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Abstract: The interaction between a moving four-level atom and a single-mode cavity field are discussed in the presence of intensity
dependent atom field coupling. For this purpose, we first demonstrate the feasibility of the effective Hamiltonian and evaluate the
explicit time-dependent form of the state vector of the whole system by choosing special initial conditions for atom, field. Considering
the field to be initially in a coherent state, and the atom is initially prepared in the excited state. The wave function is obtained in three
different cases: resonance case, off-resonance case, finally we obtained it in the general form. We study the nonclassical features of
the system such as Atomic inversion, Filed entropy, purity,Fidelity, Mandel Q-parameter, Mean photon number and normal squeezing.
The results show that, The temporal evolution of field entropy (entanglement), Mandel parameter, mean photon number andnormal
squeezing are sensitive to intensity-dependent coupling,which changes the quantum statistical behaviour of the atom-field state to a
full sub-Poissonian statistics. Finally, conclusions andsome features and comments are given.
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1 Introduction

Interaction of a two-level atom with a radiation field is the
simplest problem in matter-radiation coupling. A model
for the interaction, introduced by Jaynes and Cummings
[1]. This model was generalized to describe The
interaction model between a four-level atom and a single
quantized mode of a radiation field, when the rotating
wave approximation (RWA) considered [2,3,4,5,6].
There exists a theoretical motivation to include atomic
motion effect to JCM, [7,8,9] have treated the JCM in the
presence of atomic motion, by the use of analytic and
numerical calculations.

On the other hand, we find that the most important
problems in quantum optics are the studies of different
systems interaction such as field-atom, atom-atom and the
field-field [13,10]. One of the main consequences of the
above interactions is the appearance of the entanglement
[11,12]. Entanglement is a major supplier that
distinguishes a key distinguishing element of quantum
information theory from the classical one. Quantum

entangled states, as a fundamental physical resource of
quantum computation and quantum communication [14],
quantum information processing [15,16,17], quantum
cryptography [18,19]. There is a lot of attention we may
focus on information entropies as a measure of
entanglement in quantum information such as von
Neumann entropy. The time evolution of the field entropy
shows the degree of entanglement measurement;

In fact, Dynamics of a four-level atom interacting
with a single mode of the radiation field in a lossless
cavity has been discussed in detail from various points of
view [20,21,22], and it has been generalized or extended
further to incorporate the effects of the atomic motion and
the field mode structure [23,24].
Schlicher and Joshi [23] have investigated the influences
of the atomic motion and the field-mode structure on the
atomic dynamics. To get a new insight into the relation
between quantum entanglement of the atom-field system
and nonclassicality of the light field, it is useful to
investigate the atom-field entanglement under the
nonclassical environment.
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We aim at extending the previously cited treatments to
study the problem of a four-level atom in the consider
configuration interacting with a single-mode field, in the
presence of the intensity-dependent coupling, to
investigate the properties of the degree of entanglement of
the above mentioned systems from the view point of the
Phoenix-Knight [25,27,26]. In this paper, while we refer
to our earlier work [28], we have been studied the
interaction between a four-level atom in our consideration
model with a single mode field under multi-photon
process with additional forms of nonlinearities of both
field and atom-field coupling. has been studied in . Here,
we study a moving atomic system of a four-level atom
coupled to one mode electromagnetic cavity field in the
presence of the intensity-dependent coupling,. We
describe the Hamiltonian and derive the constants of
motion. Also, this generalization takes into account the
multi-photon processes. We derive the general form of the
probability amplitudes for the considered system.
Consequently, in this paper, after we have the exact
analytical solution of the entire state vector of the system,
We will experience the effects of the intensity-dependent
coupling, on the time evolution of atomic inversion, field
entropy, Q-Mandel parameter, mean photon number and
normal squeezing. In this work, we observed that The
temporal evolution of field entropy (entanglement),
Mandel parameter, mean photon number and normal
squeezing are susceptible to intensity-dependent
coupling, which changes the quantum statistical
behaviour of the atom-field state. Finally, we summarize
our results.

2 Description of the model

In quantum mechanics, the most important step in
studying any physical system is the construction of an
appropriate Hamiltonian of the system. This goal is
achieved by an exact view on the existing interactions
between subsystems. Then, by solving the
time-dependent Schrödinger equation, one may find the
dynamical state of the system under study. Possible
information arises from the wave function of the system.

The assumed model contains, in fact, three three-level
subsystems with a common fourth level, one can
distinguish here two subsystems in the ladder
configuration (levels 1-4-3 and 2-4-3) and one subsystem
in the lambda configuration (1-4-2) [28], (see Fig.1). Let
us consider a model in which the single-mode
electromagnetic field which oscillates with frequencyΩ
in an optical cavity interacts with a four-levelλ-type atom
an intensity-dependent coupling regime in an optical
cavity field, when the coupling constants are equal. The
atomic levels are indicated by|1〉, |2〉, |3〉 and |4〉 with
energies ω3 > ω4 > ω2 > ω1, where the allowed
transitions are|3〉 ←→ |4〉 and |4〉 ←→ |1〉(|2〉). and the
transition|2〉 ←→ |1〉 is forbidden (this assumption means

that the atomic states|1〉 and|2〉 have the same number of
photons).
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Fig. 1: The scheme for the considered atomic system

Also, we assume that the atom moves in the cavity
and the atom-field interaction depends on the intensity of
light. Based on the JCM formalism, as the full quantum
mechanical approach to the problem, our proposed model
can be appropriately described by the Hamiltonian (with
h̄ = 1)

