Appl. Math. Inf. Sci.12, No. 1, 139-144 (2018) %N =¥} 139

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120113

A Note on the New Extended Beta and Gauss
Hypergeometric Functions

Anjali Goswami?, Shilpi Jain?, Praveen Agarwal® and Serkan Araci**

lCollege of Science and Theoretical Studies, Main Brancladty Female, Saudi Electronic University, Abu Bakr Stre€, Box:
93499, Riyadh, KSA

2 Department of Mathematics, Poornima College of Engingedaipur 302022, India

3 International Center for Basic and Applied Sciences, Ja302029, India and Department of Mathematics, Anand hatgonal
College of Engineering, Jaipur-303012, India

4 Department of Economics, Faculty of Economics, Admintsteaand Social Sciences, Hasan Kalyoncu University, TR187
Gaziantep, Turkey

Received: 2 Nov. 2017, Revised: 2 Dec. 2017, Accepted: 22 P@c7
Published online: 1 Jan. 2018

Abstract: A variety of extensions of the classical beta function arel@auss hypergeometric functigh; have been presented and
investigated. In this sequel, we aim to give a further extensf the extended beta function, which is used to extend,Fieand
the confluent hypergeometric functigR;. Then we investigate to present certain properties andulasrassociated with these three
extended functions. The results presented here, beingyesgral, are pointed out to be specialized to yield numekoasn and new
representations and formulas.
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1 Introduction Chaudhry et al. 4] used theBpy(xy) to extend the

hypergeometric function ,F; and the confluent
Special functions and their extensions have provedhypergeometric functiopF;, respectively, as follows:
powerful and far-reaching tools for development of many

branches of pure and applied mathematics (see, 8]g., [ e Bp(b+n,c— b)i
[13], [15). During last two decades or so, several Fo(a,b:¢i2) = nzo(a)” B(b,c—b) nl (2)
interesting and useful extensions of many special a
functions have been investigated (see, ed,, [[2], [5], (p €Ry; | z|< 1;0(c) > O(b) > o)
(81, [3], [4], [10], [12], [14]).
In 1997, Chaudhry et al3[ presented the following &nd o

Bp(b+n,c—b) 2

interesting extension of Euler’s beta function: c) =S P20 TZ
i ing ex i u uncti ®p(b;c;2) nZO Bbc_b) n (3)
1
+.
Bp(x,y) = /txl(l_t)ylexp[_ 1p } ot 1) (peR§; O(c)>0O(b) >0),
0 t1-t) where(A ), is the Pochhammer symbol defined (foe C)

by (see, e.g. 16, p. 2 and pp. 4-6]):
(B(p) > 0; p=0,min{0(x), O(y)} > 0).

Obviously By(x,y) reduces to the familiar beta function (A= ra+n (A eC\Zy)

B(x,y) (see, e.g.,16, Section 1.1]). Theyd] showed that ra) 4)
the extension) has certain connections with Macdonald 1 (n=0)
function, error function and Whittaker function. T lAA+1D)---A+n—1) (neN).
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Here and in the following, le€, R*, N, andZ, be the and

sets of complex numbers, positive real numbers, positive © Byg(b+n,c—b) A
integers, and non-positive integers, respectively, and le Dpq(b;c;2) = Zopq—_ 9)
R :=R*U{0}, Ng:=NU{0}, andr (A) is the familiar & B(bc—b) nl
Gamma function. N
They [3] called the functions ¥), (2), and @) as (p.g€Rg; 0(c) > O(b) >0).
extended beta function (EBF), extended GaussObviously Fop(ab;c;2) = Fo(a,b;c;2),

hypergeometric function (EGHF) and extended confluenuzoo(a b;c;z) = oF1(a,b;c; 2),
hypergeometric function (ECHF), respectively. It is clear ®p p(b;c;2) = Bp(b;C;2), and Py o(b; C; 2) = P(b;c; 2).

