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Abstract: The interaction between a moving four-level atom and a singbde cavity field are discussed in the presence of intensit
dependent atom field coupling. For this purpose, we first destnate the feasibility of thefiective Hamiltonian and evaluate the
explicit time-dependent form of the state vector of the wet®jistem by choosing special initial conditions for atomdfi€onsidering
the field to be initially in a coherent state, and the atomiisaiily prepared in the excited state. The wave functionitamed in three
different cases: resonance cadéresonance case, finally we obtained it in the general form.sWdy the nonclassical features of
the system such as Atomic inversion, Filed entropy, puFitgelity, Mandel Q-parameter, Mean photon number and nbsomseezing.
The results show that, The temporal evolution of field entr@tanglement), Mandel parameter, mean photon numbenamaal
squeezing are sensitive to intensity-dependent couplihich changes the quantum statistical behaviour of the ditelch state to a
full sub-Poissonian statistics. Finally, conclusions aarthe features and comments are given.

Keywords: Four-level atom, intensity-dependent coupling, puriigefity, normal squeezing.

1 Introduction entangled states, as a fundamental physical resource of
quantum computation and quantum communicatibf, [

Interaction of a two-level atom with a radiation field is the quantum information processingl§16,17], quantum
simplest problem in matter-radiation coupling. A model cryptography 18 19]. There is a lot of attention we may
for the interaction, introduced by Jaynes and Cummingdocus on information entropies as a measure of
[1]. This model was generalized to describe Theentanglement in quantum information such as von
interaction model between a four-level atom and a singleNeumann entropy. The time evolution of the field entropy
quantized mode of a radiation field, when the rotatingshows the degree of entanglement measurement;
wave approximation (RWA) considered2,B,4,5,6]. In fact, Dynamics of a four-level atom interacting
There exists a theoretical motivation to include atomicwith a single mode of the radiation field in a lossless
motion efect to JCM, [,8,9] have treated the JCM in the cavity has been discussed in detail from various points of
presence of atomic motion, by the use of analytic andview [20,21,22], and it has been generalized or extended
numerical calculations. further to incorporate theffects of the atomic motion and
On the other hand, we find that the most importantthe field mode structurep, 24].
problems in quantum optics are the studies dfedent  Schlicher and JoshpB] have investigated the influences
systems interaction such as field-atom, atom-atom and thef the atomic motion and the field-mode structure on the
field-field [13,10]. One of the main consequences of the atomic dynamics. To get a new insight into the relation
above interactions is the appearance of the entanglemeibetween quantum entanglement of the atom-field system
[11,12]. Entanglement is a major supplier that and nonclassicality of the light field, it is useful to
distinguishes a key distinguishing element of quantuminvestigate the atom-field entanglement under the
information theory from the classical one. Quantum nonclassical environment.
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We aim at extending the previously cited treatments tothat the atomic statd$) and|2) have the same number of
study the problem of a four-level atom in the consider photons).
configuration interacting with a single-mode field, in the
presence of the intensity-dependent coupling, to
investigate the properties of the degree of entanglement of
the above mentioned systems from the view point of the 13> ws
Phoenix-Knight £5,27,26]. In this paper, while we refer n-2
to our earlier work 28, we have been studied the o
interaction between a four-level atom in our consideration Ao
model with a single mode field under multi-photon wa
process with additional forms of nonlinearities of both n-1
field and atom-field coupling. has been studied in . Here,
we study a moving atomic system of a four-level atom A2
coupled to one mode electromagnetic cavity field in the e
presence of the intensity-dependent coupling,. Weizs D2 v
describe the Hamiltonian and derive the constants of
motion. Also, this generalization takes into account the
multi-photon processes. We derive the general form of the
probability amplitudes for the considered system.
Consequently, in this paper, after we have the exact n
analytical solution of the entire state vector of the system
We will experience theféects of the intensity-dependent
coupling, on the time evolution of atomic inversion, field
entropy, Q-Mandel parameter, mean photon number and
normal squeezing. In this work, we observed that The
temporal evolution of field entropy (entanglement),  Also, we assume that the atom moves in the cavity
Mandel parameter, mean photon number and norma@nd the atom-field interaction depends on the intensity of
squeezing are susceptible to intensity_dependenﬁght. Based on the JCM formalism, as the full quantum
coupling, which changes the quantum statisticalmechanical approach to the problem, our proposed model
behaviour of the atom-field state. Finally, we summarizecan be appropriately described by the Hamiltonian (with
our results. h=1)

1a >

@1
A 1>

Fig. 1: The scheme for the considered atomic system

4
H= Z éjj +!J§T’é+/lf(z)[(‘}<§41+ ‘RTéu) +
=

2 Description of the model U U
(RS42+R"S24) + (RSzs+ RTSs3)], (1)

In quantum mechanics, the most important step inwhere Sj; are the population operators satisfying the
studying any physical system is the construction of anfollowing commutation relations:

appropriate Hamiltonian of the system. This goal is (a0, Sca] = Saadbe — Sevdaa [2 San] = [27,8ap] = 0. (2)
achieved by an exact view on the existing interactions ) —
between subsystems. Then, by solving the\ivhereéd,51 is the Kroneker symbol an84|b) = |a). Else,

time-dependent Schrodinger equation, one may find thé a' are respectively the bosonic annihilation and creation
dynamical state of the system under study. Possibl@Peratorsofthe C?‘V'tyﬂfld which Satjsfy'ng}Th? Tcanomcal
information arises from the wave function of the system. commutationrelationd.a'] =1 while [3,a] =[a'.a"] =0,

