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Abstract: In this paper, we have introduced weighted Maxwell-Boltzmann distribution and abbrivated as WMD. Different
characteristic properties of the introduced distributionhave been studied in detail. Although the estimators are notderived in a closed
form but parametrs are estimated through the fitting of WMD toa particular data sets using the technique of MLE. In order toshow
the validilty, potentiality and flexibility of WMD in statistical modelling, we have fitted it to four different types of data sets. After the
fitting of WMD to the considered data sets, comparison has been made between the special cases of WMD in terms of having least
values ofBIC, AIC & AICC. Random numbers from WMD are generated by using the InverseCdf method. Simulation has been carried
out with the help of programming language R.
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1 Introduction

The concept of weighted distributions can be traced from
the work of Fisher [25], in connection with his studies, on
how methods of ascertainment can influence the form of
distribution of recorded observations. Later it was
developed and formulated in general terms by C.R. Rao
[5] in connection with modelling statistical data, where
the usual practice of using standard distributions for the
purpose was not found to be appropriate. It is quite
obvious that while studying the real world random
phenomena, the observations may be recorded with an
amount of inherent bias. As a result of which these
recorded observations will not have the original
distribution unless every observation is given an equal
chance of being recorded. C.R. Rao [5] introduced a new
class of distributions known as weighted distributions
after analyzing the situations where observations are
recorded with varying probabilities.

The concept of weighted distribution is very
important, because of the fact that weighted distributions
take into consideration the method of ascertainment, by
adjusting the probabilities of actual occurrence of events.
We may arrive at wrong conclusions, while failing to

make such adjustment. Thus, it is very imperative to use
the concept of weighted distribution while dealing with a
stochastic process in which the observations are being
generated or recorded with varying probability. In order
to increase the accuracy and to draw sound results, our
main motive becomes to give importance to model
specification. One of the unifying approaches for this
purpose is to use the concept of weighted distributions.
The importance of weighted distributions can be
understood from L.L. Macdonald [20] discussing the
need for teaching weighted distribution theory.

There are some traditional theories and practices
which have been occupied with replication and
randomisation like environmentric theory. Observations
also fall in the non-experimental, non-replicated and
non-randomised categories. Thus our main interest lies in
drawing the inference about random phenomena with
higher degree of accuracy. We can’t guarantee the degree
of accuracy of results unless the suitable and flexible
model are used for statistical modelling. G. P. Patil and C.
R. Rao [9] quoted ”Although the situations that involve
weighted distributions seem to occur frequently in various
fields, the underlying concept of weighted distributions as
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a major stochastic concept does not seem to have been
widely recognized”. Thus it is very essential to identify
the stochastic processes where observations are recorded
with varying probabilities so that the validity and
importance of weighted distributions in statistical
modelling can be understood.

The concept of weighted distributions attracted a lot
of researchers to contemplate on and to carry out research
on the same. G.P.Patil and C.R.Rao [9] studied weighted
distributions and size biased sampling with applications
to wildlife populations and human families. Van Deusen
[23] arrived at size biased distribution theory
independently and applied it in fitting assumed
distributions to data arising from horizontal point
sampling. Subsequently, Lappi and Bailey [15] used
weighted distributions to analyze HPS diameter
increment data. Rao [6] studied the weighted distributions
arising out of method of ascertainment. In fisheries,
Taillie et. al [7] modelled populations of fish stocks using
weights. In ecology, Dennis and Patil [4] used stochastic
differential equations to arrive at weighted properties of
size-biased Gamma distribution. K.G. Janardan [18]
characterized the weighted Lagrange distributions. K.G.
Janardan and B.R. Rao [17] studied the Lagrange
distributions of the second kind and weighted
distributions. G.S. Lingappaiah [11] discussed
Lagrange-negative binomial distribution in its simple and
weighted forms. R.S. Ambagaspitiya [24] defined
weighted generalized Negative Binomial distribution.
Asgharian, M.et al. [19] worked on the length-biased
sampling with right censoring. Gove [16] studied the
estimation and application of size-biased distributions in
forestry. Kvam [22] discussed about the Length bias in
the measurements of Carbon Nanotubes. Daret al.[1]
characterized the transmuted weighted Exponential
distribution and discussed some of it’s application. Reshi
et al. [14] worked on new moment method of estimation
of parameters of size-biased classical gamma distribution.

