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Abstract: We present a new prospective of the existence of a mild solution for impulsive fractional neutral integro-differential
equations with nonlocal conditions in Banach spaces. In light of ideas for Banach contraction principle and Krasnoselskii-Schaefer’s
fixed point theorem, we build up the existence results with resolvent operator andη-norm. At last, a case is given to represent the
acquired outcomes .
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1 Introduction

In late couple of decades, the idea of fractional
calculus has turned into a maximum exciting place for
scientists because of its huge applicability in sciences and
engineering for example, material sciences, mechanics, in
fluid dynamic traffic models, population dynamics,
economics, chemical technology, drug and lots of others.
One of the big programs of fractional calculus is the
hypothesis of fractional evolution equations. certainly,
fractional differential equations can be regarded as as an
choice version to nonlinear partial differential equations.
The fractional derivatives provides a extraordinary
instrument for defining the memory and genetic
residences of different substances and system that is a
major advantage of fractional calculus. For elementary
certainties regarding fractional structures, one create
relation to the books [4, 15, 18, 24], and the papers
[2, 3, 11, 12, 14, 20–22, 25], and the references cited
therein.

The investigation of the theoretical nonlocal Cauchy
issue can be seen [6, 7]. It has been ascertained that
differential equations with nonlocal conditions are extra
practical for describing many phenomena and have
preferable impacts in applications over the issue without
nonlocal conditions. Several researchers generally

discussed the differential equations with nonlocal
condition and positive outcomes were acquired [3, 6–8].

Alternatively, several real world techniques and
phenomena which might be subjected for the duration of
their development to quick-time period outside influences
may be model as impulsive differential equations. Their
length is negligible in comparison with the entire length
of the unique manner and phenomena. The perturbations
can be moderately well-approximated as being
instantaneous changes of state, or inside the form of
impulses. The related equations of those phenomena can
be model as impulsive differential equations, which
allows discontinuities within the evolution of the state.
These days, there has been a growing interest within the
study of impulsive differential equations as those
equations provide a natural framework for mathematical
modelling of many real world phenomena, which include
mechanics, electrical engineering, medicine, biology,
chemistry and control theory and so on. Because of the
splendid development inside the idea of impulsive
differential equations as well as having wide applications
in varies fields. For this reason, lately qualitative idea of
impulsive differential equations were considered by
means of several authors in literature
[5, 9, 13, 16, 19, 23].
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The existence, controllability and alternative
subjective and quantitative properties of FDEs are area
unit the foremost advancing of pursuit, in particular, see
[3, 8, 12, 20–22, 25] and the references therein. In
[20–22], the authors investigated different types of
fractional neutral integro-differential equations with
impulsive conditions and nonlocal conditions in Banach
spaces. The outcomes are gotten by utilizing the suitable
fixed point theorems. Later, Chadha and Pandy [8]
studied the existence of the mild solution for impulsive
neutral stochastic fractional integro-differential inclusion
with nonlocal conditions in a separable Hilbert spaces.
The outcomes are gotten by using Dhage’s fixed point
techniques for multi-valued operators.

Inspired by the above mentioned works [8, 20] the
principle motivation behind this manuscript is to analyze
the existence results for the following model

CDα
t

[
x(t)−A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)]

= Ax(t)+
∫ t

0
B(t − s)x(s)ds

+A2

(
t,x(h3(t)),

∫ t

0
K2(t,s,x(h4(s)))ds

)

+A3

(
t,x(h5(t)),

∫ t

0
K3(t,s,x(h6(s)))ds

)
,

t ∈ J = [0,T], t 6= tk,0< T < ∞, (1.1)

∆x(tk) = Ik(x(t
−
k )), k= 1,2, · · · ,m, (1.2)

x(0) = x0+g(x) ∈ X, x′(0) = 0, (1.3)

where CDα
t (1 < α < 2) denote the Caputo fractional

derivative of orderα. Assume thatA andB(t), t ≥ 0 are
closed, densely linear operators defined on a common
domain in a Banach space
X, Ik : X→ X,0= t0 < t1 < · · · < tm < tm+1 = T are fixed
numbers, ∆x|t=tk = x(t+k ) − x(t−k ) and
x(t+k ) = lim

h→0+
x(tk +h) andx(t−k ) = lim

h→0−
x(tk +h) denote

the right and left limits ofx(t) at t = tk, respectively. The
functionsAi ,h j ,Ki , wherei = 1,2,3 and j = 1, · · · ,6 and
g are appropriate continuous functions to be determined
later.

In this paper, we present an appropriate idea of mild
solution for new class of framework (1.1)-(1.3) in Section
2. Based on fractional calculus, the resolvent operators
with semigroup theory, we study the existence of mild
solution of framework (1.1)-(1.3) under Banach
contraction and Krasnoselskii-Schaefer’s fixed point
hypothesis in Section 3.

2 Basic Tools

Below some basic definitions of fractional calculus,
theorems, lemma and notations aboutα-resolvent
operators are given.

Let (X,‖ · ‖X) denote a Banach space. Let notation
C(J,X) : J → X with supremum norm i.e.,
‖x‖C = sup

t∈J
‖x(t)‖ andL1(J,X) means the Banach space

of functions x : J → X which are Bochner integrable
normed by‖x‖L1 =

∫ T
0 ‖y(t)‖dt, for everyx∈ L1(J,X). A

measurable functionx : J → X is Bochner integrable if
and only if ‖x‖ is Lebesgue integrable. Let notation
B(X) : X→ X having norm

‖F‖B(X) = sup{‖F (x)‖ : ‖x‖ ≤ 1}.

For 0 < η ≤ 1, assume that(−A)η denote the
fractional power of the operator−A with dense domain
D((−A)η) in X. It is simple to verify thatD((−A)η) is a
Banach space have the norm

‖x‖η = ‖(−A)ηx‖.

For greater info on the fractional powers of closed linear
operator, see [17].

Definition 1.[15] The fractional integral of orderα with
the lower limit zero for a function f is defined as

Iα
t F(t) =

1
Γ (α)

∫ t

0

F(s)
(t − s)1−α ds, t > 0, α > 0,

provided the right hand side is point wise defined on
[0,+∞), whereΓ is the gamma function.

Definition 2.The Riemann-Liouville fractional derivative
is given as

Dα
t F(t) = Dm

t Jm−α
t F(t),m−1< α < m,m∈ N,

where
Dm

t = dm

dtm ,F ∈ L1((0,T);X),Jm−α
t F ∈ Wm,1((0,T);X).

