space
D((-A)?) = {z()

€ X Zn<z,zn>zn € X} and
n=1

ConsequentlyA denotes the infinitesimal generator of
a strongly continuous, compact, analytic semigrdyp)
andA is sectorial of type andPl) is satisfied. Also we
haveB(t) : X ¢ D(A) — X,t >0, B(t)x = tée <X’ for
x € D(A). In addition, we demonstrate th@?2) and(P3)
are satisfied withte ¢! and D(A) = C&([0, ), here
Cy([0,m) is the space of infinitely differentiable
functions ensure that vanishyat 0 andx =1t

Thus,
( /kl (t,s2(h ds)( )

=a(t)z(sint,x) +a(t) sinz(t,x)
T 1+t2/ 33(9)z(sins, x)ds
ds)( )

( /kltsz

t)z(sint, x) + ax(t) sinz(t, x)

+—= 1 /tag(s)z(sins,x)ds
ds)()

=a(t) (smt,x) + a(t) sinz(t,x)

t
ﬁ / as(s)z(sins, x)ds

/ b(-.

Thus, the framework (5.1)-(5.4) can be composed as
in the form (1.1)-(1.3). It is easy to verify that with the
decisions of the above functions, presumptions (H1)-(H8)
of Theorem 2 are fulfilled. From Theorem 2, we reason
that nonlocal impulsive Cauchy issue (5.1)-(5.4) has a mild
solution inJ.

+

vidy, weX.
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