Ĥ =
4∑

j=1

Ŝ j j +Ωâ†̂a+λ f (z)
[
(ℜ̂Ŝ 41+ ℜ̂†Ŝ 14)+

(ℜ̂Ŝ 42+ ℜ̂†S 24)+ (ℜ̂Ŝ 34+ ℜ̂†S 43)
]
, (1)

where Ŝ j j are the population operators satisfying the
following commutation relations:

[Ŝ ab, Ŝ cd] = Ŝ adδbc− Ŝ cbδda, [â, Ŝ ab] = [â†, Ŝ ab] = 0. (2)

whereδda is the Kroneker symbol and̂S ab|b〉 = |a〉. Else,
â, â† are respectively the bosonic annihilation and creation
operators of the cavity field which satisfying the canonical
commutation relation [ˆa, â†] = 1 while [â, â] = [â†, â†] = 0,
λ is the atom-field coupling constant, andω1, ω2, ω3 and
ω4 are the atomic energies of the level|1〉, |2〉, |3〉 and|4〉,
respectively. Also, the deformed operatorsℜ̂ andℜ̂† have
been defined as:

ℜ̂ = âg(n̂) = g(n̂+1)â,ℜ̂† = g(n̂)â† = â†g(n̂+1). (3)

with n̂ = â†â as the number operator of the harmonic
oscillator. Using the well-known Weyl-Heisenberg Lie
algebra corresponding to the operators ˆa, â†, n̂ and the
unity operator Î, plus the fact that the operator ˆn
commutes with the arbitrary function of itself,g(n̂), the
following communication relations clearly hold:

[ℜ̂,ℜ̂†] = (n̂+1)g2(n̂+1)− n̂g2(n̂),

[ℜ̂, n̂] = ℜ̂, [ℜ̂†, n̂] = −ℜ̂†. (4)
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where g(n̂) is considered to be a Hermitian
operator-valued function responsible for the
intensity-dependent atom-field coupling. The influence of
atomic motion in the model has been entered by the shape
function f (z). In view of the successful
microwave-type-cavity-QED experiments as discussed
above, we restrict the atomic motion along the cylindrical
axis (e.g. thez-axis) of the cavitym so that only thez
dependence of the cavity mode function needs to be
considered. The atomic motion would be incorporated as
[29]

f (z) 7−→ f (νt) = p1+sin(
p2πνt

L
), (5)

whereν denotes the atomic motion velocity,p1 andp2 are
the atomic motion parameters well, if we putp1 = 2 and
p2 = 0, then the shape function takes the form

̟(t) =
∫ t
0 ( f (νt́))dt́ = 2t, (6)

which means, there is no atomic motion inside the cavity,
but if p1 = 0 andp2 = p, wherep represents the number
of half-wave lengths of the field mode inside a cavity of
lengthL, the shape function for a particular choice of the
atomic motion velocityν = gL

π
will be

̟(t) =
∫ t
0 ( f (νt́))dt́ = 1

pλ [1−cos(pλt)]. (7)

In order to obtain the state vector of the system, it should
be suitable to rewrite the Hamiltonian (1) in the interaction
picture,

ĤIN = eiĤ0tĤIe
−iĤ0t, (8)

which results in

ĤIN = λ f (z){â(e−i(∆1t)Ŝ 41+ e−i(∆2t)Ŝ 42+ e−i(∆3t)Ŝ 34)+

h.c}, (9)

where∆1, ∆2, and∆3 are the detuning parameters and have
been defined as

∆1 = ω1−ω4+Ω,

∆2 = ω2−ω4+Ω,

∆3 = ω4−ω3+Ω. (10)

In what follows, we mind to derive the wave function
of the model under consideration by using the
time-dependent Schrödinger equation.

3 The wave function of the model and its
solution

To obtain the explicit form of the wave function of the
whole system, we solve the time-dependent Schrödinger
equation

i
∂

∂t
|Ψ (t)〉 = ĤIN |Ψ (t)〉. (11)

For the assumed system, the wave function at any timet
can be written in the following form:

|Ψ (t)〉 =
∑

n

qn

[(
ψ1(n, t)|1〉+ψ2(n, t)|2〉

)
⊗ |n〉

+ψ3(n−2, t)|3,n−2〉+ψ4(n−1, t)|4,n−1〉
]
, (12)

whereqn is the number-state expansion coefficientsqn =

〈n|ΨF(t = 0)〉, for coherent state

qn = e−
|α|2
2

αn

√
n!
, (13)

where|α|2 is the mean photon number in the initial state,
α = |α|exp(iη), whereη is the initial phase angle of the
coherent field. Also,ψ1(n, t), ψ2(n, t), ψ3(n − 2, t) and
ψ4(n− 1, t) are the atomic probability amplitudes which
have to be determined.

The equations of motion for the probability
amplitudes are obtained by substituting|Ψ (t)〉 from (12)
and ĤIN from (9) in the time-dependent Schrödinger
equation (11). Consequently, one arrives at the following
four first-order coupled differential equations:

i
d
dt



ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)



=



0 0 0 f1eiδ1

0 0 0 f1eiδ2

0 0 0 f2e−iδ3

f1e−iδ1 f1e−iδ2 f2eiδ3 0





ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)



(14)

where

δs = ∆st, (s = 1,2,3),
f1 = λ

√
ng(n̂) f (z), f2 = λ

√
n−1g(n̂−1) f (z).