Definition: Let us suppose thatX be a continuous
random variable of interest such thatX ∼ f (x;θ ).
However if the sample observations are selected with
probability proportional to weighted functionw(x) = xω ,
where ω > 0 is the weight parameter. Then the
distribution, with Pdf given by:

f (x;θ ,ω) =
w(x) f (x;θ )

E [w(x)]
(1)

Is called the weighted distribution of random variableX .

2 Derivation of Weighted Maxwell
Distribution (WMD)

In Physics and Chemistry there is a lot of applications of
Maxwell (or Maxwell-Boltzmann) distribution. The
Maxwell distribution forms the basis of the kinetic energy

of gases, which explains many fundamental properties of
gases, including pressure and diffusion. This distribution
is sometimes referred to as the distribution of velocities,
energy and magnitude of momenta of molecules. It was
Tyagi and Bhattacharya [26,27] who considered the
Maxwell distribution as a lifetime model for the first time
and discussed the Baye’s and minimum variance unbiased
estimation procedures for it’s parameter and reliability
function. Chaturvedi and Rani [2] obtained classical and
Baye’s estimators for the Maxwell distribution, after
generalizing it by introducing one more parameter.
Empirical Baye’s estimation for the Maxwell distribution
was studied by Bekker and Roux [3]. Kazmi et al. [28]
carried out the Bayesian estimation for two component
mixture of Maxwell distribution, assuming type I
censored data. Herein, we considered Maxwell
distribution and constructed its weighted version. ThePdf
of a random variableX following Maxwell distribution
with rate parameterθ is given by (2).

f (x;θ ) =
√

2/πθ
3
2 x2exp

(

−θx2/2
)

;x,θ > 0 (2)

Weight function: The weight function considered is
w(x) = xω , where ω > 0 is the weight parameter.
Therefore,

E[w(x)] =
2ω/2+1Γ ((ω +3)/2)√

πθ ω
(3)

Now, from the definition(1), we will have thePdf of WMD
as given by (4):

fω (x;θ ,ω) =
θ (ω+3)/2xω+2exp

(

−θx2/2
)

2(ω+1)/2Γ ((ω +3)/2)
(4)

Cdf, Reliability function and hazard rate of WMD are
respectively given by (5), (6) and (7)

Fω (x;θ ,ω) = 1− Γ
(

(ω +3)/2,θx2/2
)

Γ ((ω +3)/2)
(5)

Rω (x;θ ,ω) =
Γ
(

(ω +3)/2,θx2/2
)

Γ ((ω +3)/2)
(6)

hω (x;θ ,ω) =
θ (ω+3)/2xω+2exp

(

−θx2/2
)

2(ω+1)/2Γ (ω+3
2 )Γ (ω+3

2 ,θx2/2)
(7)

Table-1: Special cases of WMD at different values ofω
weight (ω) ω = 0 ω = 1 ω = 2

Distribution MD LBMD ABMD

fω (x;θ )
√

2
π θ3/2x2e−θ x2/2 (1/2)θ2x3e−θ x2/2

{

2−3/2/Γ (5/2)
}

θ5/2x4e−θ x2/2

Fω (x;θ ) 1− Γ (3/2,θ x2/2)
Γ (3/2) 1− Γ (2,θ x2/2)

Γ (2) 1− Γ (5/2,θ x2/2)
Γ (5/2)
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1(b): Cdf curve
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1(c): Reliability curve
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1(d): Hazard rate curve
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Fig. 1: Curves of density, distribution, reliability and hazard rate
function at different values of rate and weight parameter.

3 Structural properties of WMD

In this section, various structural properties of WMD has
been discussed.

Theorem 3.1.The rth moment about origin of a random
variableX following WMD is given by:

µ
′
r =

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

;r = 1,2,3, ... (8)

Proof.

µ
′
r =

∫ ∞

0
xr fω (x;θ ,ω)dx

µ
′
r =

∫ ∞

0
xr θ (ω+3)/2xω+2

2(ω+1)/2Γ ((ω +3)/2)
exp

(

−θx2/2
)

dx

µ
′
r =

θ (ω+3)/2

2(ω+1)/2Γ ((ω +3)/2)

∫ ∞

0
xω+r+2exp

(

−θx2/2
)

dx

µ
′
r =

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

Moments: First four moments about origin are given as
follows:

µ
′
1 =

√

2
θ

Γ ((ω +4)/2)
Γ ((ω +3)/2)

(9)

µ
′
2 =

(

2
θ

)

Γ ((ω +5)/2)
Γ ((ω +3)/2)

(10)

