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Abstract: A variety of extensions of the classical beta function and the Gauss hypergeometric function2F1 have been presented and
investigated. In this sequel, we aim to give a further extension of the extended beta function, which is used to extend the2F1 and
the confluent hypergeometric function1F1. Then we investigate to present certain properties and formulas associated with these three
extended functions. The results presented here, being verygeneral, are pointed out to be specialized to yield numerousknown and new
representations and formulas.
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1 Introduction

Special functions and their extensions have proved
powerful and far-reaching tools for development of many
branches of pure and applied mathematics (see, e.g., [9],
[13], [15]). During last two decades or so, several
interesting and useful extensions of many special
functions have been investigated (see, e.g., [1], [2], [5],
[8], [3], [4], [10], [12], [14]).

In 1997, Chaudhry et al. [3] presented the following
interesting extension of Euler’s beta function:

Bp(x,y) =

1
∫

0

tx−1(1− t)y−1exp

[

−
p

t(1− t)

]

dt (1)

(ℜ(p)> 0; p = 0, min{ℜ(x), ℜ(y)} > 0) .

Obviously B0(x,y) reduces to the familiar beta function
B(x,y) (see, e.g., [16, Section 1.1]). They [3] showed that
the extension (1) has certain connections with Macdonald
function, error function and Whittaker function.

Chaudhry et al. [4] used the Bp(x,y) to extend the
hypergeometric function 2F1 and the confluent
hypergeometric function1F1, respectively, as follows:

Fp(a,b;c;z) =
∞

∑
n=0

(a)n
Bp(b+ n,c− b)

B(b,c− b)
zn

n!
(2)

(

p ∈ R
+
0 ; | z |< 1; ℜ(c)> ℜ(b)> 0

)

and

Φp(b;c;z) =
∞

∑
n=0

Bp(b+ n,c− b)

B(b,c− b)
zn

n!
(3)

(

p ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0

)

,

where(λ )n is the Pochhammer symbol defined (forλ ∈C)
by (see, e.g., [16, p. 2 and pp. 4-6]):

(λ )n =
Γ (λ + n)

Γ (λ )
(

λ ∈ C\Z−
0

)

=

{

1 (n = 0)

λ (λ +1) · · ·(λ + n−1) (n ∈ N).

(4)
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Here and in the following, letC, R+, N, andZ−
0 be the

sets of complex numbers, positive real numbers, positive
integers, and non-positive integers, respectively, and let
R
+
0 := R+∪{0}, N0 := N∪{0}, andΓ (λ ) is the familiar

Gamma function.
They [3] called the functions (1), (2), and (3) as

extended beta function (EBF), extended Gauss
hypergeometric function (EGHF) and extended confluent
hypergeometric function (ECHF), respectively. It is clear
that F0(a,b;c;z) = 2F1(a,b;c;z) and
Φ0(b;c;z) = 1F1(b;c;z).

They [3] investigated the extended functions to
present their diverse properties such as differentiation
formulas, Mellin transforms, recurrence relations,
summation and asymptotic formulas including the
following integral representations

Fp(a,b;c;z)

=
1

B(b,c− b)

1
∫

0

tb−1(1− t)c−b−1(1− zt)−a

×exp

[

−
p

t(1− t)

]

dt

(5)
(

p ∈R
+; p = 0, | arg(1− z) |< π ; ℜ(c)> ℜ(b)> 0

)

and

Φp(b;c;z) =
1

B(b,c− b)

1
∫

0

tb−1(1− t)c−b−1

×exp

[

zt −
p

t(1− t)

]

dt

(6)

(

p ∈ R
+; p = 0, ℜ(c)> ℜ(b)> 0

)

.

Choi et al. [6] presented a further extension of the
extended beta function (1) as follows:

Bp,q(x,y) = B(x,y; p,q) =

1
∫

0

tx−1(1− t)y−1

exp

[

−
p
t
−

q
1− t

]

dt

(7)

(min{ℜ(p),ℜ(q)}> 0; p = q = 0, min{ℜ(x),ℜ(y)} > 0) .

ClearlyBp,p(x,y) = Bp(x,y) andB0,0(x,y) = B(x,y).

