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1 Introduction

Theory of convexity has experienced rapid development
in recent years. Consequently several generalizations for
classical convex sets and convex functions have been
proposed by many researchers, see [4]. An important
generalization in this regard ish-convex functions, which
was introduced and studied by Varosanec [17]. It has been
observed that the class ofh-convex function unifies
several other known classes of convex functions, such as,
s-convex functions [3], Godunova-Levin functions [10],
P-functions [9] and s-Godunova-Levin functions [6]
respectively. For some recent investigations onh-convex
functions, see [2,5].
The relationship between theory of convexity and theory
of inequalities has attracted many researchers. Many
inequalities have been obtained via convex functions. One
of the most intensively studied inequality is
Hermite-Hadamard’s inequality. This inequality provides
us a necessary and sufficient condition for a function to be
convex. It also provides the mean value of convex
function function over an interval. This classical result of
Hermite and Hadamard reads as:
Let f : I ⊂ R → R be a convex function witha < b and
a,b ∈ I. It is known thatf is a convex function if and only
if, the inequality

f

(

a+ b
2

)

≤ 1
b− a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
,

holds. For some recent studies on Hermite-Hadamard
type inequalities, see [1,2,7,8,11,13,14,15].
In this paper, we introduce the class of(α,m,h)-convex
functions. It is shown that this class unifies some known
and new classes of convex functions. We also establish
some Hermite-Hadamard type inequalities for
(α,m,h)-convex functions. Some special cases are also
discussed. This is the main motivation of this paper.

2 Preliminaries

In this section, we recall some previously known concepts.

Definition 1([12]). A function f : I → (0,∞) is said to be
(α,m)-convex function , if

f (tx+m(1− t)y) ≤ tα f (x)+m(1− tα) f (y),

∀x,y ∈ I, t ∈ [0,1],(α,m) ∈ [0,1]2. (1)

Note that forα = 1,Definition 2.4 reduces to the definition
of m-convex functions introduced by [16].

Definition 2([16]). A function f : I → (0,∞) is said to be
m-convex function, if

f (tx+m(1− t)y) ≤ t f (x)+m(1− t) f (y),

∀x,y ∈ I, t ∈ [0,1],m ∈ [0,1]. (2)
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Definition 3([17]). Let h : J ⊆ R → R a nonnegative
function. We say that f : I ⊆ R → R is h-convex function
( f ∈ SX(h, I)) if f is nonnegative and

f (tx+(1− t)y)≤ h(t) f (x)+ h(1− t) f (y) (3)

for all x,y ∈ I and t ∈ [0,1]. If (3) holds in the reversed
sense, then f is h-concave, ( f ∈ SV(h, I)).

Now, we define the new concept of(α,m,h)-convex
functions.

Definition 4. Let h : J ⊆R→R a real function. We say that
f : I ⊆→ (0,∞) is (α,m,h)-convex function ( f ∈ SX(h, I)),
if

f (tx+m(1− t)y)≤ h(tα) f (x)+ h(1− tα) f (y), (4)

for all x,y ∈ I and t ∈ (0,1).

Now we discuss some special cases of our proposed
definition of(α,m,h)-convex functions.
I. If h(t) = t, then, we have definition of(α,m)-convex
functions.
II. If α = 1= m andh(t) = t, then, we have definition of
classical convex functions.
III. If α = 1 = m, then, we have definition ofh-convex
functions.
IV. If α = 1 andh(t) = ts, then, we have definition of
(s,m)-convex functions.
V. If α = 1 andh(t) = t−s, then, we have definition of
(s,m)-Godunova-Levin functions.
VI. If α = 1 andh(t) = t−1, then, we have definition of
m-Godunova-Levin functions.
VII. If m = 1 andh(t) = ts, then, we have definition of
(α,s)-convex functions.
VIII. If m = 1 andh(t) = t−s, then, we have definition of
(α,s)-Godunova-Levin functions.
IX. If m = 1 andh(t) = t−1, then, we have definition of
α-Godunova-Levin functions.
One can see that the class of(α,m,h)-convex functions is
quite unifying one as it contains several other classes of
convex functions as sepcial cases.
We need an auxiliary result, which will be used in
obtaining our main results.

Lemma 1([14]). Let f : I ⊂R→R be twice differentiable
on I0, where a,b ∈ I with a < b and m ∈ (0,1]. If f ′′ ∈
L[a,b], then

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

=
(mb− a)2

2

1
∫

0

(t − t2) f ′′(ta+m(1− t)b)dt.

The well known gamma function is defined as:

Γ (x) =
∫ ∞

0
e−xtx−1dt,

3 Main Results

In this section, we derive our main results.