The assumed model contains, in fact, three three-levef 'S the atom-field coupling constant, and, w,, w3 and
subsystems with a common fourth level, one can®?*ar€ the atomic energies of the leyB), |2), 3) and|4),

distinguish here two subsystems in the ladder'@Spectively. Also, the deformed operatsndR " have

configuration (levels 1-4-3 and 2-4-3) and one subsystenp€en defined as: R

in the lambda configuration (1-4-22§], (see Fig.1). Let R = ag(h) = g(Ai+1)a, R = g()a’ = a'g(A+1). (3)
us consider a model in which the single-mode with # = a'a as the number operator of the harmonic
electromagnetic field which oscillates with frequenRy  oscillator. Using the well-known Weyl-Heisenberg Lie
in an optical cavity interacts with a four-levéitype atom  ajgebra corresponding to the operatarsi®, i and the
an intensity-dependent coupling regime in an opticalynity operator f, plus the fact that the operatar "
cavity field, when the coupling constants are equal. Thecommutes with the arbitrary function of itset(f), the
atomic levels are indicated bi), Izi]. 13) ?Rd |4>"Withd following communication relations clearly hold:
energies wz > w4 > w2 > w1, where the allowe .- . A o

transitions arg3) < i) and [4) < [1)(2)). and the R B1=(A+1)g*(A+1)-ng*(R),

transition|2) «— |1} is forbidden (this assumption means [R,A] =R, [R,A]=-R". (4)
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where g(f) is considered to be a Hermitian For the assumed system, the wave function at any time
operator-valued  function responsible  for  the can be written in the following form:

intensity-dependent atom-field coupling. The influence of

atomic motion in the model has been entered by the shapl’(t)) = an[(m(n, t)I1) + t//z(n,t)l2>)® [n)

function (2. In view of the successful n

microwave-type-cavity@ED experiments as discussed
above, we restrict the atomic motion along the cylindrical
axis (e.g. thez-axis) of the cavitym so that only thez
dependence of the cavity mode function needs to bevhereq, is the number-state expansion fio@entsqy, =
considered. The atomic motion would be incorporated agn|?k(t = 0)), for coherent state

(29

+a(n=2,0[3,n—2) + ya(n—1,1)|4,n— 1>], (12)

h=€ 2 —, (13)
) (5) vl
wherela|? is the mean photon number in the initial state,
a = |alexp(n), wheren is the initial phase angle of the
coherent field. Alsow1(n,t), ¥2(n,t), w3(n-2t) and
Ya(n—1,t) are the atomic probability amplitudes which

toer oy e have to be determined.

@(t) = o (fo)dt=2, ©) The equations of motion for the probability
which means, there is no atomic motion inside the cavity,amplitudes are obtained by substitutif¥(t)) from (12)
but if p1 = 0 andp, = p, wherep represents the number and Hiy from (9) in the time-dependent Schrodinger
of half-wave lengths of the field mode inside a cavity of equation L1). Consequently, one arrives at the following
lengthL, the shape function for a particular choice of the four first-order coupled dierential equations:

atomic motion velocity = %L will be
Y (t)

@(t) = (04 = L[1-cospa)]. 7
d | w2(®)

In order to obtain the state vector of the system, it should j = =
be suitable to rewrite the Hamiltonian (1) in the interactio  dt w3(t)

£(2) — (1) = p1+sin(p2|7_Wt

wherey denotes the atomic motion velocify, andp; are
the atomic motion parameters well, if we poit = 2 and
p2 = 0, then the shape function takes the form

picture,

3 iHot {7 o—iHot valt)

Hin = €MotH e, (8) 0 0 0 fe%\ i)

th|ch results in - - - 0 0 0 f16% || wa(t)

Hin = Af(2{a(e U108, + 120§, 4+ gD S, ) + s (14)
. © 00 0 e val

whereds, 4, andds are the detuning parameters and have \ f1€7% f1e72 f2€% 0 vV

been defined as where

1= w1-ws+Q, bo=ddt.  (s=12.3) (15)

fo = wr—wa+©, f1 = A Vg() f (2), f2 = A Vn—1g(A-1)f (2).

A3 = ws— w3+ Q. (10) We started by investigation the solution of the system

(14). Let us suppose an atom takes place in the interaction
to be prepared in a coherent superposition of its ground
|1) and intermediaté4) states BQ]. Thus, the initial state
|?ae(t = 0)) of the combined atom-field system may be

In what follows, we mind to derive the wave function
of the model under consideration by using the
time-dependent Schrédinger equation.

written as
3 The wave function of the model and its [ar(t = 0)) = |¥a(t = 0)) ® |PF(t = 0)). (16)
solution where|Pa(t = 0)), the initial state of the atom ant¥g (t =

0)), is the initial state of the field. So, the initial state is
To obtain the explicit form of the wave function of the given by

whole system, we solve the time-dependent Schrodinger o0

equation |Par(t=0)) = Z gn[(cos@)|1,n) +

.0 A n=0 .