(15)

We started by investigation the solution of the system
(14). Let us suppose an atom takes place in the interaction
to be prepared in a coherent superposition of its ground
|1〉 and intermediate|4〉 states [30]. Thus, the initial state
|ΨAF(t = 0)〉 of the combined atom-field system may be
written as

|ΨAF(t = 0)〉 = |ΨA(t = 0)〉⊗ |ΨF(t = 0)〉. (16)

where|ΨA(t = 0)〉, the initial state of the atom and|ΨF(t =
0)〉, is the initial state of the field. So, the initial state is
given by

|ΨAF(t = 0)〉 =
∞∑

n=0

qn
[
(cos(θ)|1,n〉+

sin(θ)eiφ|4,n+1〉)], (17)
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whereθ ∈ [0,π] denotes the coherence of the two level
andφ ∈ [0,2π] is the relative phase between the upper and
lower states of a two-level atom. It is clear that when the
atom is initially prepared in its ground (intermediate)
state|1〉 (|4〉), the value of the angleθ equal 0 and (π/2).
Now, we will resolve the above system in the three
different cases as follow.

4 The solution in the resonance case

In this case, we assume that the cavity eigenfrequency is on
resonance with the atomic transition frequency i.e., (∆s =

0). Under the initial condition (17), the previous system
(14) can be written as:

i
d
dt



ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)


=



0 0 0 f1
0 0 0 f1
0 0 0 f2
f1 f1 f2 0





ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)


(18)

After some lengthy but simple manipulations, the
probability amplitudesψ j(t) (specifying the explicit form
of the state vector of whole system) may be found in the
form

ψ1(n, t) = ℘1+℘2cos(Ft)+℘3sin(Ft),
ψ2(n, t) = o1+o2cos(Ft)+o3sin(Ft),
ψ3(n−2, t) = ς1+ ς2cos(Ft)+ ς3sin(Ft),
ψ4(n−1, t) = ℵ1cos(Ft)+ℵ2sin(Ft),

(19)

where

F =
√

2 f 2
1 + f 2

2 .

℘1 =
1

F2
( f 2

1 + f 2
2 )cos(θ)),

℘2 = cos(θ)− 1

F2
( f 2

1 + f 2
2 )cos(θ),

℘3 = (
−i
F

) f1exp(−iφ)sin(θ),

o1 =
−1

F2
( f 2

1 cos(θ)), o2 = −o1,

o3 = ℘3,

ς1 =
−1

F2
( f1 f2cos(θ)), ς2 = −ς1,

ς3 = = (
−i
F

) f2sin(θ)exp(−iφ),

ℵ1 = sin(θ)exp(−iφ),

ℵ2 = (
−i
F

) f1cos(θ). (20)

5 The solution in the off-resonance case

In this case, we assume that the cavity eigenfrequency is
off-resonance with the atomic transition frequency i.e.,
(∆s = ∆). To obtain an analytical solution for the coupled
ordinary differential equations (14), we will use the same

previous technique in the on resonant case, and after
minor algebra, one can obtain the probability amplitudes
ψ j(t) in the following form

ψ1(n, t) =
−i(∆2)3γ1+ (∆2)2γ2+ ( i∆

2 )γ3−γ4

(x1+
i∆
2 )(x2+

i∆
2 )(x3+

i∆
2 )

+{
x3

1γ1+ x2
1γ2+ x1γ3+γ4

(x1+
i∆
2 )(x1− x2)(x1− x3)

}exp(x1+
i∆
2

)t

+{
x3

2γ1+ x2
2γ2+ x2γ3+γ4

(x2+
i∆
2 )(x2− x1)(x2− x3)

}exp(x2+
i∆
2

)t

+{
x3

3γ1+ x2
3γ2+ x3γ3+γ4

(x3+
i∆
2 )(x3− x1)(x3− x2)

}exp(x3+
i∆
2

)t (21)

ψ2(n, t) = {
(−i∆

2 )2α1+ (−i∆
2 )2α2+α3

(−x1− i∆
2 )(−x2− i∆

2 )(−x3− i∆
2 )

+{
x2

1α1+ x1α2+α3

(x1+
i∆
2 )(x1− x2)(x1− x3)

}exp(x1+
i∆
2

)t

+{
x2

2α1+ x2α2+α3

(x2+
i∆
2 )(x2− x1)(x2− x3)

}exp(x2+
i∆
2

)t

+{
x2

3α1+ x3α2+α3

(x3+
i∆
2 )(x3− x1)(x3− x2)

}exp(x3+
i∆
2

)t, (22)

ψ3(n−2, t) = {
(−i∆

2 )2β1+ (−i∆
2 )2β2+β3

(−x1− i∆
2 )(−x2− i∆

2 )(−x3− i∆
2 )

+{
x2

1β1+ x1β2+β3

(x1+
i∆
2 )(x1− x2)(x1− x3)

}exp(x1−
3i∆
2

)t

+{
x2

2β1+ x2β2+β3

(x2+
i∆
2 )(x2− x1)(x2− x3)

}exp(x2−
3i∆
2

)t

+{
x2

3β1+ x3β2+β3

(x3+
i∆
2 )(x3− x1)(x3− x2)

}exp(x3−
3i∆
2

)t (23)

ψ4(n−1, t) = {
(−i∆

2 )3ξ1+ (−i∆
2 )2ξ2+ (−i∆

2 )ξ3+ ξ4

(−x1− i∆
2 )(−x2− i∆

2 )(−x3− i∆
2 )
}

exp(−i∆t)

+{
x3

1ξ1+ x2
1ξ2+ x1ξ3+ ξ4

(x1+
i∆
2 )(x1− x2)(x1− x3)

}exp(x1−
i∆
2

)t

+{
x3

2ξ1+ x2
2ξ2+ x2ξ3+ ξ4

(x2+
i∆
2 )(x2− x1)(x2− x3)

}exp(x2−
i∆
2

)t

+{
x3

3ξ1+ x2
3ξ2+ x3ξ3+ ξ4

(x3+
i∆
2 )(x3− x1)(x3− x2)

}exp(x3−
i∆
2

)t (24)
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with

xκ = −
1
3
δ1+

2
3

√
δ2

1−3δ2cos
[
Θ+

2
3

(κ−1)π
]
,

κ = 1,2,3.

