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Abstract: The main objective of this article is to introduce the clas$am, m, h)-convex functions. It is shown that this class unifies
several new and known classes of convex functions. Some megral inequalities of Hermite-Hadamard type are obthilgome
special cases are also discussed.
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1 Introduction holds. For some recent studies on Hermite-Hadamard
type inequalities, se€l[2,7,8,11,13,14,15].

Theory of convexity has experienced rapid developmenin this paper, we introduce the class (@f, m, h)-convex

in recent years. Consequently several generalizations fofunctions. It is shown that this class unifies some known

classical convex sets and convex functions have beeAnd new classes of convex functions. We also establish

proposed by many researchers, sdg An important some Hermite-Hadamard type inequalities for

generalization in this regard lsconvex functions, which ~ (a,m,h)-convex functions. Some special cases are also

was introduced and studied by Varosan&d[It has been discussed. This is the main motivation of this paper.

observed that the class di-convex function unifies

several other known classes of convex functions, such as,

s-convex functions 3], Godunova-Levin functions1{], 2 Preliminaries

P-functions P] and s-Godunova-Levin functions 6]

respectively. For some recent investigationsheconvex | this section, we recall some previously known concepts.

functions, seeZ, 5].

The relationship between theory of convexity and theory

of inequalities has attracted many researchers. Manyefinition 1([12]). A function f : |1 — (0, ) is said to be

inequalities have been obtained via convex functions. Onda, m)-convex function, if

of the most intensively studied inequali is

Hermite-Hadamard’s inequglity. This inequal?ty prnolvides ftx+mL-t)y) <t*f(x)+mL1-t7)f(y),

us a necessary and sufficient condition for a function to be vx,y €1t €[0,1],(a,m) € [0,1] (1)

convex. It also provides the mean value of convex _— -
function function over an interval. This classical resdit o Note thatfora = 1, Definition 2.4 reduces to the definition

Let f : 1 C R — R be a convex function witla < b and - ; . ‘e cai
, X A Definition 2([16]). A function f : | — (0, ) is said to be
a,be . Itis known thatf is a convex function if and only m-convex function, if

if, the inequality
b ftx+m(l—t)y) <tf(x)+m(l—t)f(y),
f(izb) gb—fa/a fdx < w vxyelte[0,1],me[01. (2
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Definition 3([17]). Let h:J € R — R a nonnegative
function. We say that f : | C R — R is h-convex function
(f € SX(h,1)) if f isnonnegativeand

f(tx+ (L t)y) < h(t) f(x) +h(1—t)f(y) @3)

for all x,y € | andt € [0,1]. If (3) holds in the reversed
sense, then f ish-concave, (f € SV (h,1)).

Now, we define the new concept dfr,m, h)-convex
functions.

Definition 4. Leth:J C R — R areal function. e say that
f:1 C— (0,0)is(a,m, h)-convexfunction (f € SX(h,1)),
if

f(tx+m(1—t)y) <h(t?)f(x)+h(1—

for all x,y el andt € (0,1).

t(y), (4)

Now we discuss some special cases of our proposed

definition of (a, m, h)-convex functions.

[. If h(t) =t, then, we have definition ofa, m)-convex
functions.

II. If o =1=mandh(t) =t, then, we have definition of
classical convex functions.

. If o =1=m, then, we have definition df-convex
functions.

IV. If a =1 andh(t) =t5, then, we have definition of
(s,m)-convex functions.

V. If a =1 andh(t) =t~3, then, we have definition of
(s,m)-Godunova-Levin functions.

VI. If a =1 andh(t) =t~1, then, we have definition of
m-Godunova-Levin functions.

VII. If m=1 andh(t) =t3, then, we have definition of
(a,s)-convex functions.

VIII. If m=1 andh(t) =t~5, then, we have definition of
(a,s)-Godunova-Levin functions.

IX. If m=1 andh(t) =t~1, then, we have definition of
a-Godunova-Levin functions.

One can see that the class(af, m h)-convex functions is

quite unifying one as it contains several other classes of

convex functions as sepcial cases.
We need an auxiliary result, which will be used in
obtaining our main results.

Lemma 1([14]). Let f : 1 C R — R betwice differentiable

on 19, where a,b € | with a < b and me (0,1]. If " €
L[a,b], then
f@+fmy) 1 ]
a m
2 mb—a/f(x)dx
a
(mb—a)?

1
7/0—tz)f”(ta+m(1—t)b)dt.
0

3 Main Results

In this section, we derive our main results.