Here the notation Wm,1((0,T);X) stands for the sobolev
space defined as

Wm,1((0,T);X) =

{
x∈ X : ∃z∈ L1((0,T);X) :

x(t) =
m−1

∑
k=0

dk
tk

k!
+

tm−1

(m−1)!
∗ z(t), t ∈ (0,T)

}
.

We recall that z(t) = ym(t),dk = yk(0).

Definition 3.The Caputo fractional derivative is given by

CDα
t F(t) =

1
Γ (m−α)

∫ t

0
(t − s)m−α−1Fm(s)ds,

where m−1<α <m, F ∈Cm−1((0,T);X)∩L1((0,T);X)
and the following holds

Jα
t (

CDα
t F(t)) = F(t)−

m−1

∑
k=0

tk

k!
Fk(0).
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To take a look at the impulsive differential equation,
we characterize the spacePC(J,Xη) : J → Xη . A
functionx : J → X is a normalized piecewise continuous
function if x is piecewise continuous and continuous inJ.
In similarly, we define the spacePC : J → Xη such that
x(tk) = x(t−k ) and x(t+k ) exists for k = 1, · · · ,m.

Throughout the paper,PC is assumed to be endowed with
the norm ‖x‖PC = sup

t∈J
‖x(t)‖η . Thus, (PC,‖ · ‖PC)

denotes that Banach space. For a functionx ∈ PC(J,X)
and k = {0,1, · · · ,m}, we characterize the function
yk ∈C([tk, tk+1],X) ensure that

yk(t) =

{
x(t), for t ∈ (tk, tk+1],
x(t+k ), for t = tk.

Now, we presentα- resolvent operator which appeared in
[1].

Definition 4.A one-parameter family of bounded linear
operators Sα(t), t ≥ 0 on X is said to be anα-resolvent
operator for

CDα
t x(t) = Ax(t)+

∫ t

0
B(t − s)x(s)ds, (2.1)

x(0) = x0, x′(0) = 0, (2.2)

if

(a)The function Sα(·) : [0,∞) → L(X) is strongly
continuous;

(b)Sα(0)x= x, for all x ∈ X andα ∈ (0,1);
(c)For

x ∈ D(A),Sα(·)x ∈ C([0,∞); [D(A)]) ∩ C1((0,∞);X)
and

CDα
t Sα(t)x= ASα(t)x+

∫ t

0
B(t − s)Sα(s)xds,

= Sα(t)Ax+
∫ t

0
Sα(t − s) f (s)xds, t ≥ 0.

As a way to see the existence ofα- resolvent operator
for system (2.1)-(2.2), we have taken consideration the
following conditions

(P1)Let A : D(A) ⊂ X → X be a closed, densely linear
operator. Letα ∈ (0,2). For a fewφ0 ∈ (0, π

2 ] for each
φ < φ0, there exists aC0 = C0(φ) > 0 ensure that
λ ∈ ρ(A) for every

λ ∈ ∑
0,αη

= {λ ∈ C : λ 6= 0, |arg(λ )|< αη},

hereη = φ + π
2 and‖R(λ ,A)‖≤ C0

|λ | for all λ ∈ ∑0,αη .

(P2)For eacht ≥ 0, f (t) : D( f (t)) ⊆ X → X is a closed
linear operator withD(A) ⊆ D( f (t)) and f (·)x is
strongly measurable on(0,∞) for eachx ∈ D(A). For

t > 0 andx∈ D(A), there existsd(·) ∈ L1
loc(R

+) such
that d(λ ) exists for Re(λ ) > 0 and
‖ f (t)x‖ ≤ d(t)‖x‖1. Moreover, the operator valued
function f : ∑0, π

2
→ L ([D(A)],X) has an analytic

extension which is denoted byf to ∑0,η ensure that
‖ f (λ )x‖ ≤ ‖ f (λ )‖‖x‖1 for all x ∈ D(A) and

‖ f (λ )‖ = 0
(

1
|λ |

)
asλ → ∞.

(P3)There exist positive constantsCi , i = 1,2 and subspace
D ⊆ D(A) dense in [D(A)] such that
A(D) ⊂ D(A), f (λ )(D) ⊂ D(A) and
‖Af (λ )x‖ ≤C1‖x‖ for everyx∈ D,λ ∈ ∑0,η .

Besides, we conclude that forθ ∈ (π
2 ,η) andr > 0,

∑
r,θ

=

{
λ ∈ C : λ 6= 0, r < |λ |,0> |arg(λ )|

}
.

and forΓr,θ

Γ 1
r,θ = {teiθ : t ≥ r},

Γ 2
r,θ = {reiζ : −θ ≤ ζ ≤ θ},

Γ 3
r,θ = {te−iθ : t ≥ r},

whereΓ i
r,θ , i = 1,2,3 are the ways with the end goal that

Γr,θ = ∪3
i=1Γ i

r,θ situated counterclockwise. In addition, we
present after setsρ(Gα) as

ρ(Gα) = {λ ∈C : Gα(λ )
= λ α−1(λ α I −A−Af(λ ))−1 ∈ L (X)}.

Define the operator familySα(t), t ≥ 0 by

Sα(t) =





1
2π i

∫

Γr,θ
eλ tGα(λ )dλ , t > 0,

I , t = 0.
(2.3)

Lemma 1.[2] Assume that conditions(P1) − (P3) are
fulfilled. Then there exists a uniqueα-resolvent operator
for problem (2.1)-(2.2).

Lemma 2.[2] The function Sα : [0,∞) → L (X) is
strongly continuous and Sα : (0,∞)→ L (X) is uniformly
continuous.

Lemma 3.[2] If the function Sα(·) is exponentially
bounded in L ([D(A)]), then Rα(·) is exponentially
bounded inL ([D(A)]).

Definition 5.[10] Let α ∈ (1,2), we define the family
Rα(t), t ≥ 0 by

Rα(t)x=
∫ t

0
hα−1(t − s)Sα(s)xds, t ≥ 0.