µ
′
3 =

(

2
θ

)3/2 Γ ((ω +6)/2)
Γ ((ω +3)/2)

(11)

µ
′
4 =

(

2
θ

)2 Γ ((ω +7)/2)
Γ ((ω +3)/2)

(12)

Variance:

σ2 =
2
[

Γ ((ω +3)/2)Γ ((ω +5)/2)−{Γ ((ω +4)/2)}2
]

θ [Γ ((ω +3)/2)]2

(13)
Variation, Skewness and Kurtosis: Coefficient of
variation, skewness and kurtosis are respectively given by
(14), (15) and (16)

c.v.=

√

Γ ((ω +3)/2)Γ ((ω +5)/2)−{Γ ((ω +4)/2)}2

Γ ((ω +4)/2)
(14)

γ1 =
{Γ ((ω +3)/2)}2

[

Γ ((ω +3)/2)Γ ((ω +5)/2)−{Γ ((ω +4)/2)}2
]3/2

×
[

Γ
(

ω +6
2

)

−3
Γ
(ω+4

2

)

Γ
(ω+5

2

)

Γ
(ω+3

2

) +2

{

Γ
(ω+4

2

)}3

{

Γ
(ω+3

2

)}2

]

(15)

γ2 =

{

Γ
(ω+3

2

)}2

[

Γ
(ω+3

2

)

Γ
(ω+5

2

)

−
{

Γ
(ω+4

2

)}2
]2×

[

Γ
(

ω +7
2

)

− 4Γ
(ω+6

2

)

Γ
(ω+4

2

)

Γ
(ω+3

2

) +
6Γ

(ω+5
2

)

Γ
(ω+4

2

)

{Γ
(ω+3

2

)

}2

−3

{

Γ
(

ω +4
2

)}4

/

{

Γ
(

ω +3
2

)}3
]

(16)

Theorem 3.2. The moment generating function and

characteristic function of a random variableX following
WMD are respectively given by (17) and (18).

Mx (t) =
∞

∑
r=0

tr

r!

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

(17)

Ψx (t) =
∞

∑
r=0

(ιt)r

r!

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

(18)

Proof. From the definition of mgf we have:
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Mx (t) = E
[

etx]

Mx (t) =
∫ ∞

0
etx fω (x;θ ,ω)dx

Mx (t) =
∫ ∞

0
etx θ (ω+3)/2xω+2exp

(

−θx2/2
)

2(ω+1)/2Γ ((ω +3)/2)
dx

Mx (t) =
∞

∑
r=0

tr

r!

θ (ω+3)/2∫ ∞
0 xω+r+2exp

(

−θx2/2
)

dx

2(ω+1)/2Γ ((ω +3)/2)

Mx (t) =
∞

∑
r=0

tr

r!

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

Also, we have
Φx (t) = Mx (ιt)

Therefore,

Φx (t) =
∞

∑
r=0

(ιt)r

r!

(

2
θ

)r/2 Γ ((ω + r+3)/2)
Γ ((ω +3)/2)

Fisher’s Information matrix: Fisher’s Information
matrix of WMD is given by:

I (θ ,ω) =−nE







∂ 2 log{ fω (x;θ ,ω)}
∂θ2

∂ 2 log{ fω (x;θ ,ω)}
∂θ∂ω

∂ 2 log{ fω (x;θ ,ω)}
∂ω∂θ

∂ 2 log{ fω (x;θ ,ω)}
∂ω2







I (θ ,ω) =

[

n(ω+3)
2θ2

n
2θ

n
2θ

n
4Ψ ′ (ω+3

2

)

]

(19)

whereΨ(x) = ∂ logΓ (z)
∂ z = Γ ′

(z)
Γ (z) is known as digamma or

Psi function.

4 Information measures of WMD

Theory which deals with the study of transmission,
processing, utilization, and extraction of information is
called Information theory. Abstractly, information can be
viewed as the resolution of uncertainty. It was Claude E.
Shannon [8], who originally proposed the information
theory in a landmark article. In this article, ”information”
is thought of as a set of possible messages, where the goal
is to send these messages over a noisy channel, and then
to have the receiver reconstruct the message with low
probability of error, in spite of the channel noise. The
quantification, storage, and communication of
information is having a key measure known as entropy.
The amount of uncertainty in the value of a random
variable or the outcome of a random process is measured
in terms of entropy measure. A number of Information
measures have been proposed by various authors.
Shannon and Renyi entropy are two of them.