Θ =
1
3

cos−1
[9δ1δ2−2δ3

1−27δ3

2(δ2
1−3δ2)

3
2

]
. (25)

and

δ1 = −3(i∆/2), δ2= (
∆

2
)2+2 f 2

1 + f 2
2 ,

δ3 = i
[
∆

2
f 2
2 −3∆ f 2

1 −3(
∆

2
)3
]

(26)

also

γ1 = cos(θ),

γ2 = −i
{
3(∆/2)cos(θ)+ f1sin(θ)e−iφ

}
,

γ3 =

(
f 2
1 + f 2

2 + (∆/2)2
)
cos(θ)−∆ f1sin(θ)e−iφ,

γ4 = (i∆/2)
{(

f 2
2 −3 f 2

1 −3(∆/2)2
)
cos(θ)

−3(∆/2) f1sin(θ)e−iφ
}
,

α1 = −i f1sin(θ)e−iφ,

α2 = − f 2
1 cos(θ)−∆ f1sin(θ)e−iφ,

α3 = 3i(∆/2)
{

f 2
1 cos(θ)− (∆/2) f1sin(θ)e−iφ

}
,

β1 = −i f2sin(θ)e−iφ,

β2 = ∆ f2sin(θ/2)e−iφ− f1 f2 cos(θ/2),

β3 = i(∆/2)
{
∆/2sin(θ)e−iφ− f1cos(θ)

}
f2,

ξ1 = sin(θ)e−iφ,

ξ2 = −i f1cos(θ)− (i∆/2)sin(θ)e−iφ,

ξ3 = (5/4)∆2sin(θ)e−iφ −∆ f1cos(θ),

ξ4 = 3i(∆/2)3sin(θ)e−iφ −3i f1(∆/2)2cos(θ) (27)

6 The general solution

On the other hand, in the non-resonance case (∆r , ∆), By
assumingψ3(t) = eiµ j t the coupled ordinary differential
equations (14), lead us to the fourth-order algebraic
equation:

µ4+̺3µ
3+̺2µ

2+̺1µ+a0 = 0. (28)

where

̺3 = y1+∆3+∆2, ̺2 = y2+ y1(∆2+∆3), (29)

̺1 = y3+ (∆3+∆2)y2− ǫ f 2
1 , ̺0 = y3(∆2+∆3). (30)

The four roots of the quartic equation (28) are given by
using MATHEMATICA in the following form [54]:

µ1(2) = − ̺3
4 −

1
2

√
(u1/3v2)+ (v2/3)+u2

∓1
2(
√

w2− (w3/4w1),

µ3(4) = − ̺3
4 +

1
2

√
(u1/3v2)+ (v2/3)+u2

∓1
2(
√

w2+ (w3/4w1),

(31)

where
w1 =

√
u1+ (u1/3v2)+ (v2/3),

w2 = 2u2− (u1/3v2)− (v2/3),

w3 = −8̺1+4̺2̺3−̺3
3.

u1 = 12̺ 0+̺
2
2−3̺1̺3,

u2 = (−2̺2/3)+ (̺2
3/4),

v1 = 27̺ 2
1−72̺ 0̺2+2̺3

2−9̺1̺2̺3+27̺ 0̺
2
3,

v2 =

[(
v1+

√
−4u3

1+ v2
1

)
/2
] 1

3
.

(32)

By consideringψ3(t) as a linear combination ofeiµJ t

and after straightforward calculations, we obtain the
probability amplitudes in the form

ψ1(t) =
−1
ǫ f1 f2

4∑

j

C j(µ
3
j + z1µ

2
j + z2µ j + z3)ei(µ j+∆3+∆1)t,

ψ2(t) =
1

ǫ f1 f2

4∑

j

C j(µ3
j + y1µ

2
j + y2µ j + y3)ei(µ j+∆3+∆2)t,

ψ3(t) =
4∑

j

C je
iµ j t,

ψ4(t) =
−1
f2

4∑

j

C jµ je
i(µ j+∆3)t, (33)

with

ǫ = ∆1−∆2,

z1 = 2∆3+∆2,

z2 = ∆
2
3− f 2

2 −2 f 2
1 +∆2∆3,

z3 = − f 2
2 (∆2+∆3),

y1 = 2∆3+∆1,

y2 = ∆
2
3− f 2

2 −2 f 2
1 +∆1∆3,

y3 = −(∆1+∆3) f 2
2 . (34)

where

C j =
ℑ1(µℓ+µk+µm)+ℑ2(µℓk+µℓm+µkm)+ℑ3

µ jℓµ jmµ jk
,

µ jk = µ j −µk, j , k , ℓ , m = 1,2,3,4.
(35)

with

ℑ1 = −
{
∆3 f2sin(θ)e−iφ + f1 f2 cos(θ)

}
,

ℑ2 = − f2 sin(θ)e−iφ,

ℑ3 = −
{

f2(∆2
3+ f 2

2 +2 f 2
1 )sin(θ)e−iφ+ y1 f1 f2cos(θ)

}
.

(36)
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Due to the apparent entanglement feature of the
considered atoms-field system, it is natural to investigate
the amount of this pure quantum quantity at first, the
above calculations can be used to discuss some properties
of the considered system. For achieving to this purpose,
several measures of entanglement have been proposed
such as field entropy, purity, Fidelity and so on, to discuss
the degree of entanglement for the different parts of the
considered system.