=12 0) = Hinl#(0). (11) sin@)e’|4,n+1))], (17)
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whered € [0,n] denotes the coherence of the two level previous technique in the on resonant case, and after
andg € [0, 2n] is the relative phase between the upper andminor algebra, one can obtain the probability amplitudes
lower states of a two-level atom. It is clear that when they(t) in the following form

atom is initially prepared in its ground (intermediate)

state|1) (]4)), the value of the anglé equal 0 ands/2).

Now, we will resolve the above system in the three

different cases as follow.

4 The solution in the resonance case

In this case, we assume that the cavity eigenfrequencyis o

resonance with the atomic transition frequency i,
0). Under the initial condition(7), the previous system
(14) can be written as:

Ya(t) 0 0 0 f1)(ya(t)
-d Y2(t) [_| O O O fy | wa(t) (18)
'Gt| va® |T[ 0 0 0 f || us®)

ya(t) f1 f1 f2 0 ) ya(t)

After some lengthy but simple manipulations, the

probability amplitudesyj(t) (specifying the explicit form

of the state vector of whole system) may be found in the +

form

Ya(nt) = p1+ p2cosEFt) +pssin(Ft),
W2(n,t) = 01 + 0pcosFt) + ozsin(Ft),

Ya(N—2,1) = ¢1 + ¢2COSEY) + g3 SIN(FL), (19)
Ya(n—1,t) = N1 cosFt) + Nasin(Ft),
where
= 22+ f2.

1
o1 = Z5(12+ )cost)),
02 = cost) - (12 + ) cost),
93 = (F)hexplid)sing)

_1
01 = E(flz cosg)), 02 = —01,
03 = 93,

1
¢1= E(fl f2cos@)), $2=—¢1,
$3 = = () f2sinE) exp-io),
N1 = sin@) expig),
N2 = (2)fcosf). (20)

5 The solution in the off-resonance case

In this case, we assume that the cavity eigenfrequency is
off-resonance with the atomic transition frequency i.e.,

(4s = 4). To obtain an analytical solution for the coupled
ordinary diterential equationsld), we will use the same

—i(4)%y1+ ()2 + (%) -4
(a1 + )0+ 9)(xa+4)
X?)’l + Xf)’z +X1y3+vy4
(X1 + ) (X1 — %) (X1 — Xa)
Xz)’l +X3y2+ X2y3+74
M ¥
(X2 +5) (X2 = X1) (X2 — X3)
X371 +X3y2+ X3y3+74
(x3+ 4) (X3 - X1)(Xa — X2)

lﬁl(n’ t) =

i4
Jexpixa + )t

}expixe + %)t

}exp(xs + %)t

(Y201 + (F2)%az + a3
(—x1— ) (% —Y)(~xs-4)
Xla'l + X1a2 + a3
( 1+ 2)(Xa — X2) (X1 — Xa)
Xoa1 + Xor2 + @3

(X2 + ) (%2 — X1)(X2 — X3)

WZ(n’ t) = {

yexpxy + %)t

expxz + %)t

X3a1+ Xaa2 + a3 L expia-+ ié)t
(x3+ 4) (X3 - X1)(Xa — X2) 27"
()1 +(F)B2+Ps
‘// (n - 2’t) = {
i T
XaB1 + X182 + 3 3i4
: ——)t
(X1 + 9 (%2 — X2) (X1 — X3) lexpa= )
XoP1 + XoB2 + 33 3i4
- ——)t
(X2 + 9 (%2 — X1) (X2 — X3) expee-3)
X5B1 + XaB2 + 3 i
. - —)t
et D) (x3— x1)(X3— X2) lexple =)
( )31 + ()62 + (2 )§3+f4
-1t
O ) S A
exp(—ult)

é1 +X4é2 + Xaéz + &4
(x1+ ) (X2 — X2) (X2 — X3)
31+ XoE2 + Xobz +&4
(X2 + 4) (%2 — X1) (X2 — X3)
EL+ X562+ Xaéz + &4
(X3 + ) (X3 — X1) (X3 — X2)

i4
jexpta- 2

ig
yexplxz — %)t

is
yexpxz — §)t

(21)

(22)

(23)

(24)
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with
X¢ = —}6 + 2 \02-36 COS[@+ g(K— 1)71]
Ve 3 1 3 1 2 3 5
k=1,2,3.
96102 — 263 - 276
0= ECos‘l[ 127 - 3]. (25)
3 2(62-367)%
and
61 = —3(4/2),62 = (%’)2 +2f2+ 12,
4., , A
53 = |[§ 2-2417-3(3) ] (26)
also
y1 = cosf),
vy = —i{B(A /2)cost) + f1 sin(e)e-i¢},
g = (f12+ 2+ (A/Z)Z)COSG) _ Afisin@)e ¢
va = (i /2){( f2-3f2-3( /2)2)cos(9)
_3( /2)flsin(9)e-i¢},
a1 = —ifisin@)e™,
az = —fZcosp) - 4f1sin@)e?,
a3 =3 (A/Z){ff cosg) — (4 /2)flsin(a)e-i¢},
B1 = —ifasin@)e?,
B2 = Afasin(@/2)e7? - f1f,c050/2),
B3 = i(4 /2){A J2sin@)e - f, cose)}fz,
& = sin@)e ™,
& = —ifycosp) —(i4/2)sin@)e™?,
& = (5/4)4%sin@)e™'? — A f,cosp),
& = 3i(4/2)%sin@)e ' — 3if1(4/2)? cosp) (27)