Lemma 4.[2] The operator families Sα(t) and Rα(t) are
compact for all t≥ 0 if R(λ α

0 ,A) is compact for someλ α
0 ∈

ρ(A).
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Theorem 1.[2, 10] Suppose that the conditions
(P1)− (P3) are satisfied. Letα ∈ (1,2) and η ∈ (0,1)
such thatαη ∈ (0,1), then there exists a positive number
Cη such that

‖(−A)ηSα(t)‖ ≤Cη ert t−αη
,

‖(−A)ηRα(t)‖ ≤Cη ert tα(1−η)−1
,

for all t > 0. If y∈ [D((−A)η)], then

(−A)ηSα(t)x= Sα(t)(−A)ηx,

(−A)ηRα(t)x= Rα(t)(−A)ηx, for all t > 0.

Lemma 5.A setX⊂ PC is relatively compact in PC if and
only if the setXk is relatively compact in C([tk, tk+1];Xη ),
for every k= 0,1, · · · ,m.

Definition 6.[8] A continuous function x: J → Xη is said
to be a mild solution of system(1.1) − (1.3) if
x(0) = x0 + g(x), x′(0) = 0, the function

s → ARα(t − s)A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)

and s →
∫ s

0 B(s − τ)Rα(t −

s)A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτ are

integrable on t ∈ (0,T] and
∆x(tk) = Ik(x(t

−
k )), k = 1, · · · ,m and x(·) satisfies the

following integral equation

x(t) =





Sα(t)[x0+g(x)−A1(0,x(h1(0)),0)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

0
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+
∫ t

0

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+
∫ t

0
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

0
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ [0, t1],





Sα(t − t1)

[
x(t−1 )+ I1(x(t

−
1 ))

−A1

(
t1,x(h1(t

−
1 )),

∫ t1

0
K1(t1,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+
∫ t

t1
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

t1

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

t1
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

t1
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (t1, t2],
...

...
...

Sα(t − tm)

[
x(t−m)+ Im(x(t−m))

−A1

(
tm,x(h1(t−m)),

∫ tm

0
K1(tm,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

tm
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+
∫ t

tm

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (tm,T].

3 Existence of mild solutions

In this area, we exhibit and set up our fundamental come
about by utilizingα-resolvent semigroup hypothesis. Let
η ∈ (0,1). Presently, accept the assumption to establish to
set up the required outcome:

c© 2018 NSP
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(H1)Let Sα(t), t > 0 andRα(t), t > 0 be compact and there
exist constantsMS > 0 and MR > 0 such that
‖Sα(t)‖L(X) ≤ MS and ‖Rα(t)‖L(X) ≤ MR for each
t > 0 and

‖(−A)ηRα(t)‖ ≤ MRtα(1−η)−1
, t ∈ (0,T].

(H2)For eachx∈ [D((−A)1−η)], B(·)x∈C(J;X) and there
is a functionµ(·) ∈ L1(J;R+) and a constantMB such
that

‖B(s)Rα(t)‖L([D((−A)η )];X) ≤MBµ(s)tαη−1
,0≤ s< t ≤T.

(H3)For 0< β < 1, The functionA1 : J×Xη ×Xη → Xβ
is a continuous function and we can find constants
,N1 > 0 andN∗

1 > 0 ensure that(−A)β+ηA1 satisfies
the Lipschitz condition:

‖ (−A)β+ηA1(s1,x1,x2)− (−A)β+ηA1(s2,x1,x2) ‖

≤ N1

(
|s1− s2|+ ‖x1− x1‖η + ‖x2− x2‖η

)
,

for any 0≤ s1,s2 ≤ T,xi ,xi ∈ Xη , i = 1,2; and the
inequality max

t∈J
‖(−A)β+ηA1(t,0,0)‖ ≤ N∗

1 .

(H4)A2 : J × Xη ×Xη → Xη is continuous and we can
observe the positive constantsN2,N∗

2 ensure that the
function fulfills the Lipschitz condition:

‖ A2(s1,x1,x2)−A2(s2,x1,x2) ‖

≤ N2

(
|s1− s2|+ ‖x1− x1‖η + ‖x2− x2‖η

)
,

for any 0≤ s1,s2 ≤ T,xi ,xi ∈ Xη , i = 1,2; and the
inequality max

t∈J
‖A2(t,0,0)‖ ≤ N∗

2 .

(H5)A3 : J×Xη ×Xη →Xη is continuous and we can find
positive constantsN3,N∗

3 ensure that the function
fulfills the Lipschitz condition:

‖ A3(s1,x1,x2)−A3(s2,x1,x2) ‖

≤ N3

(
|s1− s2|+ ‖x1− x1‖η + ‖x2− x2‖η

)
,

for any 0≤ s1,s2 ≤ T,xi ,xi ∈ Xη , i = 1,2; and the
inequality max

t∈J
‖A3(t,0,0)‖ ≤ N∗

3 .

(H6)Ki : J× J×Xη → Xη , i = 1,2,3; are continuous and
we can find constantsNKi > 0 andN∗

Ki
> 0 to such that

∥∥∥∥
∫ t

0
[Ki(t,s,x)−Ki(t,s,x)]ds

∥∥∥∥
η
≤ NKi‖x− x‖η ,

(t,s) ∈ J× J, (x,x) ∈ X
2
η , i = 1,2,3

and max
t∈J

‖
∫ t

0 Ki(t,s,0)ds‖ ≤ N∗
Ki
.

(H7)The functiong : Xη → Xη is continuous function and
we can find constantsNg > 0 andN∗

g > 0 ensure that

‖g(x)−g(x)‖η ≤ Ng‖x− x‖η and

max
t∈J

‖g(0)‖η ≤ N∗
g , (x,x) ∈ X

2
η .

(H8)The function Ik : Xη → Xη , k = 1,2, · · · ,m are
continuous functions and we can observe constants
NI > 0 andN∗

I > 0 ensure that

‖Ik(x)− Ik(x)‖η ≤ NI‖x− x‖PC and

max
t∈J

‖Ik(0)‖η ≤ N∗
I , (x,x) ∈X

2
η .

Presently, we are in position to show the principle
result of this section.