7 The Atomic inversion

We are now in a position to examine the atomic
dynamics, in particular the dynamics of an important
quantity, namely atomic inversion. The atomic inversion,
which is introduced as the difference between the
excited-state and ground-state probabilities, may be
defined as follows [31,32]:

W(t) = ρ33−ρ11, (37)

where

ρi j =

∞∑

n=0

〈n|i|ψ〉〈ψ|n| j〉, i, j = 1,2,3,4. (38)

In what follows, we shall study numerically the
influence of the intensity dependent coupling on the
dynamical behavior of the atomic inversionW(t), given
by Eq.37 are shown in Fig.2 for different atomic motion
states and different field-mode structure parameterp.
Fig.2a(left plots) displays the case when the atomic
motion is not taken into accountp1 = 2, p2 = 0, while
Fig.2a(right plots) illustrate the cases when the atom is in
motion at the velocity V =

gL
π

for parameter
p1 = 0, p2 = 2, p2 = 6, respectively. The above figures
show that the atomic motion leads to the periodic
evolution and disappearance of the collapse of the atomic
inversion. Fig.2b shown that the number of fluctuation are
very high (increase of the number of oscillations and
there is no collapse for the case of fixed motion, but when
the atom is in motion the atomic inversion shows a
regular oscillations). For the intensity dependent coupling
g(n) =

√
n+υ, Fig.2c shows clearly the collapse-revival

phenomenon, the atomic inversion leads to increase of the
periodicity. The base line ofW(t) is shifted downward
which means more energy is stored in the field.

8 Mean photon number

For any operator̂O the expectation values are given by
〈Ψ (t)|Ô|Ψ (t)〉. For instance, the mean photon number
〈â†(t)â(t)〉 can be written as

〈â†(t)â(t)〉 = n−2
∑

n

P(n)|ψ3(n−2, t)|2 (39)

−
∑

n

P(n)|ψ4(n−1, t)|2, (40)
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Fig. 2: Atomic inversion in terms of the scaled time,λt, (a)g(n)=
1, (b)g(n) = n, (c) g(n) =

√
n+υ,υ = 3, φ = π/7, θ = 0, when the

atom and field are assumed to be initially in an superpositionstate
and in a coherent state with|α|2 = 25 respectively. The left plots
correspond to the influence of intensity dependent couplingfor
fixed p (p = 2) and the right plots show the effect of the atomic
motion and field-mode structure by consideringp = 2 ( dashed
line), andp = 6 (solid line).

where P(n) is the distribution function for the coherent
field. It is important to mention that the mean photon
number is used to investigate the collapses revivals
phenomenon. Now, we turn our attention to discuss the
time evolution of the mean photon number which shows
the collapses-revivals phenomenon.

Fig.3 shows the evolution of the mean photon number
against a scaled timeλt. The left plots of this figure show
the influence of intensity time dependent by selecting the
fixed value of the field-mode structure parameterp1 = 2.
Also, the effect of this parameter by considering different
values ofp in the shape functionf (z) is discussed in the
right plots. We take the nonlinearity functions asg(n) = 1
(no intensity dependence, Fig.3(a)),g(n) = n (Fig.3(b))
and g(n) =

√
n+υ (Fig.3(c)). An overview on the mean

photon number distribution in an explicit manner [33,34].
The left plots of Figs.3(a,b,c), we can see the
collapse-revival phenomena as a nonclassical sign in all
frames of these figures except the right plots of Figs.
3(c)(left plot) which have a regular behavior in scaled
time. The Fig.3(a)(left plot) shown that the collapse and
revival occurs, and the oscillations decrease withg(n) = 1.
We see that the mean photon evolves periodically and the
oscillations increases whereas the amplitude decreases
with increase in the scaled time. Also, the collapse and
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Fig. 3: Mean photon number in terms of the scaled timeλt, n̄ =
20,φ = π/2, θ = π/3, for chosen parameters similar to Fig. 2.

revival phenomenon is very obvious, and the oscillations
disappear very fast away in aa short time, see
Figs.3(b)(left plot). The right plots of Figs.3(a,b,c), which
have a regular behavior in scaled time. In general,
comparing Figs.3(a) and Figs.3(c) indicates that intensity
time dependent effect causes a decrease in the maximum
values of mean number of photons (the same situation is
observed in Figs.3(a) and 3(c)). In the nonlinear case,
when the intensity time dependent are present, the
collapse-revival phenomenon is clearly occurred, for
g(n) =

√
n+υ, p = 2, in the right plots of Figs.3(c) the

collapses are longer and the overlap of the succeeding
revivals is weaker, but forp = 6 the collapses are shorter
and the overlap of the succeeding revivals is strong, see
right frames of (b) and (c)in Fig.3.

9 Q-Mandel parameter

Q-Mandel parameter measures the departure of the
occupation number distribution from Poissonian statistics.
It was introduced in quantum optics by L. Mandel [35]. It
is a convenient way to distinguish non-classical states
with negative values to illustrate a sub-Poissonian
statistics, which have no classical analog. It is defined as
the normalized variance of the boson distribution:

Q(t) =
〈(â†(t)â(t))2〉− 〈â†(t)â(t)〉2

〈â†(t)â(t)〉 −1, (41)
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Fig. 4: The time evolution of the Mandel Q- parameter in terms of
the scaled timeλt, φ = π/2, θ = π, for chosen parameters similar
to Fig 2.

where 〈â†(t)â(t)〉 is the photon number operator which
given in (39), and

〈(â†â)2〉 = n̄(n̄+1)+4
∑

n

(n−1)Pn|ψ3(n−2, t)|2+
∑

n

(1−2n)Pn|ψ4(n−1, t)|2. (42)

We examine the effects of the intensity dependent
coupling on the temporal evolution of the Mandel
Q-parameter in Figs.4 for single photon processes. The
behavior can be seen in the left plots of Fig.4(a) for the
fixed motion case with g(n) = 1, shows the
super-Poissonian statistics of field as a long collapse at all
times. But, from the right plots of Fig.4(a), where the
intensity-dependent coupling is present, we observe that
the Mandel parameter is always positive, the right plot of
Fig.4(a), shows the full super-Poissonian statistics of field
at all times (solid line).