6 The general solution

On the other hand, in the non-resonance cdse (), By
assumingya(t) = €+t the coupled ordinary ftierential
equations 14),
equation:

*+ 03 + oop® + o1y + a9 = 0. (28)
where

02=Yo+Yyi1(d2+43),  (29)
00 =Y3(d2+43).  (30)

03 =Yy1+43+ 42,
01 = Y3+ (A3 +42)y2— €f?,

lead us to the fourth-order algebraic

The four roots of the quartic equatio?8) are given by
using MATHEMATICA in the following form [54]:
Hi2) = —% — 3 V{U1/3v2) + (V2/3) + Uz

F3 (Vg — (Wa/4wy),

(31)

pa@) = —2L + 1 V{U1/3v2) + (V2/3) +

z( \/Wz +(wa/4wy),
where
W1 = Vug + (U1/3v2) + (v2/3),
Wy = 2up — (U1/3v2) — (V2/3),

—801 + 40203 - 03.

U = 12@0 +Q2 3@1@35 (32)

Uz = (—202/3) + (05/4),
V1 = 2707 — 720002 + 203 — 9010203 + 270003,

Vo = [(vl + —4ud +v§)/2]%.

By consideringys(t) as a linear combination a7t

and after straightforward calculations, we obtain the

probability amplitudes in the form

ya(t) = f1 5 Z Cj(u5 + 21df + 2o + 23) W43+

— 1 (1,3 2 . i(uj+A3+42)t
lﬂz(t)—EZCJ(NJ+Y1HJ-+Y2#J+Y3)€" 32,

4
ws(t) = ) Cjeht,
j

4
_1 o
_ - Ayt

va()) = f Zj:CJﬂJeI 7 (33)
with

€ =41—4>,
71 = 243+ 4>,
2 = A5~ 1222+ Mod,
73 = —f2(d2+43),
y1 = 243+ 41,
Vo = A%— f22—2f12+A1A3,
y3 = —(d1+43) 2. (34)
where
C = 5‘1(#[+m<+um)+Sz(mk+mm+m<m)+33

! HijeHimitjk (35)
Hik =Mj—p, J #K#EL#EM=123, 4.
with
J1= —{A3f2 sin@)e ¢ + f, f, cos@)},
Iy = —fosin@)e?, (36)

93 = _{ fo(43 + 2+ 2f2)sin@)e ™ +y1 f1 5 COSG)}-
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Due to the apparent entanglement feature of the ot
considered atoms-field system, it is natural to investigate ” -
the amount of this pure quantum quantity at first, the
above calculations can be used to discuss some propertit I
of the considered system. For achieving to this purpose o A TR\
several measures of entanglement have been propost ) A ] L X g
such as field entropy, purity, Fidelity and so on, to discuss
the degree of entanglement for thefeient parts of the
considered system.

R
-0.2 -0.2 P
h

a)
@ o,

Atomic inversion

Atomic inversion

7 The Atomic inversion

We are now in a position to examine the atomic
dynamics, in particular the dynamics of an important - "Ik gk
guantity, namely atomic inversion. The atomic inversion, \ J ' |
which is introduced as the fikerence between the

Atomic inversion

excited-state and ground-state probabilities, may be o 1 - : ' h '

defined as follows31,32):

W(t) = p3z—p11, (37)

where Fig. 2: Atomic inversion in terms of the scaled tim#, (a)g(n) =
O : o 1, (0)g(n) =n, (€)g(n) = Vn+v,v=3,4 =7/7,6 =0, when the

pij = Z(nllh,b)(l//ln“), 1,]=1,234 (38)  atom and field are assumed to be initially in an superpositiate
n=0 and in a coherent state wifh|? = 25 respectively. The left plots

In what follows, we shall study numerically the c_orrespond to the influgnce of intensity dependent cou;jmr_mg
influence of the intensity dependent coupling on thefXed p (b =2) and the right plots show thefect of the atomic
dynamical behavior of the atomic inversidk(t), given motion and field-mode structure by consideripg: 2 ( dashed
by Eq37 are shown in Fig.2 for dierent atomic motion '"€)- andp =6 (solid line).
states and dlierent field-mode structure parametpr
Fig.2a(left plots) displays the case when the atomic
motion is not taken into accour; = 2, p2 = 0, while