Theorem 2.Assume that hypotheses (H1)-(H8) are
fulfilled and

L∗ = MS[1+MSNI ]+ (MS+1)‖(−A)−β‖N1(1+NK1)

+
Tαβ

αβ
N1(1+NK1)(MR+MB‖(−A)−β‖‖µ‖L1)

+MR[N2(1+NK2)+N3(1+NK3)]
Tα(1−η)

α(1−η)
< 1,

(3.1)

L̃∗ =MS[r +MS(NI r +N∗
I )]+ (MS+1)‖(−A)−β

‖[N1(1+NK1)r +N1N∗
K1

+N∗
1]

+
Tαβ

αβ
[N1(1+NK1)r +N1N∗

K1
+N∗

1]

(MR+MB‖(−A)−β‖‖µ‖L1)

+MR[N2(1+NK2)r +N2N∗
K2

+N∗
2

+N3(1+NK3)r +N3N∗
K3

+N∗
3]

Tα(1−η)

α(1−η)
≤ r.

(3.2)

At that point, the framework (1.1)- (1.3) concedes a mild
solution in J.

Proof.Assume that the space
B = {x : [0,T] → X : x|[0,T] ∈ PC} with the uniform
convergence topology. To demonstrate the outcome, we
characterize the operator̃Ψ : B → B

Ψ̃x(t) =





Sα(t)[x0+g(x)−A1(0,x(h1(0)),0)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+
∫ t

0
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

0

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds
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Ψ̃x(t) =





+

∫ t

0
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

0
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ [0, t1],

Sα(t − t1)

[
x(t−1 )+ I1(x(t

−
1 ))

−A1

(
t1,x(h1(t

−
1 )),

∫ t1

0
K1(t1,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

t1
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

t1

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+
∫ t

t1
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+
∫ t

t1
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (t1, t2],
...

...
...

Sα(t − tm)

[
x(t−m)+ Im(x(t−m))

−A1

(
tm,x(h1(t−m)),

∫ tm

0
K1(tm,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+
∫ t

tm
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

tm

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+
∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (tm,T].

The mapΨ̃ : B → B is a well defined. With a specific
end goal to show that there exists a mild solution for the
issue(1.1)− (1.3), it is adequate to demonstrate thatΨ̃
admits a fixed point.

Let {ζn : n ∈ N} be a decreasing sequence in
(0,T) ⊃ (0, t1) ensure that lim

n→∞
ζn = 0. For setting the

above hypothesis, we consider the issue represented as

CDα
t

[
x(t)−A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)]

= Ax(t)+
∫ t

0
B(t − s)x(s)ds

+A2

(
t,x(h3(t)),

∫ t

0
K2(t,s,x(h4(s)))ds

)

+A3

(
t,x(h5(t)),

∫ t

0
K3(t,s,x(h6(s)))ds

)
,

t ∈ J = [0,T], t 6= tk,0< T < ∞, (3.3)

∆x(tk) = Sα(ζn)Ik(x(t
−
k )), k= 1,2, · · · ,m, (3.4)

x(0) = x0+g(x) ∈X, x′(0) = 0. (3.5)

Presently, we need to demonstrate that there exists at
least one mild solutionxn ∈ B,n ∈ N for the framework
(3.3)-(3.5). To demonstrate the outcome, we characterize
the operatorΨ : B → B by the arrangement ofx ∈ B

ensure that

Ψx(t) =





Sα(t)[x0+g(x)−A1(0,x(h1(0)),0)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

0
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

0

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

0
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+
∫ t

0
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ [0, t1],

Sα(t − t1)

[
x(t−1 )+Sα(ζn)I1(x(t

−
1 ))

−A1

(
t1,x(h1(t

−
1 )),

∫ t1

0
K1(t1,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)
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Ψx(t) =





+

∫ t

t1
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

t1

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

t1
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

t1
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (t1, t2],
...

...
...

Sα(t − tm)

[
x(t−m)+Sα(ζn)Im(x(t−m))

−A1

(
tm,x(h1(t−m)),

∫ tm

0
K1(tm,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

tm
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

tm

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+
∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (tm,T],

For better readability, we break the verification into
following steps:

Step 1:We demonstrate thatΨ has bounded values in
B. For t ∈ [0, t1] andx∈ Br(0,B) = {x∈ B : ‖x‖η ≤ r},
we have

‖(−A)η(Ψx)(t)‖

≤
7

∑
j=1

I j . (3.6)

I1 = ‖Sα(t)(−A)η [x0+g(x)]‖

≤ MS[‖x0‖η +Ngr +N∗
g ]

I2 = ‖Sα(t)(−A)ηA1(0,x(h1(0)),0)‖

≤ MS‖(−A)−β‖[|t|+N1r +N∗
1 ]

I3 =

∥∥∥∥(−A)ηA1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)∥∥∥∥

≤ ‖(−A)−β‖[N1(1+NK1)r +N1N∗
K1

+N∗
1]

I4 =

∥∥∥∥(−A)η
∫ t

0
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s

0
K1(s,τ,x(h2(τ)))dτ

)
ds

∥∥∥∥

≤ MR
Tαβ

αβ
[N1(1+NK1)r +N1N∗

K1
+N∗

1 ]

I5 =

∥∥∥∥(−A)η
∫ t

0

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ

0
K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

∥∥∥∥

≤ MB‖(−A)−β‖[N1(1+NK1)r +N1N∗
K1

+N∗
1 ]‖µ‖L1

Tαβ

αβ

I6 =

∥∥∥∥(−A)η
∫ t

0
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)
ds

∥∥∥∥

≤ MR[N2(1+NK2)r +N2N∗
K2

+N∗
2 ]

Tα(1−η)

α(1−η)

I7 =

∥∥∥∥(−A)η
∫ t

0
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)
ds

∥∥∥∥

≤ MR[N3(1+NK3)r +N3N∗
K3

+N∗
3 ]

Tα(1−η)

α(1−η)
.