that Fo(a,bic;z) = 2Fi(ab;cz) and They [6] presented various properties and formulas for
®o(b;c;2) = 1F1(b;c; 2). _ the extended functiong), (8), and @), for example, the
They [3] investigated the extended functions to following Euler type integral representations:
present their diverse properties such as differentiation
formulas, Mellin transforms, recurrence relations, F (a,b;c;z) = 1
summation and asymptotic formulas including the " (b,c—b)
following integral representations 1
b-1/q _s\c-b-1/1 _\-a b a
Fo(abic;2) O/t -y 1-2) eXp{ t 1—t]dt
(10)
Bl b/tbl )P t(1—=z)"2 (p,qeRT; p=q=0,|argl—2) |< m O(c) > O(b) > 0)
and
X exp{—t—(lp_t)] dt . .
- Bpq(biC;2) = /t L(1—t)eb-t
(peR*; p=0,|argl-2)|< m O(c) > O(b) > 0) (11)
p q
and exp[zt . 1_Jd’[
1
p(b;C;2) = 5 i_ 5 /tbfl(l_t)cfbfl (p,aeR*; p=q=0,0(c) > O(b) > 0).
0 0 ©6) Here, we further generalize the extended beta function
_ (7) as follows:
xexp{zt t(1—t)]dt 1
o (a,B) — [l _py1? g P49 dt
(peR"; p=0,0(c) > O(b) > 0). Bpg '(xy)= [U(1-t) R (@B -+ — 7
0
. . 12)
Choi et al. p] presented a further extension of the . (
extended beta functiori) as follows: (min{0(p).0(a)} > 0;p=q=0,
min{0(x),0(y)} >0;a € C,B e C\Z).
Bpa(X.y) = B(x,y; p,q) / v (11" Clearly Bia” (x,) = Bp.a(x.y),
S )(X%) B (x,y), Bys" (x.y) = Bp(x.y),
a
exp|:_$ _ &:| dt andBO’O (Xay) - (va)'

We use the extended beta functidr®) to extend the

(min{d(p),0(q)} > 0; p=q=0, min{0(x),0(y)} > 0). hypergeometric and confluent hypergeometric functions,
respectively, as follows:

ClearlyBy, p(x.y) = Bp(x,y) andBoo(x.y) = B(x,y).

They [6] .used th(_a Bpg(x,y) to extend the Féq (a,b;c;2) = Z
hypergeometric ~ function and the  confluent o
hypergeometric function, respectively, as follows:

(b+n c-b2
B(b,c—b) n!

(13)

(p,geR{;|z|<1;0(c) >0(b)>0;a €C,BeC\Z)

Fpq(a,b;cz) = Zo(a)ann(bJr nc—b) 2" @ and
e B(b,c—b) n! o (@)
N o (g — y i PIRCTDIZ gy
(p,geR{; | z|< 1;0(c) > O(b) >0) Z B(b,c—b) n!
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(p,aeR{; O(c)>0(b) >0;aeC,BeC\Zy). By using the generalized binomial theorem
We call F{%? (a,b;c;2) and d>(<g’£)(b; c;z) as further I _
generalized Gauss hypergeometric function (FGGHF) 1-9)7= nzo(y)”ﬁ (tI<LyeC)  (18)

and further generalized confluent hypergeometric

function (FGCHF), respectively. in the factor (1—t)™Y in the right side of 17), and

Obviously  Fi4“(abiciz = Fpglabica), interchanging the order of integral and summation in the
Fa%P) (a b;c2) = F{"P)(a,b;c;2), right side resulting expression, which is verified under the
E(0.0) - _ - given conditions, and usindl®), we obtain the desired

pp  (&b;C;2) = (a,b;c;2) , h :

(a B) identity (16).

Foo (a b' C;z) = 2F1(a,b;c; 2),

5% (b;¢;2) = Dpq(biC;2),

)(b c 2) = (a E)(b' c2) Theorem 3.The following formula holds.

o (b ) = %fbica and -

p (] )
n=
In this paper, we aim to present various properties and ) B

formulas associated with the extended functidi®,((13), (min{0(p),0(q)} >0;a € C, B € C\Zg).
and (4).

Proof.We have

2 Properties and formulas (1—tY =@ty Zot” (Jt]<1). (20)

Theorem 1.Let n € Np. Then the following summation
formula holds. Substituting the series expression2@)for the factor(1—
)Y~ in (12), similarly as in the proof of Theore we

n
Bﬁf’qﬁ)(x, =" (E) Bgf’dm(xwL ky+n—k) (15) cangetthe desired resultd). We omit the details.
K=0
(min{D(P).0@} > 0:p=a=0. min{0().0} >0 a€CBECNEe). 1y om 4 Let O(c)>0(b)>0,a €C,and B € C\Zg.
Proof. The case = 0 of (15) holds trivially. The casea=1 Then the following integral formula holds.

of (15) holds as follows:

Fi%P) (a,b;c;2)

' b q m/tbll 0P 1-2) 1F1< ﬁ*?*&)ﬁ
= [[ra-teeta-n)im (“;B: T H) a @
° (pvqéRE{:pzq:0,|arg(1—z)|<n).