Fig.2a(right plots) illustrate the Casges when the atom is "Wwhere P(n) is the distribution function for the coherent

moEog aE 2the _vzlocny v t'_ M Trzor bparar?eter field. It is important to mention that the mean photon
P1=0,p2 =2, P2 =0, TESPECUvely. 1ne above Ngures ,,, nper js ysed to investigate the collapses revivals

sho;/vt_that ghg. atomic motlo?thleads” to thffthpe”?d'c. henomenon. Now, we turn our attention to discuss the
evoiution and disappearance ot the collapse of the atoMij, e eyolytion of the mean photon number which shows

inversion. Fig.2b shown that the number of fluctuation are, collapses-revivals phenomenon.

very high (increase of the number of oscillations and . h h luti f1h h b
there is no collapse for the case of fixed motion, but when  F19-3 shows the evolution of the mean photon number

the atom is in motion the atomic inversion shows aagainstascaled.timﬁ..Thelz left plots of this figure s_how
regular oscillations). For the intensity dependent caypli (e influence of intensity time dependent by selecting the
g(n) = v+, Fig.2c shows clearly the collapse-revival fix€d value of the field-mode structure parameier 2.
phenomenon, the atomic inversion leads to increase of th&SO: the éfect of this parameter by consideringferent
periodicity. The base line oW(t) is shifted downward Values ofp in the shape functiori(2) is discussed in the
which means more energy is stored in the field. right plots. We take the nonlinearity functionsg(s) = 1

(no intensity dependence, Fig.3(ajiin) = n (Fig.3(b))
andg(n) = vn+wv (Fig.3(c)). An overview on the mean
photon number distribution in an explicit mann8B8[34].
The left plots of Figs.3(a,b,c), we can see the
collapse-revival phenomena as a nonclassical sign in all
frames of these figures except the right plots of Figs.
3(c)(left plot) which have a regular behavior in scaled
time. The Fig.3(a)(left plot) shown that the collapse and

8 Mean photon number

For any operatof the expectation values are given by
(PMIO¥(t)). For instance, the mean photon number
(A’ (t)a(t)) can be written as

(@& (Ha(t)y = n- ZZ P(N)ya(n—2,1))° (39) revival occurs, and the oscillations decrease g(th) = 1.
n We see that the mean photon evolves periodically and the
-N'Pn n—1.1)72 40 ogcﬂlgnons increases Where'as the amplitude decreases
Zn: (Ml ) (40) with increase in the scaled time. Also, the collapse and
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Mandelparameer
—
B
1
3

24.4 24.4

24.35 24.35

i i ) “Foal fb
é 242 242 g (b) 005 iy || iy
S 2415 ®) 5415 g . v
§ 201 \ s of —% LA |
= 24.05 24.05 I" n: R :n
240 0.2 0.4 0.6 0.8 2An 4 5 ~0.08 1 2 3 a 5
24.4 1] H \
.y ' : i I:
2az({} i < N Iy "
© 2 T R © : gl fire
H i g B ufhh ({1
=3 I,
; R
24, [ 1]
Fig. 3: Mean photon number in terms of the scaled tithen = Fig. 4: The time evolution of the Mandel Q- parameter in terms of
20,¢ =n/2,0 = n/3, for chosen parameters similar to Fig. 2. the scaled timealt, ¢ = /2, 8 = , for chosen parameters similar

to Fig 2.

revival phenomenon is very obvious, and the oscillations e )
disappear very fast away in aa short time, SeeV\/.here.<aT(t)a(t)> is the photon number Operator which
Figs.3(b)(left plot). The right plots of Figs.3(a,b,c),ish  givenin 39), and

have a regular behavior in scaled time. In general, ia2 == 2

comparing Figs.3(a) and Figs.3(c) indicates that intgnsit (@87 =n(n+ 1)+4Z(n— DPalys(n =291+

time dependentfiect causes a decrease in the maximum "

values of mean number of photons (the same situation is Z(l— 2n)Prlya(n- 1,12 (42)
observed in Figs.3(a) and 3(c)). In the nonlinear case, n

when the intensity time dependent are present, the We examine the féects of the intensity dependent
collapse-revival phenomenon is clearly occurred, forcoupling on the temporal evolution of the Mandel
g(n) = vn+v, p = 2, in the right plots of Figs.3(c) the Q-parameter in Figs.4 for single photon processes. The
collapses are longer and the overlap of the succeedingehavior can be seen in the left plots of Fig.4(a) for the
revivals is weaker, but fop = 6 the collapses are shorter fixed motion case with g(n) = 1, shows the
and the overlap of the succeeding revivals is strong, seguper-Poissonian statistics of field as a long collapsd at al
right frames of (b) and (c)in Fig.3. times. But, from the right plots of Fig.4(a), where the
intensity-dependent coupling is present, we observe that
the Mandel parameter is always positive, the right plot of
Fig.4(a), shows the full super-Poissonian statistics dd fie
at all times (solid line).

The behavior can be seen in the right plots of Fig.4(b)

Q-Mandel parameter measures the departure of théor the motion case witlg(n) = n. But, from the left plots
occupation number distribution from Poissonian statistic of Fig.4(b), where the intensity-dependent coupling is
It was introduced in quantum optics by L. Mand8$]. It present, we observe that the Mandel parameter is always
is a convenient way to distinguish non-classical statesRabi-oscillations. Also, the right plot of Fig.4(b), whigh
with negative values to illustrate a sub-Poissonianplotted for p; = 0, p2 = 2,6, shows that, the
statistics, which have no classical analog. It is defined asntensity-dependent coupling remove the sub-Poissonian
the normalized variance of the boson distribution: statistics parts of the field.