Using(I1)− (I7) in equation(3.6), we obtain

‖(−A)η(Ψx)(t)‖

≤ MS[‖x0‖η +Ngr +N∗
g ]+MS‖(−A)−β‖[|t|+N1r +N∗

1 ]

+ ‖(−A)−β‖[N1(1+NK1)r +N1N∗
K1

+N∗
1]

+
Tαβ

αβ
[N1(1+NK1)r +N1N∗

K1
+N∗

1]

(MR+MB‖(−A)−β‖‖µ‖L1)

+MR[N2(1+NK2)r +N2N∗
K2

+N∗
2

+N3(1+NK3)r +N3N∗
K3

+N∗
3]

Tα(1−η)

α(1−η)
.
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For eacht ∈ (ti , ti+1], i = 1,2, · · · ,m,

‖(−A)η(Ψx)(t)‖

≤ MS[r +MS(NI r +N∗
I )]+ (MS+1)‖(−A)−β‖

[N1(1+NK1)r +N1N∗
K1

+N∗
1]

+
Tαβ

αβ
[N1(1+NK1)r +N1N∗

K1
+N∗

1]

(MR+MB‖(−A)−β‖‖µ‖L1)

+MR[N2(1+NK2)r +N2N∗
K2

+N∗
2

+N3(1+NK3)r +N3N∗
K3

+N∗
3]

Tα(1−η)

α(1−η)

Therefore,Ψ is bounded.
Step 2: We show thatΨ is a contraction inB. For

t ∈ [0, t1] andx,x∈ B, we have

‖(−A)ηΨx(t)− (−A)ηΨx(t)‖

≤
14

∑
i=8

Ii . (3.7)

I8 = ‖Sα(t)[(−A)ηg(x)− (−A)ηg(x)]‖

≤ MSNgsup
s∈J

‖x(s)− x(s)‖η

I9 ≤ ‖(−A)−β‖MSN1 sup
s∈J

‖x(s)− x(s)‖η

I10 ≤ ‖(−A)−β‖N1[1+NK1]sup
s∈J

‖x(s)− x(s)‖η

I11 ≤ MR
Tαβ

αβ
N1[1+NK1]sup

s∈J
‖x(s)− x(s)‖η

I12 ≤ MB‖(−A)−β‖‖µ‖L1
Tαβ

αβ
N1[1+NK1]

sup
s∈J

‖x(s)− x(s)‖η

I13 ≤ MRN2
Tα(1−η)

α(1−η)
[1+NK2]sup

s∈J
‖x(s)− x(s)‖η

I14 ≤ MRN3
Tα(1−η)

α(1−η)
[1+NK3]sup

s∈J
‖x(s)− x(s)‖η .

UsingI8− I14 in equation(3.7), we get

‖(−A)ηΨx(t)− (−A)ηΨx(t)‖

≤

{
MS[Ng+ ‖(−A)−β‖N1]+ ‖(−A)−β‖N1[1+NK1]

+
(

MR+MB‖(−A)−β‖‖µ‖L1

) Tαβ

αβ
N1[1+NK1]

+MR
Tα(1−η)

α(1−η)
(
N2[1+NK2]+N3[1+NK3]

)}

sup
s∈J

‖x(s)− x(s)‖η .

Similarly, for t ∈ [ti , ti+1], i = 1, · · · ,m, we have

‖(−A)η(Ψx)(t)− (−A)η(Ψx)(t)‖

≤

{
MS[1+MSNI ]+ (MS+1)‖(−A)−β‖N1(1+NK1)

+
Tαβ

αβ
N1(1+NK1)(MR+MB‖(−A)−β‖‖µ‖L1)

+MR[N2(1+NK2)+N3(1+NK3)]
Tα(1−η)

α(1−η)

}
‖x− x‖PC.

In this manner, we finish up

‖(−A)η(Ψx)(t)− (−A)η(Ψx)(t)‖ ≤ L∗‖x− x‖PC, ∀ t ∈ J.

Taking supremum overt, we get

‖(−A)η(Ψx)− (−A)η(Ψx)‖PC ≤ L∗‖x− x‖PC,

By the inequality(3.1), we haveL∗ < 1, it shows that
the mapΨ is contraction onB. Hence, by Banach
contraction principle, we understand thatΨ includes a
unique fixed pointx∈ Xη which is a mild solution of the
issue (3.3) − (3.5) in (−∞,T]. The proof is now
completed.

Our next outcome depends on the following
Krasnoselskii-Schaefer’s type fixed point hypothesis.

In order to use this theorem, we have to expect another
arrangement of presumptions onA2 andA3.

(H9) (i)Ai : Xη ×Xη →Xη , i = 2,3 are uniformly strongly
continuous for everyt ∈ J, andx∈Xη , the function
Ai(·,x,y) : J →Xη are strongly measurable tot;

(ii)we can find functionsφi(t) > 0 and a continuous
increasing functionψ : [0,∞)→ (0,∞), ensure that
for any(t,x,y) ∈ J×Xη ×Xη , we have

‖Ai(t,x,y)‖ ≤ φi(t)ψ(‖x‖η + ‖y‖η), i = 2,3

.
(H10)The functionsKi : J × J × Xη → Xη , i = 2,3; are

continuous and there exists constants
MKi > 0, i = 2,3; ensure that

‖Ki(t,s,x)‖η ≤ MKi (t,s)‖x‖η and

M∗
Ki
= max

t∈J

∫ t

0
MKi (t,s)ds.

Theorem 3.Suppose(H1)− (H3),(H7)− (H10) holds. If
µ = 1− [MS+M2

SNI +(MS+1)‖(−A)−β‖N1(1+NK1)+

(MR+MB‖(−A)−β‖‖µ‖L1)Tαβ

αβ N1(1+NK1)] and

∫ T

0
m(s)ds≤

∫ ∞

C∗

ds
2ψ(s)

,

where m(t) = max{ωφ2(t)(1+ M∗
K2
),ωφ3(t)(1+ M∗

K3
)}

and C∗ = M2
SN∗

I + (MS + 1)‖(−A)−β‖[N1N∗
K1

+ N∗
1 ] +

(MR+ MB‖(−A)−β‖‖µ‖L1)Tαβ

αβ [N1N∗
K1

+ N∗
1 ], then there

exist at least one mild solution of the system (3.3)-(3.5) on
[0,T].
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Proof.Consider an operatorΨ : B → B as in Theorem 2.
From the Theorem 2, we observe that the mapΨ is
well-defined onB. It is enough to prove our result for
t ∈ (tm,T]. We showΨ has at least one fixed point.

We introduce the decompositionΨ =Ψ1+Ψ2 such that

(Ψ1x)(t) =





−Sα (t)A1(0,x(h1(0)),0)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+
∫ t

0
ARα(t −s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+
∫ t

0

∫ s

0
B(s− τ)Rα (t −s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds,

t ∈ [0, t1],
...

...
...

−Sα (t − tm)

A1

(
tm,x(h1(t−m)),

∫ tm

0
K1(tm,s,x(h2(s)))ds

)

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+
∫ t

tm
ARα(t −s)

A1

(
s,x(h1(s)),

∫ s
0 K1(s,τ,x(h2(τ)))dτ

)
ds

+
∫ t

tm

∫ s

0
B(s− τ)Rα(t −s)

A1

(
τ,x(h1(τ)),

∫ τ
0 K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds,

t ∈ (tm,T]

and

(Ψ2x)(t) =





Sα(t)[x0+g(x)]

+

∫ t

0
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t

0
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ [0, t1],
...

