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Abstract: In this paper, we present a new method for solving some certain differential systems in the artificial neural networks field.
The analytic and approximate solutions are given with series form in the spaces W[a,b] and H[a,b]. The method used in thisthesis
has several advantages; first, it is of global nature in termsof the solutions obtained as well as its ability to solve other mathematical,
physical, and engineering problems; second, it is accurate, need less effort to achieve the results, and is developed especially for the
nonlinear cases; third, in the proposed method, it is possible to pick any point in the interval of integration and as wellthe approximate
solutions will be applicable; fourth, the method does not require discretization of the variables, and it is not effected by computation
round off errors and one is not faced with necessity of large computer memory and time. Results presented in this thesisshow potentiality,
generality, and superiority of our method as compared with the Range Kutta method.
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1 Introduction

Artificial neural networks (ANN) are consisting of group
from the virtual neurons thats designed by computerized
programs which use a various of mathematical fractional
equations. These equations put in the hidden layers to
process the data that comes from the neurons. The ANN
we can call it also simulated neural networks SNN
because the ANN simulate the mechanism of the
biological neural networks, its consist of nodes may be
processing elements or neurons. Every connection
between the nodes has a weight and by these weights of
connections we can define the produced values of each
node by calculate the weights values that of each
connection that comes to the specific node. By brief
words the ANN is a programmed attempt to simulate the
way the human brain work and the appendages of nerve
bound the nerve cells to build the neural networks in the

human brain. The human brain has a millions of the
connected nerve cells, the ANN able to allow human
mental activities like:

1.The ability of store the information.
2.The ability to sense, hearing, taste and smell.
3.Learning many things.
4.Distinguish between the things and decision making.
5.The possibility of remembering the shapes, colors, the

pictures, and people.

For example, to learn specific type of smart phones we
will save in our mind the shape of phone its features, its
color, its type, and its size. This is an allowed activity of
neural networks and we can remember all of these features
by also ANN.
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1.1 Components of the artificial neurons

Every neuron consists of three elements:

1.Weights: each neuron has a weight expressed as a real
number and according to these weights of each neuron
we can determine the strength of neurons contribution.

2.Weighted Sum: its a summation of all the income
weights to the specific neuron thats come from other
neurons. In ANN this factor will help in trying to
gather a best set of the income weights values for each
neuron to know which the neuron has real and useful
values that comes from specific action issued by the
neurons.

3.Activation Factor: when the neuron gives some action
for another one. The issued neuron for this action will
send it by signal to the activation factor which would
express this signal as an exponential relation to process
this signal to get the final result.

The human brain able to process the inputsor givens,
so that every part of the brain has a specific function and
implement some task. Its called plasticity to simulate the
computer thats consists of multiprocessor and each of the
will execute task which called parallel computing.

1.2 The weights and the weighted matrix in ANN

As we said the technical neural network consist of many
connected neurons or processing units that associate with
each other to exchange the information by connections.
Each of these connections has a weight, and its called
connection weight. For example, we have two connected
neurons the connection weight of them will be expressed
asWi j . We can represent the weight in weight matrix or in
weight vector;the number of rows in the matrix weight
determines the cell that carried out the connection to the
target cells or to the desired cells to receive information
that is sent. In other words, from the row number we can
identify from any neuron the connection begins between
two neurons, and by the column number determines
receptor neurons to the information or signals. In case of
the column number was equal zero this means no
connection exist, this matrix also called Hin-ton
diagrams.

1.3 Mechanism of Artificial Neural Networks

In this section,summed up the work of the mechanism of
ANN in data processing across three stages and each
stage outputs are input to the next stage, respectively, and
we will show this on example form. Stages of information
processing are as follows:

1.Propagation function stage
2.Activation function stage
3.Output function stage

1.4 Network Topologies

1.After we became familiar with the nerve cell
combination, here we will give an overview about the
famous topologies of the neural networks.to construct
neural network that consists of the previous
components we will firstly decide what will be the
based topology of the network that we will describe it
with its map on diagram to enable the reader
understanding the features and its approach on the
neural networks.

2.In the Hinton diagram the dotted weights expressed as
a gray field, the solid weights are expressed as a dark
gray field. the input and output arrows added to
identify the sent neuron by put its name as a line and
the destination neuron will be as a column number or
column name.

1.5 learning procedures by input training
patterns

The purpose of the neural networks to predict to make the
input patterns as a common form by training procedure
which called generalization. Here in this section we will
propose some of the learning procedures and give some
of the basic principles to learning procedures approaches
[1]. Firstly, we will preview the operations that the neural
networks can do them such as:

1.The neural networks can develop a new connections
or create them between the neurons and as we said its
called weighted connection. Later on we will explain
how we can set the weight value to reduce the
difference value between the desired outputs and the
current outputs to give a good result.