Forg(n) = v¥n+u, in the left plots of Fig.4(c), Mandel
parameter varies between positive and negative values,
which means that the photons display super-Poissonian or
sub-Poissonian statistics forfidirent intervals of times,

9 Q-Mandéd parameter

(@mam? - @' man?

) = @ Oa) ’

(41)
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alternatively. Typical collapse-revival phenomenon is The reduced density matrix of the atom required for
clearly seen for all the time in left plots of Fig.4(c). evaluating44) is given by:
Moreover, the possess a periodic behaviour in right plots
of Fig.4(c) leads to the observation of the collapse and
revivals which are a nonclassical feature. P33 P34 P32 P31

— _ | P43 P44 P42 P41
pa=TrelPOXEOI=| s 22 po1 (45)

P13 P14 P12 P11

10 Field Entropy

The quantum dynamics described by the Hamiltonign ( The matrix in Eq.45) are given, for instance, by
leads to an entanglement of the atomic system (field and

atom). Quantum mechanically, the entropy is defined by:

S=-Tr(plnp). 43)  piy= Z Palya(n.t)2,
n=0

where p is the density operator for a given quantum .
p22 = Z Paly2(n. b2,
n=0

SN p33 = Z plya(n—2,1)1%,
" n=0

°
MR

Field entropy
°
@
g

AT paa = Palya(n—LYP,
o LN i p n=0

— : g o
; . p12= ) paya(ntys(nb),
" Wﬁ 4 ) n=0
MMWW z -

R (6) :

°

o
5
N
3
»
"
8
o
N
o
@
5

Field entropy

P13 = Z On-20h1(N—2,t)y5(n-2,1),
n=0

o)

pra= ) GnaGua(n—LOys(n- 1),

.
W p23 = Z On-20n¥2(N—2,t)y3(n-2,1),
n=0

p24= ) Gr-1Gp2(n—LOys(n- 1Y),
n=0

Field entropy

Fig. 5: The Field entropy in terms of the scaled tinig n = 20, 034 = anq;_l¢3(n - 1,t);02(n— 1t), (46)
¢ =n/2;0=n/3, for chosen parameters similar to Fig.2. n=o

where in all of the above relation®, = |gn? is the

distribution of the initial radiation field, and1, ¥, ¥3

andy4 are the atomic probability amplitudes derived in

(19). Since the trace is invariant under a similarity

! ! transformation, we can go to a basis in which the density

;::guf;fr;g;’ Saptoirgl(;ni?érogg r/; Sz“gafgcu#att'ﬁg ggrtlrs]iety matrix of the field i§ diagonal and we can express the field
: entropy Sg(t) in terms of the eigenvalues

operatorp represents a pure state, th8n= 0, gnd if it (j)(t) " _ 123 4 of the reduced densitv operator. For the
represents mixed state thé 0. The entropies of the Y¢ (Y- =149 y op :

atom and the field, when analyzed as a separate systerfonsidered atomic system the eigenvalues of the density
are defined through the corresponding reduced densitf'@trix (45) are the four roots of the following equation:

operator by

SarF) = —TraE)(eaF) InpaE))- (44) Y+ Roy>+R1y*+Roy+R3 =0, (47)

system with Boltzmans constant is equal to 1. § is the
entropy of the composite system aBigr) is the entropy

of the atom (field), these the entropies satisfy the
inequalities |Sa — SF| < S < |Sa + SE| [36,37]. We
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where well as quantum information 3B] However, the
__ appearance of entanglement in the interaction between
Ro (p11+p22+p332+p.44)’ field and matter in a cavity is of special interest, in which
Ri = Z[ijpkk—|,0jk| Li<Kk the atom field interaction produces the entangled state.
i The purityP(t) of the system Can be used as a good a tool
R, = 12 . _ designed to give information about th_e entanglement of
2 ; ‘,p jilowel ; (p jipupee = [p12p23031 the components of the system. For this reason we devote
) ! h the present section to discuss the purity of the system
012024041+ P13034041 + p23p3spaz + C], under consideration. The purity of the field state can be
R3 = p11022033044+ Z ojjlokepemomk + h.c] determined from the quantity39, 40|
e P(Y) = Tr(e(V). (49)
+ Z loikl“loeml wherep is the field-reduced density matrix. A necessary
j<kst<m and stficient condition for the ensemble to be described
_ Z ijpkk|,0€m|2— (12023034041 + in terms of a pure state |s'th'§1r(p2(t) = 1 in FhIS case
j<izt2m clearly a state-vector description of each individual eyst
. ; >
12024043031+ Pr303apazpa1+ h.d]. (48) of the ensemble is possible. For the c@séo“(t) < 1, the

field will be in a statistical mixture state. From Equation
It is worth to mention that the four roots of7) are (45), it is easy to show that
given as shown previously by using MATHEMATICA

program. P(t) = p3,+ 05+ P53+ 054+ 2l012° + 2lp13°
Fig.5 shows the time evolution of the field entropy +2/p141° + 2/p23° + 2|p24)° + 2|p34)°.
against the scaled tim# for the initial mean number of (50)