BYGY (x+1,y) + By (x y+ 1)

1

= /txfl(l—t)y’llFl <a;B;—$ - &) ot =By (x.y). Proof.Applying (12) to (13) and interchanging the order
0 of summation and integral, which is verified under the

Continuing this process, by mathematical inductiomon conditions here, we obtain

we can provelb) for all n € Ng. We omit the details. 1
F2P abcz) =

B(b,c—b
Theorem 2.The following formula holds. B(b, )
® b-1(1 _gye-b-1 p P9
B%‘,’d‘*><x,1—y>=20(?. Byd’ (x+n1)  (16) /t 1h (“’B’ t 1—t> (22)
L Nl
00 n
(min{O(p),0(q)} >0;a €C,BeC\Z). X (Z)(a)“(tr? ) dt.
Proof. We have "~
1 Using the generalized binomial theorer8) for the
@By 1y [x=11 _s\—y ( : ._E_L) summation in the parentheses 82, we obtain the
B 1-y)= [N 1-t) V1R a;B; dt.
pd- (6 17Y) / AN S desired resultq1).
17)
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Theorem 5.Letd(c) > O(b) >0,a € C,and B € C\ Zj,.
Also, let p, g € Ry. Then the following integral formula
holds.

o\%P (b;c;2)

1
_ 1 b-1/q s\c—b-1
_B(b,c—b)o/t Q-9 (23)
XlFl(a;B;—%)—&)dt

Proof.A similar argumentas in the proof of Theoremwill
establish the resul2@). We omit the details.

Theorem 6.The following differential formula holds: For
n e Np,

ol {Féa B)(a7b;c;z)} =

(b)n(@)n - (ap)
o 7Fp (a+n,b+n;c+n;2)

(©)n (24)
(p.geR{;|z|<1;0(c) >O(b) >0;a €C,BeC\Zy).

Proof.Differentiating each side ofl@) with respect to the
variablez and taking termwise differentiation on the right
side of (L3), which is verified under the conditions here,
we obtain
E{F< B (b+nc—b) 21
dz U P4 B(b,c—b)  (n—1)!

)abcz} 2

b+n+1 c—h) 2
B(b,c—b) n’

Pt
(25)

Using the identitiesB(b,c — b) = £B(b+ 1,c —b) and
(8)n+1 = a(a+ 1), in the second summation ir2%), in
terms of (L3), we have

d% {Féﬁ‘m(a, bic; z)}

'(b+ntlc—b) 2

B(b+1,c—b) n! )

7—2ba+1

ba
= ?Fgﬁ‘m(a+ 1,b+1;c+1;2).

Repeating this argument in the last expression, aga)) (
in each stepn — 1 times, we get the desired resuyy.

Theorem 7.The following differential formula holds. For

n e Np,
d" ¢ B) -
e {CDp (b+n;c+n;2)
(27)

(p,qeR§; O(c) > O(b) > 0;a €C,BeC\Zy).

)2

Proof.The proof would run parallel to that of Theoren
We omit the details.

Theorem 8.The following transformation formula holds:
For |argl1—2) |< m,
FsaP (@abicz) = (1- 2 *R{EP) <a c—bic > 1)

(28)

(p.geR$;|z|<1;0(c)>0(b) >0;a €C,BEC\Zy).

Proof.Replacing by 1—t in (21) and writing

M-z1-t)]2=1-2)" <1+ 1—Zt> _a,

we have

(a,b;c;2) = %

1 L\ -a
b—1ic—b-1 _
x/(l £)P-1t (1 Z_1t>
0
><1F1( B ——%)dt

=(1-2)" aF( ’E)<ac b;c; Zl>

ri3®

Theorem 9.The following transformation formula holds.

o%P (bcz) = oGP (c—bc—2)  (29)

(p,geRy; O(c) >0O(b) >0;a € C,BEC\Zy).
Proof.A similar argument as in the proof of Theor&will

establish the result here. We omit the details.

Theorem 10.The following summation formula holds.

Bl (b,c—a—b)

Foa” (@ bicid) = =g

(30)

(p,geR{; O(c)>0(b) >0;aeC, BeC\Zy)

Proof.Settingz = 1 in (21) and using {2), we obtain the
result 30).

3 Special casesand remarks

The results presented in Secti@n being very general,

can be specialized to yield numerous known and new

identities. Setting = u/(1+ u) andt = sir? 8 in (21), we
get integral representations Eé 73)(a, b;c;z) with the
range of integral from 0 too and the integrand of
trigonometric functions, respectively. The special cades
the results in Sectior2 when p = 0 = q yield the

corresponding identities for the Gauss hypergeometric

seriesyF; and the confluent hypergeometric serigs.
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For example, settingp = 0 = q in (30) gives the [16] H. M. Srivastava, J. Choi, Elsevier Science Publishers,

well-known Gauss summation theorem $6% (1): Amsterdam, London and New York, 2012.
JFi(abycl) = g(C)LFa_E) 31)
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