4.1 Renyi Entropy

Information measure propose by Alferd Renyi known as
Renyi entropy of orderδ for a random variableX is given
by:

γR (δ ) =
1

1− δ
log

[

∫ ∞

0
{ f (x)}δ dx

]

(20)

whereδ ≥ 0,δ 6= 1

4.2 Shannon Entropy

Shannon’s measure of information for the outcome of a
random process is given by:

γS = E [− log f (x)] (21)

Shannon entropy is one of the special case of Renyi
entropy as the order(δ ) of Renyi entropy tends to 1. i.e.

γS = lim
δ−→1

γR (δ ) (22)

Theorem 4.1.Renyi and Shannon entropy of WMD is
respectively given by:

γR (δ ) =
1

1− δ
log

[

(2θ )(δ−1)/2Γ ((2ω +2δ +1)/2)

δ (δω+2δ+1)/2{Γ ((ω +3)/2)}δ

]

(23)

γS =
1
2
[3+ω − log(2θ )+2log{Γ ((ω +3)/2)}

−(ω +2)Ψ ((ω +3)/2)] (24)

Proof. From (20), we have,

γR (δ ) =
1

1− δ
log

[

∫ ∞

0
{ fω (x;θ ,ω)}δ dx

]

γR (δ ) =
1

1− δ
log





∫ ∞

0

{

θ
ω+3

2 xω+2exp(−δθx2

2 )

2
ω+1

2 Γ ((ω +3)/2)

}δ

dx





γR (δ ) =
1

1− δ
log





θ
δ (ω+3)

2
∫ ∞

0 xδ (ω+2)exp(−δθx2

2 )dx

2δ (ω+1)/2{Γ ((ω +3)/2)}δ





γR (δ ) =
1

1− δ
log

[

(2θ )(δ−1)/2Γ ((2ω +2δ +1)/2)

δ (δω+2δ+1)/2{Γ ((ω +3)/2)}δ

]

From (22), we have,

γS = lim
δ−→1

1
1− δ

log

[

(2θ )(δ−1)/2Γ ((2ω +2δ +1)/2)

δ (δω+2δ+1)/2{Γ ((ω +3)/2)}δ

]

γS = lim
δ−→1

1
1− δ

log

[

(2θ )(δ−1)/2Γ ((2ω +2δ +1)/2)

δ (δω+2δ+1)/2{Γ ((ω +3)/2)}δ

]

γS =
1
2
[3+ω − log(2θ )+2log{Γ ((ω +3)/2)}

−(ω +2)Ψ ((ω +3)/2)]

hence the Theorem.

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 193-202 (2018) /www.naturalspublishing.com/Journals.asp 197

Table-2: Characteristics of WMD at diff. values of θ & ω
Renyi Entropy

θ ω Mean variance c.v. γ1 γ2 δ Shannon
Entropy

0.2 0.5 0.7 0.9999

0 1.59577 0.45352 0.42202 0.48569 3.10816 1.41796 1.16050 1.07737 0.9961759 0.996154
1 1 1.87997 0.46571 0.36299 0.40569 3.05929 1.45294 1.18975 1.10356 1.0192720 1.019250

2 2.12769 0.47293 0.32321 0.35424 3.03698 1.47584 1.20662 1.11816 1.0318190 1.031796

0 1.12838 0.22676 0.42202 0.48569 3.10816 1.07139 0.81393 0.73080 0.6496023 0.649580
2 1 1.32934 0.23285 0.36299 0.40569 3.05929 1.10637 0.84318 0.75699 0.6726989 0.672676

2 1.50451 0.23646 0.32321 0.35424 3.03698 1.12927 0.86005 0.77159 0.6852455 0.685222

0 0.71365 0.09070 0.42202 0.48569 3.10816 0.61324 0.35578 0.27270 0.1914570 0.191435
5 1 0.84075 0.09314 0.36299 0.40569 3.05929 0.64822 0.38503 0.29884 0.2145535 0.214531

2 0.95153 0.09459 0.32321 0.35424 3.03698 0.67112 0.40190 0.31344 0.2271001 0.227077

From Table-2, it is quite evident that on increasing the
value of weight parameter(ω) for the fixed value of rate
parameter(θ ), mean, variance and entropy increase
whereas the coefficient of variation, skewness and
kurtosis start decreasing. While on increasing the value of
rate parameter for the fixed value of weight parameter,
mean, variance and entropy decreases whereas the other
three characteristics i.e. coefficient of variation, skewness
and kurtosis remains unaffected due to their independence
from θ . It can also be seen from the last two columns of
the table-2 that Renyi entropy approaches to Shannon
entropy as the order(δ ) of Renyi entropy tends to 1.