photons fixed atn = 25. These plots illustrate the
influences of intensity-dependent coupling by considering
some particular operator-valued functions and atomic
motion together with field-mode structure by considering ) )
different values op in the shape functiorii(z). when the o FAY
atomic motion is not taken into consideration, the - '
evolution of the field entropy is not periodical (see ; om0
Fig.5(a,b,c)(left plots). Fig.5(a,b,c)(right plots) debes os ol by
the influences of the atomic motion and the field-mode o IR
structure on the dynamic properties of the field entropy.
These figures illustrate that the atomic motion leads to the
periodic evolution of the field entropy, and an increase in
parameter p results in not only decreasing of the
evolution period of field entropy but also shortening in the
amplitude of the field entropy. All these characteristics
can be returned to the change in the atom-field interactiot
time due to atomic motion. This is due to théfdrence of
the field entropy parameters between the two cases il
which the atomic motion is neglected and taken into
account results from the time factor. The time factor is the

purity

Purity
i

oo

Purity
°

scaled timeit when the atomic motion is neglected, and o ot 11 1B b »
is w() when the atomic motion is Taken into o owe bl Ul Und bl W) U
consideration, we haveo(t) = %[l — cos(pat)]. It is o R E e e M e

observed thatiw(t) is a periodical function, this
periodicity leads to the periodicities of evolution of the

field entropy. Fig. 6: The purity in terms of the scaled tim¢, ¢ =n./4,6 = /4,

for chosen parameters similar to Fig 2.

11 Purity

From (0), the purity can range between zero,
Entanglement is one of the most essential characteristicsorresponding to a completely pure state, and é])
of the quantum mechanical systems which plays ancorresponding to a completely mixed state (here, d is the
important role within new information technologies. dimension of the density matrix). Based on the analytical
Also, It's important to resource in many interesting solution in the previous section, we shall examine the
applications in fields related to quantum computation asevolution in time of the purity.
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We have plotted the purity in Figs.6(a,b,c) against the : "y

scaledt for both the atomic and field subsystems for os N AT :
some chosen parameters, in Fig.6a(left plot) correspond ol 1 ""'. i
to the fixed motion, shown that irregular oscillatory o @ e A Y

behavior for the time evolution of the purity, it is obvious IR
that the purity of the system pulled down compared with
the dfect ofg(n) we set three dierent values of intensity
coupling Fig.6ag(n) = 1, Fig.6b g(n) = n, Fig.6¢c
g(n) = vn+wv, with all other parameters, we notice that
the purity becomes unstable and less thah, o, the w
field is in statistically mixed state.

Fig.6(a,b,c)(right plots) displays the case when the
atomic motion is taken into accoupt = 0,pz = 2. The o 0z o4 08 os 1

purity have regular and periodic oscillations when the

g(n) = 1 see Fig.6a (right plot) the purity takes its o0 -t Al
maximum value (solid line), so we arrive to pure state, it ool '.: "
is reach to disentanglement. But fps = 6 (dashed line) e R a
the purity to go down to &, we show that by an increase s S 0 PO I Y
in P, the intervals of time will be shorter in which the N SN o B0 8 B N 1 B 5

entanglement between atom and field remains nearly at its

minimum value.
Fig. 7: The Fidelity in terms of the scaled timé, n= 25, ¢ = 0;
0 = /3, for chosen parameters similar to Fig 2.

12 Fidelity

The concept of the fidelity emerge from the mathematical

mixed state can be represented as a subsystem of a pufgy a7(right plots) and Fig.7c(right plots), its can bersee
state in a larger Hilbert space. The entanglement of a purgom the figures the fidelities of quantum state of the
state may cause the states of subsystems to be mixed. TRgstem, the evolutions of fidelity give more regular

preserves the entanglement. In this section, we calculatgng the amplitude equal to 1 fg(n) = Vn+v.
the fidelity which plays the role of the transition between

a pure state|¥(0)) and the state described by
o) = [PX{H)P(Y)]. This is equal to the square root of the
overlap between the stat#(0)) and the state defined by
p(t). The fidelity is given by the form431,?],

13 Squeezing: normal and higher orders

In quantum optics, squeezing phenomenon is describes by
decreasing the quantum fluctuations in one of the field

F(t) = \KZO)p®Z(0)) = KZO)Z(D), 51 quqdratures with an inprease in the correqunding
® (OO (O) = KFONF(O) (1) conjugate quadrature. This parameter has been defined in

The evolutions of the fidelities are plotted as functionsvarious ways. As some examples, one may refer to
of scaled timett following. It can be seen from the figure first-order and higher-order squeezing. We define the
that the time evolutions of fidelities are more following Hermitian operators:
complicated. Fig.1 presents fidelity for threeffdient __ 1 e
values of intensity dependent couplig(n). Forg(n) = 1 X = 5(5k+aT ),
the time evolutions of fidelity of quantum information 1
obviously show the quantum collapse and revival in theyi = —.(ék—’di),kz 1,2,3,.. (52)
system, and the fidelity decreases gradually. It means that
the distortion increases gradually. With then) = n, the ~ Wherek indicates the order of squeezing of the radiation
evolution of the fidelities shows the irregular oscillaipn ~field. Itis worth noticing that higher order squeezing may
and amplitude of them shows more or less decrease)e generated in higher-order harmoni8|[
implying that the quantum state fidelity is modulated by
the initial field of number state. However, the nature that
the evolutions of fidelity forg(n) = vn+wv, exhibit 14 Normal (quadrature) squeezing
oscillations with equiamplitude as is observed, the figelit
can become unity or approximately unity at some properSettingk = 1 in (52), the X; andY; quadratures obey the
values of time. So, the fidelities are better than those forommutation relation X1,Y1] = i/2. Consequently, the
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uncertainty relation for such operators reads 4% )?