Theorem 1.Let f :1 ¢ R — R betwicedifferentiableon 1°
and f” € L[a,b], wherea,b € | witha< band me (0,1].
Suppose | f”| is (a, m, h)-convex functions, then

mb
f(a)+ f(mb) 1
2 _mb—a/f(x)dx

a

a)
2

_ (M=) mhet)[ £ (@) + N(a.m.het)| (b)),

where

t—t

\r—\

M(a,m h;t)

0
1

N(a,m,h;t) /m (t —t?)h(1—t9)ck.
0

Proof. Using Lemma 2.5 and the fact thdt'| is (ar,m, h)-

convex function, we have

f(a)+ f(mb)

1 mb
N AL
a

~ |(mb—a)?
2

\r—\

(t—t?)f"(ta+m(1— t)b)dt‘

(mb—a)?

< 2 [t )" (ta+ m(L- 1)
(mb — a)?

5 (t—t?)[h(t*)|f" ()]

O —p °~—+ o

Fmh(1—t9)] £ (b) ]t

(0" 11, m. i) )|+ N, m i) | (D)

a)
2
This completes the proof.O0

We now discuss some special cases.

. If h(t) =t5, then we have

Corollary 1. Let f : 1 € R — R betwice differentiable on
1%and f” € L[a, b], wherea,b € | witha< bandme (0, 1].
Suppose | f”| is (a, m,s)-convex functions, then

mb
f(a)+ f(mb) 1 fx0d
The well known gamma function is defined as: 2 _mb—a/ (x)ax
a
_ ® —X$X—1 b—a)2
T [, e = T2 (0, m 0] @) + Na(ar,ms0)] (0]
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1
q

where ><(K(a,h;t)|f”(a)|q+L(a,h;t)|f”(b)|q> ,

1
1
. _ 42\ (+0\Scft — where
My(@,m st 0/(t )l = e, 1
d K(a,h:t) :/h(t"

Ni(a,m;s;t)

0
L(a,m,h;t) /mh 1-t%)dt
m(t —t2)(1—t9)5dt

o\r—\

Proof. Using Lemma 2.5 and the fact tHdt'|%is (a,m, h)-

3r(&e i
My (=£%) convex function, we have
6 F(1ts+2/a) o
f(a)+f(mb) 1 /f(x)dx
| 2r(%E) 2 mb—a
rA+s+3/a)| [ 2

Il. If h(t) =t~3, then we have =

2 1
mb 3 / ta+m(1—t)b)dt‘
0

Corollary 2. Let f : | C R — R betwice differentiable on L
19and f” € L[a, b], wherea,b € | witha< bandme (0,1]. mb a)? 1 G
Suppose | ] is (o, m, s)-Godunova-Levin functions, then / (t—t?)

0

mb
f(a)+ f(mb) 1
> — mb_aa/f(x)dx

X |f“(ta+m(1—t)b)|th>q
(0/

- 7(mb_a)2[|v|2(a m,—s;t)|f"(a)| 1
2 T (mb—a)? (2P ar(1+p)\°
+Np(a,m, —s;t)| £ (b)]] <
2 s 1 d ) 2 r(%+ p)
where N 1
q
1 " ay| £/
] 1 <[ [pe)I @17+ mh - )] (b)) dt)
Mz(a,m,—s;t) Z/(t—tz)(ta) Sdtzm, <o [ }
0 1
and _ (mb—a)’ <2—Hvﬁr<1+ p)) "
N 2 3
Na(a,m, —s;t) r(3+p) 1
1 a
Z/m(t—tz)(l—t")‘sdt x (K(a,h;t)|f”(a)|q+L(a,h;t)|f“(b)|q> :
° ar (2:0) This completes the proof.0
m ==
= E/‘[l—s]{ [I‘(lT:Z/O{)] We now discuss some special cases.
I. If h(t) =t5, then we have

2r (32) Corollary 3. Let f : | C R — R betwice differentiable on
r(1—s+3/a) 19 and f"” € L[a,b], wherea,be | witha<bandme (0,1].
Suppose | f”]%is (o, m, s)-convex functions, then

mb
f(a)+ f(mb) 1
> —mb_aZf(x)dx

~ (mb—a)? (271Py/m (14 p) ’
R r(3+n)

Theorem 2.Let f : | € R — R betwicedifferentiableon1°
and f” € L[a,b], wherea,b € | witha< band me (0,1].
Suppose | 7|9 is (a, m, h)-convex functions, then

mb
f(a)+ f(mb) 1
2 _mb—a/f(x)dx

<(mb—a)2 2-1=p /7 (14 p) C
c2 r(3+p)