5 Statistical properties of WMD

5.1 Bonferroni and Lorenz curve

In economics, Lorenz curve is a graphical representation
of the distribution of income or of wealth. It was
American economist Max O. Lorenz [21] who developed
Lorenz curve in 1905 for representing inequality of the
wealth distribution. The Lorenz curve is usually
represented by a functionL(p), wherep is the cumulative
portion of the population, represented by the horizontal
axis, andL denotes the cumulative portion of the total
wealth or income, represented by the vertical axis. Lorenz
curve and the associated Gini index are off course the
most popular indices of income inequality. However,
there are some measures which despite possessing
interesting characteristics are not used often for
measuring income inequality. Bonferroni curve (BC) is
one such measure, which have the advantage of being
represented graphically in the unit square and can also be
related to the Lorenz curve (Giorgi and Mondani[13] ,
Giorgi [12]). The Bonferroni and Lorenz curves are not
only used in economics in order to study the relation
between income and poverty, it is also being used in
reliability, medicine, insurance and demography. The
Bonferroni and the Lorenz curves for a non-negative
random variableX ∼ f (x) are respectively given by (25)
and (26).

B(p) =
1

pµ

∫ q

0
x f (x)dx (25)

L(p) = pB(p) =
1
µ

∫ q

0
x f (x)dx (26)

where,q = F−1(p) andµ = E [x]

Theorem 5.1. The Bonferroni and Lorenz curve for a
random variableX following WMD is respectively given
by (27) and (28)

B(p) =
Γ ((ω +4)/2)−Γ

(

(ω +4)/2,q2θ/2
)

pΓ ((ω +4)/2)
(27)

L(p) =
Γ ((ω +4)/2)−Γ

(

(ω +4)/2,q2θ/2
)

Γ ((ω +4)/2)
(28)

Proof. From (25), we can write,

B(p) =
1

pµ

∫ q

0
x fω (x;θ ,ω)dx

B(p) =
Γ ((ω +3)/2)

p
√

2/θΓ ((ω +4)/2)

×
∫ q

0
x

θ (ω+3)/2xω+2exp
(

−θx2/2
)

2(ω+1)/2Γ ((ω +3)/2)
dx

B(p) =
θ (ω+4)/2∫ q

0 xω+3exp
(

−θx2/2
)

dx

p 2(ω+2)/2Γ ((ω +4)/2)

B(p) =
θ

ω+4
2

p 2
ω+2

2 Γ
(ω+4

2

)

2
ω+2

2

[

Γ
(ω+4

2 )
)

−Γ
(

ω+4
2 , q2θ

2

)]

θ (ω+4)/2

B(p) =
Γ ((ω +4)/2)−Γ

(

(ω +4)/2,q2θ/2
)

pΓ ((ω +4)/2)

Also from (26), we have,L(p) = pB(p). Therefore,

L(p) =
Γ ((ω +4)/2)−Γ

(

(ω +4)/2,q2θ/2
)

Γ ((ω +4)/2)

hence the Theorem.

5.2 Order Statistics

Let x(1),x(2), ...,x(n) be an ordered random sample of odd
size (i.e.n = 2m+ 1, m = 0,1,2, ...) from WMD. Then
the Pdf of X(1) (minimum order statistics),X(n)

(maximum order statistics),X(r) (rth order statistics) and
X(m+1) (sample median) are respectively given by (29),
(30), (31) and (32)

Pdf of X(1):

fX1:n(x) =
n
{

Γ
(

(ω +3)/2,θx2/2
)}n−1

2(ω+1)/2{Γ ((ω +3)/2)}n

×
[

θ (ω+3)/2xω+2exp
(

−θx2/2
)

]

(29)
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Pdf of X(n):

fXn:n(x) =
n
{

Γ ((ω +3)/2)−Γ
(

(ω +3)/2,θx2/2
)}n−1

2(ω+1)/2{Γ ((ω +3)/2)}n

×
[

θ (ω+3)/2xω+2exp
(

−θx2/2
)

]

(30)

Pdf of X(r):

fXr:n(x) =
n!
{

Γ
(ω+3

2

)}n−r
{

Γ
(ω+3

2

)

−Γ
(

ω+3
2 , θx2

2

)}r−1

(r−1)!(n− r)!2
ω+1

2
{

Γ
(ω+3

2

)}n

×
[

θ
ω+3

2 xω+2exp
(

−θx2/2
)

]

(31)

Pdf of X(m+1):

fXr:n(x) =
(2m+1)!

m! m!