2.The neural network can delete an exist connection
between the neurons by put the connected weight
value in the weighted matrix between the connected
neurons as we learned zero value to cancel the
connection.

3.The neural network can change the connected weight
value by specific rules they will be explained later on.

4.The neural network able to change the threshold value
of the neurons.

5.The neurons in the neural network able to implement
a main task (propagation function, activation function
and output function).

6.The neural network can add or delete neurons.

The neural network form characterized by their ability to
predict the solutions that fit the problem in accurate form.
For example, in the medicine domain by input the
symptoms of the disease and then by processing the
information by the neural networks it will predict the
disease or diagnosis of the disease. Another example
when give the neural network input patterns we will
predict of it to give the desired pattern or desired output.
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This could be executed by the training of the network by
using an input pattern training to train the network give
the desired output by learning algorithms:

1.6 Hopfield Neural Networks

This type of the wide domain of artificial neural networks
is same idea or the Hopfield neural network come from
idea that the particles which situated in magnetic domain
and each of these particles is connect via the magnetic
force with all the particles in the domain in completely
linked or in other words in fully connected form. So we
will apply the previous topology of the neural network
which means completely linked topology. We can say
about the particle is neuron and these particles when they
connect as a fully connected with each other to try to
become their activation states are suitable and we can
know the minimum activation of the neurons or particles
by themselves. When the Hopfield network neurons will
be in rotating state they will encourage each other to spin
this idea the rotation of the particles is to process the
information which means they will be in the activation
case. For example, if we have a two particles are in
rotating state to process the information this called in the
Hopfield neural networks is binary activation [2].

1.7 Problem Statement

Let us consider the following theorem that summarize our
work:

Theorem 1.1.[3,4,5,6] If there exist a number L> 0 such
that ‖ h(s1)− h(s2) ‖≥ L ‖ s1 − s2 ‖ for all s1,s2 ∈ Rm

and the number| ε | is sufficiently small, then there exists
a neighborhood N of the orbitally stable limit cycle of the
equation u

′
=−Du+Wg(u) such that the solutions of the

equation u
′
=−Du+Wg(u)+ εh(x(t)) which start inside

N behave chaotically around the limit cycle, that is the
solutions are sensitive and there are infinitely many
unstable periodic solutions.

To illustrate the result of the above theorem, let us consider
the following general HNN:

x
′

1 = f1(t,x1,x2, ...,xn),T ∈ t,

x
′

2 = f2(t,x1,x2, ...,xn),T ∈ t,

.

.

.

x
′

n = fn(t,x1,x2, ...,xn),T ∈ t,

subject to the following initial conditions:

x1(0) = α1,

x2(0) = α2,

.

.

.

xn(0) = αn

over the long interval T=[a,b]. In fact, the above system
consists of several cases on the Hopfield neural network.

2 Reproducing Kernel Hilbert Spaces
Method

The theory of reproducing kernel was used for the first
time at the beginning of the 20th century as a novel solver
for the boundary value problems of harmonic and
biharmonic functions types. This theory, which is
representative in the reproducing kernel Hilbert spaces
(RKHS) method, has been successfully applied to various
important application in numerical analysis,
computational mathematics, image processing, machine
learning, probability and statistics, and finance [7,8,9,
10]. The RKHS method is a useful framework for
constructing numerical solutions of great interest to
applied sciences. In the recent years, based on this theory,
extensive work has been proposed and discussed for the
numerical solutions of several integral and differential
operators side by side with their theories. The reader is
kindly requested to go through [11,12,13,14,15,16,17,
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,
35] in order to know more details about the RKHS
method, including its modification and scientific
applications, its characteristics and symmetric kernel
functions, and others.