(AY1)? > 1/16, where(4Zy)?) = (Z2) - (Z1)? andZ1 = X1 o

or Y1 and @Xi) and @Yi) are the uncertainties in the gm - |om) " p {( n+m, )yt (n,t) +
quadrature operators; and Yi, respectively. A state is Zn: (vl Wiy
squeezed iy (Y1) if (4X1)? < 0.25 or (UY1))? < 0.25),

or equivalently by defining Yo(n+m, t)lﬂZ(n,t))
iy =D eme2.tuim-2.0
SY = 4(x)* - 1,8 = 4(av1)’ - 1, (53) (n+m)(n+m- 1)1//3 A ’
R TCURL DGR t)}, (55)

squeezing occurs iK1(Y1) component respectively if
1< S§<1) <0 (1< Sf(l) < 0). So the parameters in (12) where(//j‘7 denotes to the conjugate ¢f;. From the above
sometimes have been called the normali_zed squeezingqumiOn the average values for the opera@randar?
parameters. These parameters can be rewritten as: can be obtained by putting = 1 andm = 2, respectively.
Also, it is well known that@™) is the conjugate ofa™).
Fig.8 shows the temporal behavior of the normal

Sg(l) = [2(@1*’@ +(8%)+@"? - (@ + (éﬁ))z], squeezing in .x-component fixed motion (left plots) and in
x-component for motion case (right plots) in the nonlinear
s® = [2(@6@1) —@) - (a"?)+ (@) - (;;ﬁ))z]_ (54)  caseg(n) = 1,g(n) = nandg(n) = VYn+v. Frames (a) and

(b) have been plotted for one photon process, respectively.
We can see from this figure that, the squeezing exists in
the x; quadrature. Also, with comparing the left plots of
Fig.8 one observes that, in addition to the fact that, in the
single-photon process the system is always quadrature
squeezed, the depth of squeezing is small. It should be
noticed that, according to our further calculations,
. generally, there is squeezing in the quadratxieandy;

AR EY A FLEH L for the linear casg(n) = 1 and also fog(n) = n.

where(a'a)y has been given byag).

s

P 15 Summary and Conclusion

In this paper we studied the interaction between a
four-level atom with a single-mode cavity field. Involving
intensity dependent coupling, Fortunately, the wave
function for the atomic system oi -configuration is
obtained when the atom is initially prepared in the excited
state, the field is initially prepared in a coherent state. We
investigated the atomic inversion, field entropy, Mandel Q
parameter, mean photon number and normal squeezing as
the most favorite nonclassicality features. Even though
our formalism can be used for any nonlinearity function,
we particularly have chosen the nonlinearity functign)
for our numerical calculations. The obtained results can
be summarized as follows: The temporal evolution of
field entropy, Mandel parameter, mean photon number
and normal squeezing are sensitive to intensity-dependent
Fig. 8: The normal squeezing in terms of the scaled tithen= ~ coupling . The maximum value of the degree of
20,¢ = n1/2;0 = n/3, for chosen parameters similar to Fig.2. entanglement measurement for the linear regime
(g(n) = 1) is greater than the nonlinear regingén) = n).
Indeed, entering this nonlinearity function reduces the
degree  of entanglement  measurement. The
intensity-dependent couplingffected on the quantum
For simplicity, we obtain the expectation value in the statistical behavior of the atom-field state and changed to
general form of the field operata, for the model inthe a full sub-Poissonian statistics for the single-photon
following form: process. Also, typical collapse-revival, as a nonclassica

S

(1)
5
°
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behavior is seen. The time evolution of the mean photor{22] A.-H. M. Ahmed, L. Y. Cheong, N. Zakaria, N. Metwally

number shows the collapse-revival phenomenon as a
nonclassicality sign of the considered system. There is

and H. Eleuch, AIP Conference Proceediig82, 373-375
(2012).

normal squeezing in the linear case and also nonlineal23] M. S. Abdalla, M. M. Nassar: Ann. Phy824, 637 (2009).
case in the presence of intensity-dependent coupling. ThE4] W. H. Louisell: Coupled Mode and Parametric Electrsnic

depth of the squeezing in the quadratX¢eis smallers
with the single-photon process. Finally, as well as
different initial atom and radiation field states. Clearly our
presented results are limited to the choggn) for the
intensity dependent regime. Obviously, selecting oth
nonlinearity functions may lead to new and perhaps mor
interesting conclusions which can be done else where.
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