The behavior can be seen in the right plots of Fig.4(b)
for the motion case withg(n) = n. But, from the left plots
of Fig.4(b), where the intensity-dependent coupling is
present, we observe that the Mandel parameter is always
Rabi-oscillations. Also, the right plot of Fig.4(b), whichis
plotted for p1 = 0, p2 = 2,6, shows that, the
intensity-dependent coupling remove the sub-Poissonian
statistics parts of the field.

For g(n) =
√

n+υ, in the left plots of Fig.4(c), Mandel
parameter varies between positive and negative values,
which means that the photons display super-Poissonian or
sub-Poissonian statistics for different intervals of times,
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alternatively. Typical collapse-revival phenomenon is
clearly seen for all the time in left plots of Fig.4(c).
Moreover, the possess a periodic behaviour in right plots
of Fig.4(c) leads to the observation of the collapse and
revivals which are a nonclassical feature.

10 Field Entropy

The quantum dynamics described by the Hamiltonian (1)
leads to an entanglement of the atomic system (field and
atom). Quantum mechanically, the entropy is defined by:

S = −Tr(ρ lnρ). (43)

where ρ is the density operator for a given quantum
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Fig. 5: The Field entropy in terms of the scaled timeλt, n̄ = 20,
φ = π/2; θ = π/3, for chosen parameters similar to Fig.2.

system with Boltzmann,s constant is equal to 1. IfS is the
entropy of the composite system andS A(F) is the entropy
of the atom (field), these the entropies satisfy the
inequalities |S A − S F | ≤ S ≤ |S A + S F | [36,37]. We
calculate the atomic entropyS A but calculation of the
field entropy S F is more Complicated. If the density
operatorρ represents a pure state, thenS = 0, and if it
represents mixed state thenS , 0. The entropies of the
atom and the field, when analyzed as a separate system,
are defined through the corresponding reduced density
operator by

S A(F) = −TrA(F)(ρA(F) lnρA(F)). (44)

The reduced density matrix of the atom required for
evaluating (44) is given by:

ρA = TrF |Ψ (t)〉〈Ψ (t)| =



ρ33 ρ34 ρ32 ρ31
ρ43 ρ44 ρ42 ρ41
ρ23 ρ24 ρ22 ρ21
ρ13 ρ14 ρ12 ρ11


(45)

The matrix in Eq.(45) are given, for instance, by

ρ11 =

∞∑

n=0

pn|ψ1(n, t)|2,

ρ22 =

∞∑

n=0

pn|ψ2(n, t)|2,

ρ33 =

∞∑

n=0

pn|ψ3(n−2, t)|2,

ρ44 =

∞∑

n=0

pn|ψ4(n−1, t)|2,

ρ12 =

∞∑

n=0

pnψ1(n, t)ψ∗2(n, t),

ρ13 =

∞∑

n=0

qn−2q∗nψ1(n−2, t)ψ∗3(n−2, t),

ρ14 =

∞∑

n=0

qn−1q∗nψ1(n−1, t)ψ∗4(n−1, t),

ρ23 =

∞∑

n=0

qn−2q∗nψ2(n−2, t)ψ∗3(n−2, t),

ρ24 =

∞∑

n=0

qn−1q∗nψ2(n−1, t)ψ∗4(n−1, t),

ρ34 =

∞∑

n=0

qnq∗n−1ψ3(n−1, t)ψ∗4(n−1, t), (46)

where in all of the above relations,Pn = |qn|2 is the
distribution of the initial radiation field, andψ1, ψ2, ψ3
andψ4 are the atomic probability amplitudes derived in
(19). Since the trace is invariant under a similarity
transformation, we can go to a basis in which the density
matrix of the field is diagonal and we can express the field
entropy S F(t) in terms of the eigenvalues
γ

( j)
F (t), j = 1,2,3,4 of the reduced density operator. For the

considered atomic system the eigenvalues of the density
matrix (45) are the four roots of the following equation:

γ4+ℜ0γ
3+ℜ1γ

2+ℜ2γ+ℜ3 = 0, (47)
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where

ℜ0 = −(ρ11+ρ22+ρ33+ρ44),

ℜ1 =
∑

j

[ρ j jρkk − |ρ jk|2], j < k,

ℜ2 =
∑

j,k,ℓ

ρ j j|ρkℓ |2−
∑

j<k<ℓ

ρ j jρkkρℓℓ − [ρ12ρ23ρ31

+ρ12ρ24ρ41+ρ13ρ34ρ41+ρ23ρ34ρ42+h.c],

ℜ3 = ρ11ρ22ρ33ρ44+
∑

j,k<ℓ<m

ρ j j[ρkℓρℓmρmk +h.c]

+
∑

j<k<ℓ<m

|ρ jk|2|ρℓm|2

−
∑

j<k,ℓ,m

ρ j jρkk |ρℓm|2− [ρ12ρ23ρ34ρ41+

ρ12ρ24ρ43ρ31+ρ13ρ34ρ42ρ21+h.c]. (48)

It is worth to mention that the four roots of (47) are
given as shown previously by using MATHEMATICA
program.