2.1 Multistep Approach

The major aim of this work is to find the approximate
solutions over along interval. In this section, we utilize
the multistep RKHS procedure. To do so, we consider the
nonlinear differential equations of Eqs. (2.1) and (2.2).
Indeed, letT = [a,b] be the interval over which we want
to find the solution. Assume that the interval T is divided
into M subintervals[β m−1,β m],m= 1,2, ,M of equal step

size h =
b−a

M
, by using the nodesβ m = mh.Firstly, we

apply the RKHS method over the interval[a,β 1], to
obtain the approximate solution. Form> 2 and at each
subinterval[β m−1

,β m], we will use the initial conditions
obtained over[a,β 1], then apply the RKHS technique
directly. The process is repeated and generates a sequence
of approximate solutions over[a,β 1], [β 1,β 2] , and
[β M−1,β M].
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2.2 Computational RKHS Algorithm

Software packages have great capabilities for solving
mathematical, physical, and engineering problems. The
aim of the next algorithm is to implement a procedure to
solve system od differmtial equations in numeric form in
terms of their grid nodes based on the use of RKHS
method.
Algorithm 1 To approximate the solutionxη(t) of xr(t),
we do the following steps:
Input: The endpoints of[a,b], the unit truth interval
[0,1], the integers n and m, the kernel functions
Gt(s)andHt(s), the differential operatorLr , the initial
conditionαr , and the functionfr .
Output: Approximate solutionxη(t) of xr(t).
Step i. Fixedt in [a,b] and sets∈ [a,b];
If s6 t, set

Gt(s) =
1
6
(s−a)(2a2− s2+6t+3st−a(6+ s+3t));

else set

Gt(s) =
1
6
(t −a)(2a2− t2+3s(2+ t)−a(6+3s+ t));

For i = 1,2, ...,n,h = 1,2, ...,m, and j = 1,2, ,n, do the
following:

Setti =
i −1
n−1

; Setψi j (t) = Ls[Gt(s)]s=ti ;

Output: the orthogonal function systemψi j (t).
Step ii. For l = 2,3...,n and k = 1,2..., l , do the
following:
If k 6= l then set

β i j
lk =

−∑l−1
p=k〈ψlk(t),ψ i j (t)〉Wβ i j

pk
√

‖ ψlk ‖
2
W −∑l−1

p=1〈ψlk(t),ψ i j (t)〉
2
W

;

else set

β i j
lk =

1
√

‖ ψlk ‖
2
W −∑l−1

p=1〈ψlk(t),ψ i j (t)〉
2
W

;

else set

β i j
11 =

1
‖ψ11‖W

;

Output: the orthogonalization coefficientsβ i j
lk .

Step iii. For l = 2,3...,n− 1andk = 1,2..., l − 1, do the
following:
Setψ i j (t) = ∑i

l=1 ∑ j
k=1 β i j

lk ψlk(t);
Output: the orthonormal function systemψ i j (t).
Step iv. Setx0

rh
(t1) = x(rh)(t1) = 0;

SetBi j = ∑i
l=1 ∑ j

k=1 β i j
lk fk(tl ,xl−1(tl ));

Setxi(t)(t) = ∑i
i=1 ∑2

j=1Bi j ψ i j (t) ;
Output: the approximate solutionxη (t) of x(t).
Step v. Stop.

3 Numerical Simulation

In order to solve the given ANN problems numerically on
a computer, the equation is approximated by a discrete
one. Continuous functions are approximated by finite
arrays of values. Algorithms are then sought which
approximately solve the mathematical problem efficiently
and accurately. To show behavior, properties, efficiency,
and applicability of the present RKHS technique, five
problems will be solved numerically in this chapter.
In this section, we have five nonlinear numerical
examples thats solved by using the RKHS method and the
RK method of order 4, in order to show the accuracy and
the ability of these methods for solving such systems.
Here, we give the accuracy results especially for the
RKHS method. After we obtained the current results or in
other words the periodical solutions we compare them
between the two presented algorithms. In the process of
computation, all the symbolic and numerical
computations are performed by using MATHEMATICA 9
software package.

Example 3.1

Consider the following nonlinear Hopfield neural network:

x
′

1 =−x1+34tanh(x1)−1.6tanh(x2)+0.7tanh(x3),

x
′

2 =−x2+2.5tanh(x1)+0.95tanh(x3),

x
′

3 =−x3−3.5tanh(x1)+0.5tanh(x2),

subject to initial conditions:

x1(0) =−0.109,x2(0) =−0.832,x3(0) = 1.721,

where the period equalt ∈ [0,250]
This is Hopfield neural network equation system with
initial conditions that we need to use it in our algorithm to
enable us get the results and the periodical solutions from
zero to 250. Here, we selected this long period to enable
the RKHS draw the results in utmost precision. Thus, and
according to this accuracy result we can judge or decide
how to act or behavior of the system. So, we will solve
the equations forx1,x2 andx3, then we will solve pairs of
these equation by RKHS method. After applying the
previous steps, we will repeat the same approach on the
same system and initial condition but by using the RK
method of order 4. Finally, we will compare the produced
numerical solutions.
According to the numerical solutions in Figure 1 that
produced by using the RKHS kernel method,we can
conclude that these solutions are not chaotic, which
means that, the form of the function behaviour was not
chaotic. Anyhow, to make it chaotic system we added
some values to be chaotic and this is existing in Example
3.3. So, in general the RKHS method gave solutions to
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this system and can solve it. In Figure 2, the numerical
solutions are not chaotic also, and they take the same
behavior of the solutions using the RKHS method. So,
from these results we can conclude the solution between
the RKHS and RK methods are agreement.
In Figure3, we note in image (a) the result roughly equal
and the same case in image (c). There is small difference
in image (b) but also its agree with the other images so we
can say that the RKHS able to solve the equations system
of the Hopfield neural network in very efficiency and
accuracy.