Theorem 1.Let f : I ⊂R→R be twice differentiable on I0

and f ′′ ∈ L[a,b], where a,b ∈ I with a < b and m ∈ (0,1].
Suppose | f ′′| is (α,m,h)-convex functions, then

∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=
(mb− a)2

2
[M(α,m,h; t)| f ′′(a)|+N(α,m,h; t)| f ′′(b)|],

where

M(α,m,h; t) =

1
∫

0

(t − t2)h(tα)dt

N(α,m,h; t) =

1
∫

0

m(t − t2)h(1− tα)dt.

Proof. Using Lemma 2.5 and the fact that| f ′′| is (α,m,h)-
convex function, we have
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(mb− a)2

2

1
∫

0

(t − t2) f ′′(ta+m(1− t)b)dt

∣

∣

∣

∣

∣

≤ (mb− a)2

2

1
∫

0

(t − t2)| f ′′(ta+m(1− t)b)|dt

≤ (mb− a)2

2

1
∫

0

(t − t2)[h(tα)| f ′′(a)|

+mh(1− tα)| f ′′(b)|]dt

=
(mb− a)2

2
[M(α,m,h; t)| f ′′(a)|+N(α,m,h; t)| f ′′(b)|].

This completes the proof.⊓⊔

We now discuss some special cases.

I. If h(t) = ts, then we have

Corollary 1. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′| is (α,m,s)-convex functions, then

∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=
(mb− a)2

2
[M1(α,m,s; t)| f ′′(a)|+N1(α,m,s; t)| f ′′(b)|],
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where

M1(α,m,s; t) =

1
∫

0

(t − t2)(tα)sdt =
1

6+5sα + s2α2 ,

and

N1(α,m,s; t)

=

1
∫

0

m(t − t2)(1− tα)sdt

=
m
6

Γ [1+ s]

{[

3Γ
(2+α

α
)

Γ (1+ s+2/α)

]

−
[

2Γ
(3+α

α
)

Γ (1+ s+3/α)

]}

.

II. If h(t) = t−s, then we have

Corollary 2. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′| is (α,m,s)-Godunova-Levin functions, then
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=
(mb− a)2

2
[M2(α,m,−s; t)| f ′′(a)|

+N2(α,m,−s; t)| f ′′(b)|],
where

M2(α,m,−s; t) =

1
∫

0

(t − t2)(tα)−sdt =
1

6−5sα + s2α2 ,

and

N2(α,m,−s; t)

=

1
∫

0

m(t − t2)(1− tα)−sdt

=
m
6

Γ [1− s]

{[

3Γ
(

2+α
α
)

Γ (1− s+2/α)

]

−
[

2Γ
(

3+α
α
)

Γ (1− s+3/α)

]}

.

Theorem 2.Let f : I ⊂R→R be twice differentiable on I0

and f ′′ ∈ L[a,b], where a,b ∈ I with a < b and m ∈ (0,1].
Suppose | f ′′|q is (α,m,h)-convex functions, then
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

≤ (mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(3

2 + p
)

) 1
p

×
(

K(α,h; t)| f ′′(a)|q +L(α,h; t)| f ′′(b)|q
) 1

q

,

where

K(α,h; t) =

1
∫

0

h(tα)dt

L(α,m,h; t) =

1
∫

0

mh(1− tα)dt.

Proof. Using Lemma 2.5 and the fact that| f ′′|q is (α,m,h)-
convex function, we have
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(mb− a)2

2

1
∫

0

(t − t2) f ′′(ta+m(1− t)b)dt

∣

∣

∣

∣

∣

≤ (mb− a)2

2

( 1
∫

0

(t − t2)pdt

)
1
p

×
( 1
∫

0

| f ′′(ta+m(1− t)b)|qdt

) 1
q

≤ (mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(3

2 + p
)

)
1
p

×
( 1
∫

0

[

h(tα)| f ′′(a)|q +mh(1− tα)| f ′′(b)|q
]

dt

)
1
q

=
(mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(

3
2 + p

)

)
1
p

×
(

K(α,h; t)| f ′′(a)|q +L(α,h; t)| f ′′(b)|q
)

1
q

.

This completes the proof.⊓⊔
We now discuss some special cases.
I. If h(t) = ts, then we have

Corollary 3. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′|q is (α,m,s)-convex functions, then
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=
(mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(3

2 + p
)

) 1
p

×
(

K1(α,s; t)| f ′′(a)|q +L1(α,s; t)| f ′′(b)|q
) 1

q

,
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where

K1(α,s; t) =

1
∫

0

(tαs)dt =
1

1+ sα

L1(α,m,s; t) =

1
∫

0

m(1− tα)sdt =
mΓ (1+ s)Γ

(

1+ 1
α
)

Γ
(

1+ s+ 1
α
) .