1
q

X (Kl(a,s;t)| f’(a)|9+L1(a,st)] f“(b)|q> ,

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

s D

M. A. Noor et al.:(a, m, h)-convexity

where
1
t tC{S
uas / 1+sa
0
1
_mr(A+9r(a 1
1(a,ms;t) /m )3t (+)(1+")
5 r(1+5+a)
II. If h(t) =t~5, then we have

Corollary 4. Let f : 1 € R — R betwice differentiable on
1%and f" € L[a, b], wherea,b € | witha< bandme (0,1].
Suppose | f”|%is (a, m, s)-Godunova-Levin functions, then

mb
f(a)+ f(mb) 1
’ - —mb_aa/f(x)dx

_ (mb—a)? <2lpﬁr(1+ p)) C
B 2

r(3+p)
X <K2(G

where
1
a,—st) /t“s —
0
Lam st /lm - ml'(l—s)l'(1+%).
) r(l-s+32)

Theorem 3.Let f : 1 ¢ R — R betwicedifferentiableon 1°
and f” € L[a,b], wherea,b € | witha< band me (0,1].
Suppose | f”|% is (a, m, h)-convex functions, then

mb
f(a)+ f(mb) 1
5 —mb_aa/f(x)dx
(mb—a)? (2-1P /7 (1+ p) L
<
S2 r(3+p)

1
q

x <F’(a,h:t)l t”(a)|?+Q(a,m, h:t)lf”(b)lq> ;

—st)[ (@) + La(a, —st)] f”(b)lq>

Proof. Using Lemma 2.5 and the fact thdt' |9 is (o, m, h)-
convex function, we have

mb
f(a)+ f(mb) 1
2 _mb—a/f(x)dx

20/l )
1 _2 )—é
(O/t t
1
x<0/ 2)[#" (ta+ m(1—t) )|th>

<R

(mb—a "(ta+ m(l—t)b)dt‘
mb a)

1
q

x(oflt—t

© (mb—a)? (27 1Py/mr (1+p) C
2 r(3+p)

1
q

DIt (@)1 + mh(l—t“)lf”(b)Iq}dt>

1

X <P(a,h;t)| f”(a)|?+Q(a,m, h;t)|f”(b)|q> a.

This completes the proof.O0

Some special cases:
. If h(t) =t5, then we have

Corollary 5. Let f : 1 € R — R betwice differentiable on
1%and f” € L[a, b}, wherea,b € | witha< bandme (0, 1].
Suppose | f”|%is (a, m, s)-convex functions, then

mb
f(a)+ f(mb) 1
2 mb_aa/f(x)dx
(mb—a? (2P mr(14p))*
<
-2 r(3+p)

1

X <M1(a,s;t)| ()| + Nl(a,m,st)|f”(b)|q> q,

where
where .
1
1 Ml(a7s,t) e /(t 2)(tas)dt _ —2’
P(a,h;t) =/(t—t2)h(t°’)dt J 61 550 1 <a
0 and
i 1
Qe mhit) :/m(t—tz)h(l—t")dt, 1(a,ms;t) /mt_tZ —t9)Sdt
’ 0
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_m r (%)
_Er[1+s']{ r(1+s+2/a)
2r (35%)
| F@+s+3/a)| [

Il. If h(t) =t then we have

Corollary 6. Let f : | € R — R betwice differentiable on
19and f” € L[a, b], wherea,b € | witha< bandme (0,1].
Suppose | f”]%is (a,m,s)-Godunova-Levin functions, then

mb
f(a)+ f(mb) mbl_a/f(x)dx

()

X <M2(or, h;t)| " (a)|%+ No(a, h;t)| f”(b)|q>

(mb—a)?
2

2-1-p /T (14 p)
r(3+p)

1
q

3

where
Ma(a,m, —s;t)
1
= [ = g
0
and
1
Na(a,m, —s;t) :/m(t—tz)(l—t")‘sdt
0
m 3 (252)
- Er[l_s]{ [I‘(l—s+2/a)]
2r (%)
| F@—s+3/a)| ("

4 Conclusion

In this paper, we have introduced and studied a new mor
generalized class of convex functions. It is noticed tha
this class includes the known and unknown classes o

convex functions as special cases. Several new integral

inequalities have been obtained \ie, m, h)-convexity.
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