θ (ω+3)/2xω+2exp
(

−θx2/2
)

2(ω+1)/2
[

Γ
(ω+3

2

)]2m+1 (32)

×
[

Γ
(

ω +3
2

,
θx2

2

)]2m




Γ
(ω+3

2

)

Γ
(

ω+3
2 , θx2

2

) −1





m

6 Characterization of WMD

Theorem 6.1.Let X1,X2, ..,Xn, be a random sample of
size n drawn from WMD. Then, the square of sample
coefficient of variation is asymptotically unbiased
estimator of the square of population coefficient of
variation.

Mathematically, lim
n−→∞

E
[

S2
n

Xn
2

]

= lim
n−→∞

E
[

Sn
Xn

]2
−→
(

σ
µ

)2
,

whereXn andS2
n are respectively the mean and variance

of the sample.

Proof. Since, the sample mean(Xn) is an unbiased
estimator of population mean(µ) with varianceσ2/n. i.e.

E[Xn] = µ , var
(

Xn
)

= σ2/n (33)

Also, we have,

var
(

Xn
)

= E[Xn
2
]− [E

(

Xn
)

]2 (34)

E[Xn
2
] = var

(

Xn
)

+[E
(

Xn
)

]2

Using (9) and (13), we can write

E[Xn
2
] =

2
[

Γ
(ω+3

2 )
)

Γ
(ω+5

2

)

− (1− n)
{

Γ
(ω+4

2

)}2
]

nθ
[

Γ
(ω+3

2

)]2

(35)
Also, E[S2

n] = σ2, Therefore

E[S2
n] =

2
[

Γ
(ω+3

2

)

Γ
(ω+5

2

)

−
{

Γ
(ω+4

2

)}2
]

θ
[

Γ
(ω+3

2

)]2 (36)

Now, we can write

E[S2
n] = E

[

S2
n

Xn
2 Xn

2

]

E[S2
n] = E

[

S2
n

Xn
2

]

E[Xn
2
]

E

[

S2
n

Xn
2

]

=
E[S2

n]

E[Xn
2
]

using (35) and (36), we obtain

E

[

S2
n

Xn
2

]

=
Γ
(ω+3

2

)

Γ
(ω+5

2

)

−
{

Γ
(ω+4

2

)}2

1
nΓ

(ω+3
2

)

Γ
(ω+5

2

)

−
(

1
n −1

){

Γ
(ω+4

2

)}2

Applying lim
n−→∞

on both sides, we get.

lim
n−→∞

E

[

S2
n

Xn
2

]

=
Γ
(ω+3

2

)

Γ
(ω+5

2

)

−
{

Γ
(ω+4

2

)}2

{

Γ
(ω+4

2

)}2

lim
n−→∞

E

[

S2
n

Xn
2

]

=





√

Γ
(ω+3

2

)

Γ
(ω+5

2

)

−
{

Γ
(ω+4

2

)}2

Γ
(ω+4

2

)





2

lim
n−→∞

E

[

S2
n

Xn
2

]

=

(

σ
µ

)2

= (c.v.)2

hence the Theorem.

7 Estimation of parameters

7.1 Maximum Likelihood Estimation

Let x1,x2, ...,xn be a random sample of sizen from WMD.
Then it’s likelihood function will be given by (37).

L(θ ,ω |x) = θ n(ω+3)/2∏n
i=1 xω+2

i

2n(ω+1)/2{Γ ((ω +3)/2)}n exp(−θ
2

n

∑
i=1

x2
i )

(37)
Log likelihood function is given by:

logL(θ ,ω |x) =
{

n(ω +3)
2

log(θ )− n(ω +1)
2

log(2)

−n logΓ ((ω +3)/2)+ (ω +2)
n

∑
i=1

logxi

−θ
2

n

∑
i=1

x2
i

}

(38)

Differentiating Log Likelihood function partially with
respect toθ , ω and equating to zero we will have the
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following system of equations.

∂ logL(θ ,ω |x)
∂θ

= θ − n(ω +3)

∑n
i=1 x2

i

= 0 (39)

∂ logL(θ ,ω |x)
∂ω

=
n

∑
i=1

[2logxi + log(
θ
2
)−Ψ ((ω +3)/2)]

× xω+2
i θ (ω+3)/2exp

(

−θx2
i /2

)

= 0 (40)

The above system of equations is non-linear and can’t be
solved manually forθ and ω . In order to overcome the
said hindrance, programming language R has been used
for obtaining the estimates of parameters.