...
...

Sα(t − tm)[x(t−m)+Sα(ζn)Im(x(t−m))]

+

∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

(Ψ2x)(t) =





+
∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (tm,T].

Now, we divide the proof into four steps.

Step 1:We will prove that the operatorΨ1 is continuous.
Firstly, we shall show thatΨ1 is a contraction inB. For
t ∈ [ti , ti+1], i = 1, · · · ,m, andx,x∈ B, we get

‖(−A)η(Ψ1x)(t)− (−A)η(Ψ1x)(t)‖

≤

{
(MS+1)‖(−A)−β‖N1(1+NK1)

+
Tαβ

αβ
N1(1+NK1)(MR+MB‖(−A)−β‖‖µ‖L1)

}
‖x− x‖PC.

Since

{
(MS + 1)‖(−A)−β‖N1(1 + NK1) +

Tαβ

αβ N1(1 +

NK1)(MR+ MB‖(−A)−β‖‖µ‖L1)

}
< 1. This shows that

Ψ1 is contraction inB.

Next, we present thatΨ2 is completely continuous in
B

Step 2: We demonstrate thatΨ2 : B → B maps
bounded. It is sufficient to show that there exists constant
l∗ > 0 ensure that for everyx∈ Br = {x∈ B : ‖x‖B ≤ r}
and‖Ψ2x‖ ≤ l∗. Let x ∈ Br then for everyt ∈ (tm,T], we
get

‖(−A)η(Ψ2x)(t)‖ ≤
17

∑
i=15

Ii . (3.8)

By the hypothesis(H7)− (H10), we get

I15 = ‖Sα(t − tm)(−A)η [x(t−m)+Sα(ζn)Im(x(t
−
m))]‖

≤ MS[r +MS(NI r +N∗
I )]

I16 ≤ MR
Tα(1−η)

α(1−η)

∫ t

tm
φ2(s)ψ(r +M∗

K2
r)ds

I17 ≤ MR
Tα(1−η)

α(1−η)

∫ t

tm
φ3(s)ψ(r +M∗

K3
r)ds

FromI15− I17, we get the equation(3.8)

‖(−A)η(Ψ2x)(t)‖

≤ MS[r +MS(NI r +N∗
I )]

+MR
Tα(1−η)

α(1−η)

∫ t

tm
[φ2(s)ψ(r +M∗

K2
r)

+φ3(s)ψ(r +M∗
K3

r)]ds

= l∗.

This implies that the set is bounded inB.

Step 3: We demonstrate that maps bounded sets into
Ψ2 is equicontinuous onBr . Let tm< q1 < q2 < T, for each
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x∈ Br ,

‖(−A)η(Ψ2x)(q2)− (−A)η(Ψ2x)(q1)‖

≤ ‖Sα(q2− tm)−Sα(q1− tm)‖[r +MS(NI r +N∗
I )]

+
∫ q1

tm
‖(−A)η [Rα(q2− s)−Rα(q1− s)]‖

φ2(s)ψ(r +M∗
K2

r)ds

+MRφ2(t)ψ(r +M∗
K2

r)
(q2−q1)

α(1−η)

α(1−η)

+

∫ q1

tm
‖(−A)η [Rα(q2− s)−Rα(q1− s)]‖

φ3(s)ψ(r +M∗
K3

r)ds

+MRφ3(t)ψ(r +M∗
K3

r)
(q2−q1)

α(1−η)

α(1−η)
.

Since Sα(t), t > 0 and Rα(t), t > 0 are compact,
therefore ‖(−A)ηΨ2x(q2) − (−A)ηΨ2x(q1)‖ → 0 as
q2 → q1. The compactness of the operator suggests the
continuity in the uniform operator topology and the set
{Sα(ζn)(−A)η Ik(x(tk)) : x ∈ Br(B)} is relatively
compact inX. It is easy to show that the equicontinuity ar
t = 0 (Sα(t) is compact). We can easily verify that
equicontinuity for the case q1 < q2 ≤ 0 or
q1 ≤ 0 ≤ q2 ≤ T. Hence, Ψ2 maps Br into an
equicontinuous family of the functions.

Step 4: We show thatΨ2 is continuous. Letxn be
sequence inB such that lim

n→∞
xn(t) = x(t), i.e., xn → x as

n → ∞ in B. Since A2,A3 and Ik are continuous.
Therefore, by the continuity of A2,A3 and
Ik,k= 1,2, . . . ,m, we deduce that

A2

(
s,xn(h3(s)),

∫ s

0
K2(s,τ,xn(h4(τ)))dτ

)

→ A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)
as

n→ ∞,

A3

(
s,xn(h5(s)),

∫ s

0
K3(s,τ,xn(h6(τ)))dτ

)

→ A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)
as

n→ ∞,

g(xn)→ g(x) as n→ ∞,

Ik(xn(ti))→ Ik(x(ti)) as n→ ∞.

Now for everyt ∈ (tm,T], we receive

‖(−A)η(Ψ2xn)(t)− (−A)η(Ψ2x)(t)‖

≤ MS‖(−A)η [xn(t
−
m)− x(t−m)]‖

+M2
S‖(−A)η [Im(xn(t

−
m))− Im(x(t

−
m))]‖

+MR

∫ t

tm
(t − s)α(1−η)−1

∥∥∥∥A2

(
s,xn(h3(s)),

∫ s

0
K2(s,τ,xn(h4(τ)))dτ

)

−A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)∥∥∥∥ds

+MR

∫ t

tm
(t − s)α(1−η)−1

∥∥∥∥A3

(
s,xn(h5(s)),

∫ s

0
K3(s,τ,xn(h6(τ)))dτ

)

−A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)∥∥∥∥ds.

Then by the continuity ofA2,A3 and Ik,k = 1,2, . . . ,m,

and dominated convergence theorem, we get thatΨ2xn(t)
converges to Ψ2x(t) in Xη , i.e.,
lim
n→∞

(−A)ηΨ2xn(t) = (−A)ηΨ2x(t) in Xη for each

t ∈ (tm,T]. Hence this proves the continuity of the map
Ψ2.