II. If h(t) = t−s, then we have

Corollary 4. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′|q is (α,m,s)-Godunova-Levin functions, then

∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=
(mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(3

2 + p
)

) 1
p

×
(

K2(α,−s; t)| f ′′(a)|q +L2(α,−s; t)| f ′′(b)|q
)

1
q

,

where

K2(α,−s; t) =

1
∫

0

(tαs)dt =
1

1− sα

L2(α,m,−s; t) =

1
∫

0

m(1− tα)sdt =
mΓ (1− s)Γ

(

1+ 1
α
)

Γ
(

1− s+ 1
α
) .

Theorem 3.Let f : I ⊂R→R be twice differentiable on I0

and f ′′ ∈ L[a,b], where a,b ∈ I with a < b and m ∈ (0,1].
Suppose | f ′′|q is (α,m,h)-convex functions, then

∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

≤ (mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(

3
2 + p

)

)
1
p

×
(

P(α,h; t)| f ′′(a)|q +Q(α,m,h; t)| f ′′(b)|q
)

1
q

,

where

P(α,h; t) =

1
∫

0

(t − t2)h(tα)dt

Q(α,m,h; t) =

1
∫

0

m(t − t2)h(1− tα)dt.

Proof. Using Lemma 2.5 and the fact that| f ′′|q is (α,m,h)-
convex function, we have
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(mb− a)2

2

1
∫

0

(t − t2) f ′′(ta+m(1− t)b)dt

∣

∣

∣

∣

∣

≤ (mb− a)2

2

( 1
∫

0

(t − t2)dt

)1− 1
q

×
( 1
∫

0

(t − t2)| f ′′(ta+m(1− t)b)|qdt

)
1
q

≤ (mb− a)2

2

(1
6

)1− 1
q

×
( 1
∫

0

(t − t2)
[

h(tα)| f ′′(a)|q +mh(1− tα)| f ′′(b)|q
]

dt

)
1
q

=
(mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(

3
2 + p

)

)
1
p

×
(

P(α,h; t)| f ′′(a)|q +Q(α,m,h; t)| f ′′(b)|q
)

1
q

.

This completes the proof.⊓⊔

Some special cases:
I. If h(t) = ts, then we have

Corollary 5. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′|q is (α,m,s)-convex functions, then
∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

≤ (mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(

3
2 + p

)

)
1
p

×
(

M1(α,s; t)| f ′′(a)|q +N1(α,m,s; t)| f ′′(b)|q
)

1
q

,

where

M1(α,s; t) =

1
∫

0

(t − t2)(tαs)dt =
1

6+5sα + s2α2 ,

and

N1(α,m,s; t) =

1
∫

0

m(t − t2)(1− tα)sdt
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=
m
6

Γ [1+ s]

{[

3Γ
(2+α

α
)

Γ (1+ s+2/α)

]

−
[

2Γ
(3+α

α
)

Γ (1+ s+3/α)

]}

.

II. If h(t) = t−s, then we have

Corollary 6. Let f : I ⊂ R→ R be twice differentiable on
I0 and f ′′ ∈ L[a,b], where a,b∈ I with a< b and m∈ (0,1].
Suppose | f ′′|q is (α,m,s)-Godunova-Levin functions, then

∣

∣

∣

∣

∣

f (a)+ f (mb)
2

− 1
mb− a

mb
∫

a

f (x)dx

∣

∣

∣

∣

∣

≤ (mb− a)2

2

(

2−1−p√πΓ (1+ p)

Γ
(

3
2 + p

)

)
1
p

×
(

M2(α,h; t)| f ′′(a)|q +N2(α,h; t)| f ′′(b)|q
)

1
q

,

where

M2(α,m,−s; t)

=

1
∫

0

(t − t2)(tα)−sdt =
1

6−5sα + s2α2 ,

and

N2(α,m,−s; t) =

1
∫

0

m(t − t2)(1− tα)−sdt

=
m
6

Γ [1− s]

{[

3Γ
(2+α

α
)

Γ (1− s+2/α)

]

−
[

2Γ
(

3+α
α
)

Γ (1− s+3/α)

]}

.

4 Conclusion

In this paper, we have introduced and studied a new more
generalized class of convex functions. It is noticed that
this class includes the known and unknown classes of
convex functions as special cases. Several new integral
inequalities have been obtained via(α,m,h)-convexity.
New refinements of other classical inequalities such as,
Ostrowski’s inequalities, Simpson’s inequalities and
Newton’s inequalities, can also be obtained via this class
of convex functions. This will be an interesting subject of
future research. The interested readers are encouraged to
consider the applications of these new concepts.
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