7.2 Moment estimator

The Moment estimator for rate parameterθ of WMD can
be obtained by equating the first theoretical moment to
sample moment(x) as given below:

√

2
θ

Γ ((ω +4)/2)
Γ ((ω +3)/2)

=
n

∑
i=1

xi/n

θ̂mm = 2

(

nΓ ((ω +4)/2)
Γ ((ω +3)/2)∑n

i=1 xi

)2

(41)

8 Comparison between different special cases
of WMD in terms of fitting

In this section, we have fitted WMD to four different
types of data sets. The considered data sets include three
real life and a simulated one. Comparison is made
between the special cases of WMD in terms possessing
least values of comparison criteria (AIC, AICC, BIC).
The R code for generating three real life data sets is as
follows.

> install.packages("faraway")
> library(faraway)
> lightintensity <- star$light
> lightintensity
[1] 5.23 5.74 4.93 5.74 5.19 5.46 4.65
[8] 5.27 5.57 5.12 5.73 5.45 5.42 4.05
[15] 4.26 4.58 3.94 4.18 4.18 5.89 4.38
[22] 4.22 4.42 4.85 5.02 4.66 4.66 4.90
[29] 4.39 6.05 4.42 5.10 5.22 6.29 4.34
[36] 5.62 5.10 5.22 5.18 5.57 4.62 5.06
[43] 5.34 5.34 5.54 4.98 4.50

Dataset named as"lightintensity" is related to the
logarithm of light intensity of 47 stars in the star cluster
CYG OB1.

> currentnoise<-resceram$noise
> currentnoise
[1] 1.11 0.95 0.82 1.70 1.22 0.97 1.60
[8] 1.11 1.52 1.22 1.54 1.18

"currentnoise" represents the current noise of four
resistors mounted in a combination of 3 on different
crematic plates.

> wear<-abrasion$wear
> wear
[1] 235 236 218 268 251 241 227 229 234
[10] 273 274 226 195 270 230 225

Dataset entitled as"wear" is a vector regarding the
amount of wear recorded on feeding four materials into a
wear testing machine on using a Latin square design.

8.1 Simulation study

Herein, we have generated a data set of 100 observations
from WMD with the help of Inverse transformation
method. In Inverse transformation method, random
numbers from a particular distribution are generated by
solving the equationF(x) = p, for x at preassigned values
of parameters. WhereF(x) is the distribution function
characterizing a particular probability distribution andp
is any number from the interval [0,1] i.e.p ∼ U(0,1).
Following the same procedures for generation of random
numbers from WMD we will have:

Fω (x;θ ,ω) = 1− Γ ( (ω+3)
2 , θx2

2 )

Γ ( (ω+3)
2 )

= p (42)

Now, on solving the equation (42) forx, at 100 different
values of p with rate parameter(θ ) = 3 and weight
parameter(ω) = 3, we will obtain 100 different values of
x. Since,Cdf is bijective in nature and is having a unique
inverse known as Quantile function. Therefore for each
value of p, we will have a unique value ofx e.g. if
p = 0.25, p = 0.5 andp = 0.75 , the resulting solutions
will be the first quartile(Q1) , Median (Q2) and third
quartile (Q3) respectively. The equation (42) can’t be
solved manually forx. Hence, the programming language
R has been used for obtaining the solution of same
equation. The resulting simulated data set along with it’s
R-code is as follows:

> Data<-function(n,s,t,w)
+ {set.seed(s)
+ U=runif(n,0,1)
+ library(zipfR)
+ cdf<-function(x,t,w)
+ {fn<-1-Igamma((w+3)/2,(t * xˆ2)/2,
+ lower=FALSE)/gamma((w+3)/2)}
+ data=c() #Create an empty vector
+ for(i in 1:length(U)){
+ fn<-function(x){cdf(x,t,w)-U[i]}
+ uni<-uniroot(fn,c(0,100000))
+ data=c(data,uni$root)}
+ return(data)}
> Simulateddata<-Data(100,1,3,3)
> Simulateddata
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[1] 1.09103 1.20576 1.41003 1.90537
[5] 1.01379 1.87957 2.02599 1.50616
[9] 1.47052 0.77178 1.01934 0.98022
[13] 1.53688 1.21804 1.64417 1.33284
[17] 1.57439 2.40454 1.21387 1.65510
[21] 1.98785 1.02713 1.49575 0.90299
[25] 1.09299 1.22010 0.56954 1.21629
[29] 1.81368 1.17271 1.31708 1.43837
[33] 1.32865 0.99339 1.73368 1.51502
[37] 1.68011 0.87210 1.58212 1.24569
[41] 1.72278 1.49052 1.66313 1.38941
[45] 1.36542 1.67270 0.63361 1.31219
[49] 1.59321 1.54373 1.31258 1.79630
[53] 1.27278 1.06696 0.79424 0.85611
[57] 1.14718 1.35410 1.50755 1.24119
[61] 1.91839 1.12252 1.29390 1.16436
[65] 1.49484 1.08242 1.31351 1.63917
[69] 0.82510 1.82569 1.17136 1.75493
[73] 1.17938 1.16580 1.31128 1.86427
[77] 1.80263 1.22406 1.65492 2.10077
[81] 1.26932 1.56798 1.23423 1.15687
[85] 1.62632 1.01510 1.56625 0.89644
[89] 1.06781 0.93158 1.06081 0.76412
[93] 1.48514 1.82775 1.65724 1.68482
[97] 1.29008 1.24449 1.70621 1.44414

Table-3: MLE’s and different comparison criteria

MLEs

Data Distn. ω̂mle θ̂mle θ̂mm −2ll AIC BIC AICC

WMD 36.543461 1.554255 1.55432 79.65030 83.65030 87.3506 83.9230
Light Intensity MD 0 (known) 0.117949 0.10137 161.8250 163.8250 165.6752 163.914

LBMD 1 (known) 0.157263 0.14069 148.2356 150.2356 152.0858 150.325
ABMD 2 (known) 0.196571 0.18021 138.1773 140.1773 142.0275 140.266

WMD 7.952079 6.746568 6.75085 2.427700 6.427700 7.397513 7.76103
Current Noise MD 0 (known) 1.847923 1.64286 9.941077 11.94108 12.42598 12.3411

LBMD 1 (known) 2.463956 2.28015 7.294335 9.294335 9.779241 9.69434
ABMD 2 (known) 3.079832 2.92065 5.549149 7.549149 8.034055 7.94915

WMD 59.566281 0.001085 0.00108 143.6269 147.6269 149.1720148.549
Amount Wear MD 0 (known) 0.000053 0.00004 178.4599 180.4599 181.2325 180.746

LBMD 1 (known) 0.000070 0.00006 173.6843 175.6843 176.4569 175.970
ABMD 2 (known) 0.000093 0.00008 170.2925 172.2925 173.0651 172.578

WMD 5.105472 4.050502 4.04862 69.93130 73.93130 79.14164 74.0550
Simulated Data MD 0 (known) 1.499127 1.35267 110.6245 112.6245 115.2297 112.665

LBMD 1 (known) 1.998917 1.87739 92.00237 94.00237 96.60754 94.0431
ABMD 2 (known) 2.498724 2.40475 80.89320 82.89320 85.49837 82.9340

9 Conclusion

In this paper, various characteristic properties of WMD
have been studied and discussed in detail. Three real life
data sets and a simulated one is considered for illustrating
the validity of WMD in statistical modelling. After the
fitting of WMD to the considered data sets, different
measures of goodness of fit likeAIC, BIC andAICC have
been computed for the special cases of WMD and are
reported in table-3. The probability model with lowest
AIC, BIC and AICC is considered to be the best fitted
model. From table-3, it is evident that WMD possesses
the least values ofAIC, BIC and AICC followed by
ABMD, followed by LBMD and then finally followed by
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Fig. 2: Density and distribution curves fitted to four different
types of data sets.

Maxwell distribution (MD). Hence, it can be concluded
that WMD proves to be more flexible and best fitted
distribution in comparison to it’s special cases in the
current study. Therefore, distributions in the order of best
fit for the considered data sets, are given as below:
(Best) WMD −→ ABMD −→ LBMD −→ MD (Good)
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The main motive behind the construction of WMD
and fitting of it’s special cases to the considered data sets
was to assess its potentiality and flexibility in modelling a
particular data set. From the current study, it is concluded
that if there is any intuition that the observations in a
stochastic process are recorded with probabilities
proportional to some weight functionw(x,ω), then it is
better to contemplate on the need for studying weighted
distributions and their application in modelling.
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