Step 5: We demonstrateΨ2 maps Br(B) into a
relatively compact inXη . To demonstrate it, we present
the disintegration of the mapΨ2 : Γ1 → Γ2. Right here the
map Ψ2 : Br → Br is given by means ofΨ2x, the set
Γ1 ∈ B such that

Γ1(t) =





∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s
0 K2(s,τ,x(h4(τ)))dτ

)
ds

+
∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s
0 K3(s,τ,x(h6(τ)))dτ

)
ds,

t ∈ (tm,T],

and setΓ2 ∈ B, we have

Γ2(t) = Sα(t − tm)[x(t
−
m)+Sα(ζn)Im(x(t

−
m))], t ∈ (tm,T].

For t ∈ (tm, tm+1]. Let tm < t ≤ s≤ tm+1 andε be a real
number ensure that 0< ε < t. Forx∈ Br(B), we consider

Γ 1,ε
1 (t) =

∫ t−ε

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)
ds

+

∫ t−ε

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)
ds

≤ Rα(ε)
∫ t−ε

tm
Rα(t − s− ε)
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A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)
ds

+Rα(ε)
∫ t−ε

tm
Rα(t − s− ε)

A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)
ds.

Therefore, we deduce that the setVε(t) = {Γ 1,ε
1 (t) : x ∈

Br(B)} is relatively compact inXη for eachε,0 < ε < t
by utilizing compactness ofRα(t),0 < t. For x ∈ Br(B),
we get

‖(−A)ηΓ1x(t)− (−A)ηΓ 1,ε
1 x(t)‖

≤ MR

∫ t

t−ε
(t − s)α(1−η)−1φ2(s)ψ(r +M∗

K2
r)ds

+MR

∫ t

t−ε
(t − s)α(1−η)−1φ3(s)ψ(r +M∗

K3
r)ds.

Absolutely, the right-hand facet of the above inequality
tends to 0 asε → 0. Since there are relatively compact
sets arbitrarily close to the set
V(t) = {Γ1(t) : x ∈ Br(B)}. Hence,Γ1 is a compact by
Arzela-Ascoli lemma. Subsequent, we need to expose that
V1(t) = {Γ2(t) : x ∈ Br(B)‖ is relatively compact for
each t ∈ [0,T]. For x ∈ Br(B) and
t ∈ (ti , ti+1], i = 1, · · · ,m, we obtain that there existsr ′ > 0
such that

[Γ 2]ti (t) =





Sα(t − ti)[x(t
−
i )+Sα(ζn)Ii(x(t

−
i ))],

t ∈ (ti , ti+1], x∈ Br ′(B),

Sα(ti+1− ti)[x(t−i )+Sα(ζn)Ii(x(t−i ))],

t = ti+1, x∈ Br ′(B),

[x(t−i )+Sα(ζn)Ii(x(t−i ))], t = tk, x∈ Br ′(B),

whereBr ′ indicates an open ball of ranger ′. From the
compactness of operatorSα(t),0 < t, it is anything but
difficult to confirm that
{Sα(ζn)Ii(x(t

−
i )) : x∈ Br ′(B), i = 1, · · · ,m} are relatively

compact inX. Thus, we get that[Γ 2]ti (t) is relatively
compact inX for eacht ∈ (ti , ti+1], i = 1, · · · ,m. In this
manner, we reason thatΓ2 is relatively compact by
Lemma 2.5. Subsequently, by Arzela-Ascoli lemma, we
understand thatΨ2 is compact. Therefore,Ψ2 is
completely continuous.

Step:6 Now, we will show that Q(Ψ) ={
x(·) : λΨ1

(
x
λ
)
+λΨ2x= x, for a few0< λ < 1

}
is

bounded. Letx(·) ∈ Q(Ψ ). ThenλΨ1
(

x
λ
)
+λΨ2x= x for

some 1> λ > 0. Thus for eacht ∈ (tm,T].

x(t) = Sα(t − tm)

[
x(t−m)+Sα(ζn)Im(x(t

−
m))

−A1

(
tm,x(h1(t

−
m)),

∫ tm

0
K1(tm,s,x(h2(s)))ds

)]

+A1

(
t,x(h1(t)),

∫ t

0
K1(t,s,x(h2(s)))ds

)

+

∫ t

tm
ARα(t − s)

A1

(
s,x(h1(s)),

∫ s

0
K1(s,τ,x(h2(τ)))dτ

)
ds

+

∫ t

tm

∫ s

0
B(s− τ)Rα(t − s)

A1

(
τ,x(h1(τ)),

∫ τ

0
K1(τ,ξ ,x(h2(ξ )))dξ

)
dτds

+

∫ t

tm
Rα(t − s)

A2

(
s,x(h3(s)),

∫ s

0
K2(s,τ,x(h4(τ)))dτ

)
ds

+
∫ t

tm
Rα(t − s)

A3

(
s,x(h5(s)),

∫ s

0
K3(s,τ,x(h6(τ)))dτ

)
ds

From the hypotheses(H1)−(H3) and(H8)−(H10)Then
for eacht ∈ (tm,T], we sustain

‖x‖η ≤ MS[‖x‖η +MS(NI‖x‖η +N∗
I )+ ‖(−A)−β

‖[N1(1+NK1)‖x‖η +N1N∗
K1

+N∗
1 ]]

+ ‖(−A)−β‖[N1(1+NK1)‖x‖η +N1N∗
K1

+N∗
1 ]

+
Tαβ

αβ
[N1(1+NK1)‖x‖η +N1N∗

K1
+N∗

1 ]

(MR+MB‖(−A)−β‖‖µ‖L1)

+ω
∫ t

tm
[φ2(s)ψ(‖x‖η +M∗

K2
‖x‖η)+

φ3(s)ψ(‖x‖η +M∗
K3
‖x‖η)]ds,

whereω =
MRTα(1−η)

α(1−η)µ
. Then for allt ∈ (tm,T], we have

‖x‖η ≤ βλ (t) =
C∗

µ

+ω
∫ t

tm

[
φ2(s)(1+M∗

K2
)+φ3(s)(1+M∗

K3
)
]

ψ(‖x‖η)ds

and βλ (0) =
C∗

µ . Thus

β ′
λ (t)≤ ω{(φ2(t)(1+M∗

K2
)+φ3(t)(1+M∗

K3
))ψ(‖x‖η)}

≤ ω{(φ2(t)(1+M∗
K2
)+φ3(t)(1+M∗

K3
))ψ(βλ (t))}

≤ 2m(t)ψ(βλ (t))
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From (H9), we note thatψ is positive and non-decreasing
function. Now, we integrating the above estimation on both
sides, we obtain

∫ βλ (t)

βλ (0)

ds
2ψ(s)

≤

∫ t

0
m(s)ds<

∫ ∞

C∗

ds
2ψ(s)

, t ∈ J.