Fig.5 shows the time evolution of the field entropy
against the scaled timeλt for the initial mean number of
photons fixed at ¯n = 25. These plots illustrate the
influences of intensity-dependent coupling by considering
some particular operator-valued functions and atomic
motion together with field-mode structure by considering
different values ofp in the shape functionf (z). when the
atomic motion is not taken into consideration, the
evolution of the field entropy is not periodical (see
Fig.5(a,b,c)(left plots). Fig.5(a,b,c)(right plots) describes
the influences of the atomic motion and the field-mode
structure on the dynamic properties of the field entropy.
These figures illustrate that the atomic motion leads to the
periodic evolution of the field entropy, and an increase in
parameter p results in not only decreasing of the
evolution period of field entropy but also shortening in the
amplitude of the field entropy. All these characteristics
can be returned to the change in the atom-field interaction
time due to atomic motion. This is due to the difference of
the field entropy parameters between the two cases in
which the atomic motion is neglected and taken into
account results from the time factor. The time factor is the
scaled timeλt when the atomic motion is neglected, and
is ̟(t) when the atomic motion is Taken into
consideration, we have̟ (t) = 1

p [1 − cos(pλt)]. It is
observed thatλ̟(t) is a periodical function, this
periodicity leads to the periodicities of evolution of the
field entropy.

11 Purity

Entanglement is one of the most essential characteristics
of the quantum mechanical systems which plays an
important role within new information technologies.
Also, It’s important to resource in many interesting
applications in fields related to quantum computation as

well as quantum information [38] However, the
appearance of entanglement in the interaction between
field and matter in a cavity is of special interest, in which
the atom field interaction produces the entangled state.
The purityP(t) of the system Can be used as a good a tool
designed to give information about the entanglement of
the components of the system. For this reason we devote
the present section to discuss the purity of the system
under consideration. The purity of the field state can be
determined from the quantity [39,40]

P(t) = Tr(ρ2(t)), (49)

whereρ is the field-reduced density matrix. A necessary
and sufficient condition for the ensemble to be described
in terms of a pure state is thatTr(ρ2(t) = 1, in this case
clearly a state-vector description of each individual system
of the ensemble is possible. For the caseTr(ρ2(t) < 1, the
field will be in a statistical mixture state. From Equation
(45), it is easy to show that

P(t) = ρ2
11+ρ

2
22+ρ

2
33+ρ

2
44+2|ρ12|2+2|ρ13|2

+2|ρ14|2+2|ρ23|2+2|ρ24|2+2|ρ34|2.
(50)
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Fig. 6: The purity in terms of the scaled timeλt,φ= π./4,θ= π/4,
for chosen parameters similar to Fig 2.

From (50), the purity can range between zero,
corresponding to a completely pure state, and (1− 1

d ),
corresponding to a completely mixed state (here, d is the
dimension of the density matrix). Based on the analytical
solution in the previous section, we shall examine the
evolution in time of the purity.
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We have plotted the purity in Figs.6(a,b,c) against the
scaledλt for both the atomic and field subsystems for
some chosen parameters, in Fig.6a(left plot) corresponds
to the fixed motion, shown that irregular oscillatory
behavior for the time evolution of the purity, it is obvious
that the purity of the system pulled down compared with
the effect ofg(n) we set three different values of intensity
coupling Fig.6a g(n) = 1, Fig.6b g(n) = n, Fig.6c
g(n) =

√
n+υ, with all other parameters, we notice that

the purity becomes unstable and less than 0.5, So, the
field is in statistically mixed state.

Fig.6(a,b,c)(right plots) displays the case when the
atomic motion is taken into accountp1 = 0, p2 = 2. The
purity have regular and periodic oscillations when the
g(n) = 1 see Fig.6a (right plot) the purity takes its
maximum value (solid line), so we arrive to pure state, it
is reach to disentanglement. But forp2 = 6 (dashed line)
the purity to go down to 0.5, we show that by an increase
in P, the intervals of time will be shorter in which the
entanglement between atom and field remains nearly at its
minimum value.

12 Fidelity

The concept of the fidelity emerge from the mathematical
representation for the purification of mixed states. Any
mixed state can be represented as a subsystem of a pure
state in a larger Hilbert space. The entanglement of a pure
state may cause the states of subsystems to be mixed. The
fidelity is usually used to measure how well the channel
preserves the entanglement. In this section, we calculate
the fidelity which plays the role of the transition between
a pure state |Ψ (0)〉 and the state described by
ρ(t) = |Ψ〉〈(t)Ψ (t)|. This is equal to the square root of the
overlap between the state|Ψ (0)〉 and the state defined by
ρ(t). The fidelity is given by the form [41,?],

F(t) =
√
〈Ψ (0)|ρ(t)|Ψ (0)〉 = |〈Ψ (0)|Ψ (t)〉|, (51)

The evolutions of the fidelities are plotted as functions
of scaled timeλt following. It can be seen from the figure
that the time evolutions of fidelities are more
complicated. Fig.1 presents fidelity for three different
values of intensity dependent couplingg(n). For g(n) = 1
the time evolutions of fidelity of quantum information
obviously show the quantum collapse and revival in the
system, and the fidelity decreases gradually. It means that
the distortion increases gradually. With theg(n) = n, the
evolution of the fidelities shows the irregular oscillations,
and amplitude of them shows more or less decrease,
implying that the quantum state fidelity is modulated by
the initial field of number state. However, the nature that
the evolutions of fidelity for g(n) =

√
n+υ, exhibit

oscillations with equiamplitude as is observed, the fidelity
can become unity or approximately unity at some proper
values of time. So, the fidelities are better than those for
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Fig. 7: The Fidelity in terms of the scaled timeλt, n̄ = 25,φ = 0;
θ = π/3, for chosen parameters similar to Fig 2.

g(n) = 1,n are conserved well. In comparison between
Fig.a7(right plots) and Fig.7c(right plots), its can be seen
from the figures the fidelities of quantum state of the
system, the evolutions of fidelity give more regular
oscillation, with equiamplitude and perfect periodicity
and the amplitude equal to 1 forg(n) =

√
n+υ.