They [6] used the Bp,q(x,y) to extend the
hypergeometric function and the confluent
hypergeometric function, respectively, as follows:

Fp,q(a,b;c;z) =
∞

∑
n=0

(a)n
Bp,q(b+ n,c− b)

B(b,c− b)
zn

n!
(8)

(

p, q ∈R
+
0 ; | z |< 1; ℜ(c)> ℜ(b)> 0

)

and

Φp,q(b;c;z) =
∞

∑
n=0

Bp,q(b+ n,c− b)
B(b,c− b)

zn

n!
(9)

(

p, q ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0

)

.

Obviously Fp,p(a,b;c;z) = Fp(a,b;c;z),
F0,0(a,b;c;z) = 2F1(a,b;c;z),
Φp,p(b;c;z) = Φp(b;c;z), andΦ0,0(b;c;z) = Φ(b;c;z).

They [6] presented various properties and formulas for
the extended functions (7), (8), and (9), for example, the
following Euler type integral representations:

Fp,q(a,b;c;z) =
1

B(b,c− b)
1
∫

0

tb−1(1− t)c−b−1(1− zt)−a exp

[

−
p
t
−

q
1− t

]

dt

(10)
(

p, q ∈ R
+; p = q = 0, | arg(1− z) |< π , ℜ(c)> ℜ(b)> 0

)

and

Φp,q(b;c;z) =
1

B(b,c− b)

1
∫

0

tb−1(1− t)c−b−1

exp

[

zt −
p
t
−

q
1− t

]

dt

(11)

(

p, q ∈ R
+; p = q = 0, ℜ(c)> ℜ(b)> 0

)

.

Here, we further generalize the extended beta function
(7) as follows:

B(α ,β )
p,q (x,y) =

1
∫

0

tx−1(1− t)y−1
1F1

(

α;β ;−
p
t
−

q
1− t

)

dt

(12)
(min{ℜ(p),ℜ(q)}> 0; p = q = 0,

min{ℜ(x),ℜ(y)} > 0; α ∈C, β ∈ C\Z−
0

)

.

Clearly B(α ,α)
p,q (x,y) = Bp,q(x,y),

B(α ,β )
p,p (x,y) = B(α ,β )

p (x,y), B(α ,α)
p,p (x,y) = Bp(x,y),

andB(α ,β )
0,0 (x,y) = B(x,y).

We use the extended beta function (12) to extend the
hypergeometric and confluent hypergeometric functions,
respectively, as follows:

F (α ,β )
p,q (a,b;c;z) =

∞

∑
n=0

(a)n
B(α ,β )

p,q (b+ n,c− b)
B(b,c− b)

zn

n!
(13)

(

p, q ∈ R
+
0 ; | z |< 1; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈ C\Z−

0

)

and

Φ(α ,β )
p,q (b;c;z) =

∞

∑
n=0

B(α ,β )
p,q (b+ n,c− b)

B(b,c− b)
zn

n!
(14)
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(

p, q ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0; α ∈C, β ∈ C\Z−

0

)

.

We call F (α ,β )
p,q (a,b;c;z) andΦ(α ,β )

(p,q) (b;c;z) as further
generalized Gauss hypergeometric function (FGGHF)
and further generalized confluent hypergeometric
function (FGCHF), respectively.

Obviously F (α ,α)
p,q (a,b;c;z) = Fp,q(a,b;c;z),

F (α ,β )
p,p (a,b;c;z) = F (α ,β )

p (a,b;c;z),

F (α ,α)
p,p (a,b;c;z) = Fp(a,b;c;z) ,

F (α ,β )
0,0 (a,b;c;z) = 2F1(a,b;c;z),

Φ(α ,α)
p,q (b;c;z) = Φp,q(b;c;z),

Φ(α ,β )
p,p (b;c;z) = Φ(α ,β )

p (b;c;z),

Φ(α ,α)
p,p (b;c;z) = Φp(b;c;z), and

Φ(α ,β )
0,0 (b;c;z) = Φ(b;c;z).

In this paper, we aim to present various properties and
formulas associated with the extended functions (12), (13),
and (14).

2 Properties and formulas

Theorem 1.Let n ∈ N0. Then the following summation
formula holds.