Fig. 1: Some numerical results of Example3.1 using the RKHS
kernel method.

Example 3.2

Consider the following non-linear Hopfield Neural
Network:

x
′

1 =−x1+2tanh(x1)−1.2tan(x2),

x
′

2 =−x2+2.5tanh(x1)+1.71tanh(x2)+1.15tanh(x3),

x
′

3 =−x3−4.75tanh(x1)+1.1tanh(x3),

subject to initial conditions:

x1(0) =−0.109,x2(0) =−0.832,x3(0) = 1.721,

Fig. 2: Some numerical results of Example3.1 using the RK
kernel method.

Fig. 3: The solution of the equations system of the Hopfield
neural network in Example3.1 using RKHS method

where the period equalt ∈ [0,250].
We solved this system by using the RKHS method and
the RK method of order 4, to show the difference of the
results between these two systems, and to show the
performance of them to enable us decide which one the
efficient method. After applying the two presented
method, as in figure 4 , we solvedx1(t),x2(t), andx3(t)
equation each one alone by using the RKHS method,
thats shown in images (a) , (b) , and (c) to compare these
results with the results of the RK method of order 4 that
will solve the same equations. We obtained the results
thats appear in Figure 4.

In this second part of the example as shown in figure
5, we resolved this system by using the RK method of
order 4. As a one time we resolved by it the equationsx1
with x2 and the result was in image (a). In the second
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step, we also resolved the equationsx1 with x3 to obtain a
chaotic periodical solution for these equations as in image
(b), in image (c) we applied the RK method to solve
equationsx2 with x3 and the periodical solutions is also
chaotic. Image (d) illustrates the group of solutions to the
x1,x2 andx3 which means we could have resolved each
one separately by the RK method, but in this image we
collected the three periodical results in one image to give
chaotic form which means we are solving an chaotic
Hopfield neural network equations system. In image (e)
we showed you the result of solving equationx1 by using
the RKHS method and the RK method to display how
each method solved this equation, and how was the
performance of it, so we repeated this step also in
equationsx2 and x3. To compare between them by their
results and their performance, and then decide if they can
solve the Hopfield neural network equations system and
in efficiently form. Virtually the results in image (e), (f),
and (g) are approximately symmetric.

Fig. 4: The RKHS method solved the pairs of equation in
Example3.2 like:x1 with x2 in image (d),x1 with x3 like image
(e) to compare the same pair of this equations in the second
method, and the same case in image (f) when we solved by the
RKHS method the equations pairx2 with x3.

Fig. 5: The results of using RK4 method for the system in
Example3.2 and after obtained these results we compared them
with the RKHS algorithm results for the same system.

Example 3.3

Making use of the solution of Example 3.2 as external
inputs for Example 3.1, we set up the following Hopfield
neural network:
x
′

1 =−y1+3.4tanh(x1)−1.6tanh(y2)+0.7tanh(y3)+
0.0136tanh(x1)−0.0015tanh(x2)+0.0025tanh(x3),

x
′

2 =−x2+2.5tanh(x1)+0.95tanh(y3)+
0.0004tanh(x1)+0.0212tanh(x2)−0.0005tanh(x3),

x
′

3 =−x2−3.5tanh(x1)+0.5tanh(x2)+
0.0012tanh(x1)+0.0023tanh(x2)+0.015tanh(x3),
subject to initial conditions:

x1 =−0.645,x2 = 0.243,x3 =−0.628,

where the period equalt ∈ [0,250]. The following step we
will solve the previous numerical Hopfield neural
network system and calculatex1,x2,x3 sequentially by
using the RKHS method. The goal of these steps and
computations to prove the ability of the RKHS method in
solving the Hopfield neural network systems, and in
efficiency form in addition to compare the numerical
solutions of using RKHS method with the most famous
mathematical method which means The Rang Kutta
method of order 4, to show for the reader the results after
the computations for the two methods are agreement. So
after applying the RKHS as we see in figure 6 the
previous results calculated by the RKHS method with a
specific initial conditions and on the specific period thats
equal 250. For example in image (a) the equationx1 have
a chaotic periodical solution from [0,250] period, also the
same case inx2 andx3 equations thats shown in (b) and
(c) images. Then we solved by the RKHS method the
pairs of equation likex1 andx2,x1 andx3,x2 andx3, and
they are shown in (e), (f), (g) images sequentially to
watch their results thats produced by the RKHS method
then compare them with RK method in the same cases
and the same pairs of the equations .
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Fig. 6: The result of using RKHS algorithm for the HNN
equation system in Example3.3 by two steps; the first one is
solving it as one equation and the second is taking the system
equation as pairs.

Example 3.4

Consider the following non-linear Hopfield Neural
Network:

x
′

1 =−x1+2tanh(x1)− tan(x2),

x
′

2 =−x2+1.7tanh(x1)+1.71tanh(u2)+1.1tanh(x3),

x
′

3 =−x3−4.75tanh(x1)+1.1tanh(x2),

subject to initial conditions:

x1 =−0.109;x2 =−0.832;x3 = 1.721,

where the period equalt ∈ [0,250]. As the previous
approaches we will apply RKHS method onx1,x2 andx3
to get the desired result and apply them also RK method
to compare the current result and judge are they
agreement or not. So we will begin with applying RKHS
method on this numerical system firstly. See Figures 9
and 10.

Fig. 7: The equations pairsx1 and x2,x1 and x3,x2 and x3
resolved by the RK method as its clear in (a), (b), (c) and (d)
images but in the last image we resolved the HNN equation
system in Example3.3 thats consist ofx1,x2 and x3 firstly by
separate form then we collect the results in this image. by RK
method we obtained these periodical solutions.

Fig. 8: The images (a), (b) and (c) illustrates each equation
which meansx1,x2 andx3 resolved by rang kutta 4 method and
by RKHS method to show you their results and to prove our
used algorithm which means RKHS is able to solve these HNN
equations system in Example3.3. We can understand from these
periodical solutions almost the results were symmetric.
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Fig. 9: The system equation in Example3.4 has solved by RKHS
method to show and compare these solutions with the other
mathematical method we have which means RK method.

Example 3.5

Consider the following non-linear Hopfield Neural
Network [7]:
x
′

1 = −x1 + 3.4tanh(x1) − 1.6tanh(x2) + 0.7tanh(x3) +
0.02tanh(x1)+0.035tanh(x3),

x
′

2 =−x2+2.5tanh(x1)+0.95tanh(x3)+0.025tanh(x2),

x
′

3 = −x3−3.5tanh(x1)+0.5tanh(x2)+0.004tanh(x1)−
0.01tanh(x2)+0.05tanh(x3),
subject to initial conditions:

x1(0) =−0.236,x2(0) = 0.543,x3(0) =−0.745,

where the period equalt ∈ [0,250].
The following step we will solve the previous numerical
system and calculatex1,x2 and x3 by using reproducing
kernel Hilbert space method then so we will find the
numerical solutions to make sure of the reproducing
kernel Hilbert space method able to solve this hop field
neural network chaotic system. Let us begin solve this

Fig. 10: These previous periodical solutions are chaotic in this
Hopfield neural network equations system and they resolved by
using the RK method in images a, b, c, d ,e ,f and g. But in the last
three images we also collect the results of solving the equations
x1,x2 and x3 thats solved previously by the RKHS method to
judge is the our mathematical algorithm able to deal with HNN
equations system and solve them.

numerical system firstly by RKHS method then we will
resolve it by RK method as we did in the previous
examples but this time with different initial conditions.
See Figures 11,12 and 13.

4 Conclusions

We were able to prove thatthe RKHS method able to
solve any numerical equations systems of the Hopfield
neural network equations systems in accuracy and
efficiency form according to the obtained results that we
compared them with the numerical results which solved
by using the other famous mathematical method RK
method of order 4, and from this point we can decide or
judge the numerical results that solved by these two
methods are agreement so these agreement results
encourage our invention. Finally, we can employ the
reproducing kernel Hilbert space method in solving the
Hopfield neural networks equations systems as we saw.
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Fig. 11: As we saw, these numerical solutions are produced by
applying the RKHS method in HNN equation system that the
RKHS could solve and give accuracy solutions for one equation
like y1 or to the pairs of equations system likex1 with x2,x2
with x3 and x1 with x3. We can conclude as a final image the
reproducing kernel Hilbert space has a good efficiency in solve
HNN equation system.
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