13 Squeezing: normal and higher orders

In quantum optics, squeezing phenomenon is describes by
decreasing the quantum fluctuations in one of the field
quadratures with an increase in the corresponding
conjugate quadrature. This parameter has been defined in
various ways. As some examples, one may refer to
first-order and higher-order squeezing. We define the
following Hermitian operators:

X̂k =
1
2
(̂
ak+ â†k

)
,

ŷk =
1
2i
(̂
ak− â†k

)
,k = 1,2,3, .. (52)

wherek indicates the order of squeezing of the radiation
field. It is worth noticing that higher order squeezing may
be generated in higher-order harmonics [43].

14 Normal (quadrature) squeezing

Settingk = 1 in (52), theX1 andY1 quadratures obey the
commutation relation [X1,Y1] = i/2. Consequently, the
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uncertainty relation for such operators reads as (∆X1)2

(∆Y1)2 ≥ 1/16, where〈∆Z1)2〉 = 〈Z2
1〉 − 〈Z1〉2 andZ1 = X1

or Y1 and (∆X1) and (∆Y1) are the uncertainties in the
quadrature operatorsX1 and Y1, respectively. A state is
squeezed inX1(Y1) if (∆X1)2 < 0.25 or ((∆Y1))2 < 0.25),
or equivalently by defining

S (1)
X = 4(∆X1)2−1,S (1)

Y = 4(∆Y1)2−1, (53)

squeezing occurs inX1(Y1) component respectively if
1 < S (1)

X < 0 (1 < S (1)
Y < 0). So the parameters in (12)

sometimes have been called the normalized squeezing
parameters. These parameters can be rewritten as:

S (1)
X =

[
2〈â†̂a〉+ 〈â2〉+ 〈â†2〉− (〈â〉+ 〈â†〉)2

]
,

S (1)
Y =

[
2〈â†â〉− 〈â2〉− 〈â†2〉+ (〈â〉− 〈â†〉)2

]
. (54)

where〈â†â〉 has been given by (39).
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Fig. 8: The normal squeezing in terms of the scaled timeλt, n̄ =
20,φ = π/2;θ = π/3, for chosen parameters similar to Fig.2.

For simplicity, we obtain the expectation value in the
general form of the field operator̂am, for the model in the
following form:

〈̂am〉 = |α|m
∞∑

n

Pn

{(
ψ1(n+m, t)ψ∗1(n, t)+

ψ2(n+m, t)ψ∗2(n, t)
)

+

√
n(n−1)

(n+m)(n+m−1)
ψ3(n+m−2, t)ψ∗3(m−2, t)

+

√
n

(n+m)
ψ4(n+ r−1, t)ψ∗4(n−1, t)

}
, (55)

whereψ∗J denotes to the conjugate ofψJ . From the above

equation the average values for the operatorsâ† and â†2

can be obtained by puttingm = 1 andm = 2, respectively.
Also, it is well known that〈̂a†m〉 is the conjugate of〈̂am〉.
Fig.8 shows the temporal behavior of the normal
squeezing in .x-component fixed motion (left plots) and in
x-component for motion case (right plots) in the nonlinear
caseg(n) = 1, g(n) = n andg(n) =

√
n+υ. Frames (a) and

(b) have been plotted for one photon process, respectively.
We can see from this figure that, the squeezing exists in
the x1 quadrature. Also, with comparing the left plots of
Fig.8 one observes that, in addition to the fact that, in the
single-photon process the system is always quadrature
squeezed, the depth of squeezing is small. It should be
noticed that, according to our further calculations,
generally, there is squeezing in the quadraturesx1 andy1
for the linear caseg(n) = 1 and also forg(n) = n.

15 Summary and Conclusion

In this paper we studied the interaction between a
four-level atom with a single-mode cavity field. Involving
intensity dependent coupling, Fortunately, the wave
function for the atomic system ofλ -configuration is
obtained when the atom is initially prepared in the excited
state, the field is initially prepared in a coherent state. We
investigated the atomic inversion, field entropy, Mandel Q
parameter, mean photon number and normal squeezing as
the most favorite nonclassicality features. Even though
our formalism can be used for any nonlinearity function,
we particularly have chosen the nonlinearity functiong(n)
for our numerical calculations. The obtained results can
be summarized as follows: The temporal evolution of
field entropy, Mandel parameter, mean photon number
and normal squeezing are sensitive to intensity-dependent
coupling . The maximum value of the degree of
entanglement measurement for the linear regime
(g(n) = 1) is greater than the nonlinear regime (g(n) = n).
Indeed, entering this nonlinearity function reduces the
degree of entanglement measurement. The
intensity-dependent coupling effected on the quantum
statistical behavior of the atom-field state and changed to
a full sub-Poissonian statistics for the single-photon
process. Also, typical collapse-revival, as a nonclassical
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behavior is seen. The time evolution of the mean photon
number shows the collapse-revival phenomenon as a
nonclassicality sign of the considered system. There is
normal squeezing in the linear case and also nonlinear
case in the presence of intensity-dependent coupling. The
depth of the squeezing in the quadratureX1 is smallers
with the single-photon process. Finally, as well as
different initial atom and radiation field states. Clearly our
presented results are limited to the choseng(n) for the
intensity dependent regime. Obviously, selecting other
nonlinearity functions may lead to new and perhaps more
interesting conclusions which can be done else where.
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