From this inequality and mean value theorem, we observe
that there exists constantr, independent ofλ ∈ (0,1) such
thatx(t) ≤ r for t ∈ J and hence‖x(t)‖ ≤ r for t ∈ J and
consequently, we have

‖x‖η = sup{‖x(t)‖ : t ∈ J} ≤ r,∀x∈ ζ (Ψ ).

This shows that the setQ is bounded in B.
Consequently, by Theorem 2 the operatorΨ has a fixed a
point in B. Thus the problem(3.3)− (3.5) has a solution
onB. The proof is now completed.

4 Application

To exemplify our theoretical results, we consider the

CDα
t

[
z(t,x)−a1(t)z(sint,x)−a2(t)sinz(t,x)

−
1

1+ t2

∫ t

0
a3(s)z(sins,x)ds

]
=

∂ 2

∂x2 z(t,x)

+
∫ t

0
(t − s)ξ e−ζ (t−s) ∂ 2

∂x2 z(s,x)ds

+a1(t)z(sint,x)+a2(t)sinz(t,x)

+
1

1+ t2

∫ t

0
a3(s)z(sins,x)ds

+ ã1(t)z(sint,x)+ ã2(t)sinz(t,x)

+
1

1+ t2

∫ t

0
ã3(s)z(sins,x)ds, (5.1)

∆z(tk,x) = z(t+k ,x)− z(t−k ,x) = Ik(z(t
−
k )); (5.2)

z(t,0) = z(t,π) = 0, t ∈ J = [0,1], 0≤ x≤ π , (5.3)

z(0,x) = z0(x)+
∫ π

0
b(x,v)dv, 0≤ x≤ π , (5.4)

whereCDα
t denotes the Caputo derivative of orderα.

The functionsai ,ai , ãi , i = 1,2,3; are continuous on[0,1],
ni = sup

0≤s≤1
|ai(s)|< 1, i = 1,2,3; ñi = sup

0≤s≤1
|ãi(s)|< 1, i =

1,2,3. andni = sup
0≤s≤1

|ai(s)| < 1, i = 1,2,3. b : [0,1]×R

are continuous mapping andz0(·) ∈ L2([0,π ]).
Let us considerX = L2([0,π ]) with the norm‖ · ‖. We

now defineA : X→ X by Az= z′′. The domain ofA is

D(A)= {z∈X : z,z′ are absolutely continuousz′′ ∈X}.

with z(0) = z(π) = 0.
Then, we have

(i) Az = ∑∞
n=1n2〈z,zn〉zn, z ∈ D(A), where

zn(x) =
√

2
π sin(nx), n= 1,2, . . . , is the orthogonal set

of eigenvectors ofA.
(ii) For everyz∈X,

(−A)−
1
2 z=

∞

∑
n=1

1
n
〈z,zn〉zn.

(iii)

(−A)
1
2 z=

∞

∑
n=1

n〈z,zn〉zn

on the space

D((−A)
1
2 ) = {z(·) ∈ X;

∞

∑
n=1

n〈z,zn〉zn ∈ X} and

‖(−A)−
1
2‖= 1.

Consequently,A denotes the infinitesimal generator of
a strongly continuous, compact, analytic semigroupT(t)
andA is sectorial of type and(P1) is satisfied. Also we
haveB(t) : X ⊂ D(A) → X, t ≥ 0, B(t)x = tξ e−ζ tx′′ for
x∈ D(A). In addition, we demonstrate that(P2) and(P3)
are satisfied withte−ζ t and D(A) = C∞

0 ([0,π ]), here
C∞

0 ([0,π ]) is the space of infinitely differentiable
functions ensure that vanish atx= 0 andx= π .

Thus,

A1

(
t,z(h(t)),

∫ t

0
k1(t,s,z(h(s)))ds

)
(x)

= a1(t)z(sint,x)+a2(t)sinz(t,x)

+
1

1+ t2

∫ t

0
a3(s)z(sins,x)ds,

A2

(
t,z(h̃(t)),

∫ t

0
k1(t,s,z(h̃(s)))ds

)
(x)

= a1(t)z(sint,x)+a2(t)sinz(t,x)

+
1

1+ t2

∫ t

0
a3(s)z(sins,x)ds,

A3

(
t,z(ĥ(t)),

∫ t

0
k1(t,s,z(ĥ(s)))ds

)
(x)

= ã1(t)z(sint,x)+ ã2(t)sinz(t,x)

+
1

1+ t2

∫ t

0
ã3(s)z(sins,x)ds,

g(z)(x) =
∫ π

0
b(·,v)w(v)dv, w∈ X.

Thus, the framework (5.1)-(5.4) can be composed as
in the form (1.1)-(1.3). It is easy to verify that with the
decisions of the above functions, presumptions (H1)-(H8)
of Theorem 2 are fulfilled. From Theorem 2, we reason
that nonlocal impulsive Cauchy issue (5.1)-(5.4) has a mild
solution inJ.
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5 Conclusion

In this manuscript, we have examined the existence
outcomes for impulsive fractional neutral
integro-differential equations with nonlocal conditionsin
Banach spaces. All the more exactly, by using the
semigroup theory, fractional powers of operators, Banach
contraction fixed point techniques and
Krasnoselskii-Schaefer’s fixed point techniques, we build
up the existence results with resolvent operator and
η-norm. approve the got hypothetical outcomes, an
illustration is dissected. The fractional differential
equations are exceptionally proficient to portray the
genuine wonders; in this manner, it is fundamental to
stretch out the present investigation to set up the other
subjective and quantitative properties, for example,
stability and approximate controllability.

There are two direct issues which require additionally
consider. In the first place, we will examine the
approximate controllability of fractional neutral
stochastic integro-differential frameworks with
state-dependent delay both on account of a non-compact
operator and an ordinary topological space. Also, we will
be dedicated to concentrate the approximate
controllability of another class of impulsive fractional
stochastic differential equations with state-dependent
delay in Hilbert space.
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