B(α ,β )
p,q (x,y) =

n

∑
k=0

(

n
k

)

B(α ,β )
p,q (x+ k,y+ n− k) (15)

(min{ℜ(p),ℜ(q)}> 0; p = q = 0, min{ℜ(x),ℜ(y)}> 0; α ∈ C, β ∈C\Z−
0

)

.

Proof.The casen= 0 of (15) holds trivially. The casen= 1
of (15) holds as follows:

B(α ,β )
p,q (x+1,y)+B(α ,β )

p,q (x,y+1)

=

1
∫

0

[

tx(1− t)y−1+ tx−1(1− t)y
]

1F1

(

α;β ;−
p
t
−

q
1− t

)

dt

=

1
∫

0

tx−1(1− t)y−1
1F1

(

α;β ;−
p
t
−

q
1− t

)

dt = B(α ,β )
p,q (x,y).

Continuing this process, by mathematical induction onn,
we can prove (15) for all n ∈ N0. We omit the details.

Theorem 2.The following formula holds.

B(α ,β )
p,q (x,1− y) =

∞

∑
n=0

(y)n

n!
B(α ,β )

p,q (x+ n,1) (16)

(

min{ℜ(p),ℜ(q)}> 0; α ∈C, β ∈ C\Z−
0

)

.

Proof. We have

B(α ,β )
p,q (x,1−y) =

1
∫

0

tx−1(1− t)−y
1F1

(

α;β ;−
p
t
−

q
1− t

)

dt.

(17)

By using the generalized binomial theorem

(1− t)−y =
∞

∑
n=0

(y)n
tn

n!
(|t|< 1; y ∈ C) (18)

in the factor (1− t)−y in the right side of (17), and
interchanging the order of integral and summation in the
right side resulting expression, which is verified under the
given conditions, and using (12), we obtain the desired
identity (16).

Theorem 3.The following formula holds.

B(α ,β )
p,q (x,y) =

∞

∑
n=0

B(α ,β )
p,q (x+ n,y+1) (19)

(

min{ℜ(p),ℜ(q)}> 0; α ∈C, β ∈ C\Z−
0

)

.

Proof.We have

(1− t)y−1 = (1− t)y
∞

∑
n=0

tn (| t |< 1). (20)

Substituting the series expression in (20) for the factor(1−
t)y−1 in (12), similarly as in the proof of Theorem2, we
can get the desired result (19). We omit the details.

Theorem 4. Let ℜ(c)>ℜ(b)> 0, α ∈C, and β ∈C\Z−
0 .

Then the following integral formula holds.

F(α,β )
p,q (a,b;c;z)

=
1

B(b,c−b)

1
∫

0

tb−1(1− t)c−b−1(1− zt)−a
1F1

(

α ;β ;−
p
t
−

q
1− t

)

dt

(21)
(

p, q ∈ R
+
0 ; p = q = 0, | arg(1− z) |< π

)

.

Proof.Applying (12) to (13) and interchanging the order
of summation and integral, which is verified under the
conditions here, we obtain

F (α ,β )
p,q (a,b;c;z) =

1
B(b,c− b)

×

1
∫

0

tb−1(1− t)c−b−1
1F1

(

α;β ;−
p
t
−

q
1− t

)

×

(

∞

∑
n=0

(a)n
(tz)n

n!

)

dt.

(22)

Using the generalized binomial theorem (18) for the
summation in the parentheses in (22), we obtain the
desired result (21).
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Theorem 5.Let ℜ(c)> ℜ(b)> 0, α ∈C, and β ∈C\Z−
0 .

Also, let p, q ∈ R
+
0 . Then the following integral formula

holds.

Φ(α ,β )
p,q (b;c;z)

=
1

B(b,c− b)

1
∫

0

tb−1(1− t)c−b−1ezt

×1 F1

(

α;β ;−
p
t
−

q
1− t

)

dt

(23)

Proof.A similar argument as in the proof of Theorem4 will
establish the result (23). We omit the details.

Theorem 6.The following differential formula holds: For
n ∈ N0,

dn

dzn

{

F(α ,β )
p,q (a,b;c;z)

}

=
(b)n(a)n

(c)n
F(α ,β )

p,q (a+n,b+n;c+n;z)

(24)
(

p, q ∈ R
+
0 ; | z |< 1; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈ C\Z−

0

)

.

Proof.Differentiating each side of (13) with respect to the
variablez and taking termwise differentiation on the right
side of (13), which is verified under the conditions here,
we obtain

d
dz

{

F(α ,β )
p,q (a,b;c;z)

}

=
∞

∑
n=1

(a)n
B(α ,β )

p,q (b+n,c−b)

B(b,c−b)
zn−1

(n−1)!

=
∞

∑
n=0

(a)n
B(α ,β )

p,q (b+n+1,c−b)

B(b,c−b)
zn

n!
.

(25)
Using the identitiesB(b,c − b) = c

b B(b + 1,c − b) and
(a)n+1 = a(a+ 1)n in the second summation in (25), in
terms of (13), we have

d
dz

{

F (α,β )
p,q (a,b;c;z)

}

=
ba
c

∞

∑
n=0

(a+1)n
B(α,β )

p,q (b+n+1,c−b)
B(b+1,c−b)

zn

n!

=
ba
c

F (α,β )
p,q (a+1,b+1;c+1;z).

(26)

Repeating this argument in the last expression, as in (26),
in each step,n−1 times, we get the desired result (24).

Theorem 7.The following differential formula holds: For
n ∈ N0,

dn

dzn

{

Φ(α ,β )
p,q (b;c;z)

}

=
(b)n

(c)n
Φ(α ,β )

p,q (b+ n;c+ n;z)

(27)
(

p, q ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈ C\Z−

0

)

.

Proof.The proof would run parallel to that of Theorem6.
We omit the details.

Theorem 8.The following transformation formula holds:
For | arg(1− z) |< π ,

F (α ,β )
p,q (a,b;c;z) = (1− z)−aF (α ,β )

q,p

(

a,c− b;c;
z

z−1

)

(28)
(

p, q ∈ R
+
0 ; | z |< 1; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈ C\Z−

0

)

.

Proof.Replacingt by 1− t in (21) and writing

[1− z(1− t)]−a = (1− z)−a
(

1+
z

1− z
t

)−a

,

we have

F (α ,β )
p,q (a,b;c;z) =

(1− z)−a

B(b,c− b)

×

1
∫

0

(1− t)b−1tc−b−1
(

1−
z

z−1
t

)−a

× 1F1

(

α,β ;−
p

1− t
−

q
t

)

dt

= (1− z)−a F(α ,β )
q,p

(

a,c− b;c;
z

z−1

)

.

Theorem 9.The following transformation formula holds.

Φ(α ,β )
p,q (b;c;z) = ez Φ(α ,β )

q,p (c− b;c;−z) (29)
(

p, q ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈C\Z−

0

)

.

Proof.A similar argument as in the proof of Theorem8 will
establish the result here. We omit the details.

Theorem 10.The following summation formula holds.

F (α ,β )
p,q (a,b;c;1) =

B(α ,β )
p,q (b,c− a− b)

B(b,c− b)
(30)

(

p, q ∈ R
+
0 ; ℜ(c)> ℜ(b)> 0; α ∈ C, β ∈ C\Z−

0

)

Proof.Settingz = 1 in (21) and using (12), we obtain the
result (30).

3 Special cases and remarks

The results presented in Section2, being very general,
can be specialized to yield numerous known and new
identities. Settingt = u/(1+ u) andt = sin2 θ in (21), we

get integral representations ofF (α ,β )
p,q (a,b;c;z) with the

range of integral from 0 to∞ and the integrand of
trigonometric functions, respectively. The special casesof
the results in Section2 when p = 0 = q yield the
corresponding identities for the Gauss hypergeometric
series2F1 and the confluent hypergeometric series1F1.

c© 2018 NSP
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For example, settingp = 0 = q in (30) gives the
well-known Gauss summation theorem for2F1(1):

2F1(a, b; c; 1) =
Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

(31)

(

ℜ(c− a− b)> 0; c ∈ C\Z−
0

)

.

4 Conclusion

In the paper, we have presented a variety of extensions of
the classical beta function and the Gauss hypergeometric
function2F1. We gave a further extension of the extended
beta function, which is used to extend the2F1 and the
confluent hypergeometric function1F1. After that, we
have investigated to present certain properties and
formulas associated with these three extended functions.
The results obtained here, which seems to be very
general, are a corresponding generalizations of some
known beta function and Gauss hypergeometric function
2F1.
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