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Abstract: This paper investigates the vibration control of a harmonically excited Duffing oscillator via a simple pendulum. The
amplitude-phase modulating equations governing the system dynamics are extracted utilizing perturbation methods. Bifurcation
analyses are conducted and the Lyapunov direct method is applied to study the system stability. The uncontrolled systemexhibits
a variety of nonlinear phenomena such as jump phenomenon, saddle-node, and transcritical bifurcations. The analysis showed that
the oscillator vibrational energy could be transferred to the pendulum parametrically when the pendulum natural frequency is equal to
one-half the oscillator natural frequency. Numerical validation for the obtained analytical results was performed, which is in excellent
agreement with the analytical ones. By the end of this work, acomparison with published work is included.
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1 Introduction

Vibrations are initiated when an inertia element is
displaced from its equilibrium position due to an energy
imparted to the system through an external source.
Vibrations in many engineering systems can lead to
catastrophic situations and dangerous accidents if
uncontrolled. Therefore, vibration reduction, control, and
stabilization of dynamical systems are quite important
problems. Various techniques of vibration reduction,
control, and some time suppression are developed to
channel the excess energy from the excited system to a
slave one. One of the most feasible vibration reduction
methods is the saturation phenomenon based technique
that has been discovered by Nayfeh et al. [1]. They
reported that in the case of quadratic coupling
nonlinearities the energy transfer is complete if the
natural frequencies of the main system and the secondary
system are in the ratio two to one. The saturation
phenomenon has been the subject of extensive theoretical
and experimental research [2,3,4,5,6]. One of the passive
vibration absorbers that works based on the saturation
phenomenon is the autoparametric vibration absorber.
The main structure of such system lies in attaching
absorber (pendulum) to the primary system (oscillator) in
a way such that the pendulum is exposed to a parametric

base excitation of the primary system. Autoparametric
systems consist of two nonlinear subsystems coupled to
interact in a way so that one of them (high natural
frequency subsystem) transfers the exogenous energy
parametrically to the other (low natural frequency
subsystem). Warminski et al. [7,8,9,10,11] discussed
autoparametric system consists of a nonlinear oscillator
with an attached pendulum. In Ref. [7] they derived the
system equations of motion. The model showed that the
system is strongly nonlinear and the motions of both
subsystems are strongly coupled by inertial terms leading
to the so-called autoparametric vibration. An approximate
analytical solution of the system model is obtained
applying the harmonic balance method [8]. The influence
of some essential parameters on the system stability is
discussed in Ref. [9]. In Ref. [10], the authors studied the
vibration control of Duffing oscillator mounted on
magnetorheological (MR) damper and nonlinear spring
attached to pendulum. Warminski et al. [11] studied
vibration analysis of an autoparametric pendulum-like
mechanism subjected to harmonic excitation. They
proposed a suspension composed of a semi-active MR
damper and a nonlinear spring. Kecik [12] studied the
nonlinear oscillations of autoparametric system consists
of a nonlinear oscillator attached to pendulum system. A
combination of MR damper together with a nonlinear
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spring made from a shape memory alloy is proposed. He
concluded that it is possible to fit on-line the structure
response to the frequency and amplitude of external
excitation. Brzeski et al. [13] studied the dynamics of the
pendulum suspended on forced Duffing oscillator. The
detailed bifurcation analysis in two-parameter space has
been performed. They found too large ranges of the
parameters space have only one attractor around 1:1
principal resonance in neighborhood of 2: 1 internal
resonance. Refs [14,15,16,17,18] studied the same
model with different analytical techniques. In Refs [19,
20,21] the pendulum is studied as a nonlinear vibration
absorber attached to a horizontally moving Duffing
oscillator at 1:1 internal resonance and 1:1 principal
parametric resonance. Tusset et al. [22] studied the
chaotic behaviors control of parametrically excited
pendulum using two different control strategies. One of
this applied control method is via the active nonlinear
saturation controller, and the other via introducing a
passive rotational MR damper. Within this paper, a
detailed analysis for a vertically moving Duffing
oscillator attached pendulum has been introduced. Based
on the results obtained in Ref. [13], the 1:2 internal
resonance case is studied when the oscillator is excited
periodically near its natural frequency (primary
resonance). The system amplitude-phase modulating
equations are extracted applying the multiple scales
perturbation technique. The frequency-response curves
before and after linking the absorber to the system are
obtained. The effects of the coupling parameters, absorber
linear damping coefficient, and excitation amplitude on
the frequency-response curve are explored. Numerical
confirmations for the all acquired results are performed.
Time-histories are conducted to show the exchange of
energy between the two subsystems (i.e. the Duffing
oscillator and the pendulum). Finally, important notes are
included for the optimal working conditions and design of
such system.

2 System model and Perturbation analysis

The considered system consists of a pendulum suspended
on the Duffing oscillator, where the oscillator is excited
periodically in the vertical direction as shown in Fig.1. The
system dimensionless equations of motions are given as
follows [7,8]

ÿ+µ1ẏ+ω1y+β1y3 = γ cos(Ω t)−α1(θ̈ sinθ + θ̇ 2cosθ )
(1)

θ̈ + µ2θ̇ + sinθ =−α2ÿsinθ (2)

List of symbols: y, ẏ, ÿ Displacement, velocity, and
acceleration of the Duffing oscillator system, respectively.
θ , θ̇ , θ̈ Displacement, velocity, and acceleration of the

pendulum inclination angle, respectively.µ1,µ2 Linear
damping coefficients of the Duffing oscillator system and
pendulum, respectively.ω1 Linear natural frequency of
the Duffing oscillator system.β1,β2 The system nonlinear
stiffness coefficients.α1,α2 The system nonlinear
coupling coefficients.Ω ,γ External excitation frequency
and external excitation amplitude, respectively.

Replacing the nonlinear functions sinθ and cosθ in
equations (1) and (2) by their third-order approximating
Taylor series, yields:

ÿ+ µ1ẏ + ω2
1y+β1y3 = γ cos(Ω t)

+ α1

(

1
2

θ̇ 2θ 2+
1
6

θ̈ θ 3
− θ̇ 2

− θ̈θ
)

(3)

θ̈ + µ2θ̇ +θ −β2θ 3 = α2

(

1
6

ÿθ 3
− ÿθ

)

(4)

Applying the multiple scales perturbation method
[23], we can obtain a first-order approximate solution to
equations (3) and (4) by seeking the solution as:

y(t,ε) = y1(T0,T1)+ εy2(T0,T1)+O(ε2) (5)

θ (t,ε) = θ1(T0,T1)+ εθ2(T0,T1)+O(ε2) (6)

where ε is a small dimensionless perturbation
parameter used for book-keeping only,T0 = t andT1 = εt
are the fast and slow time scales, respectively. In terms of
T0 andT1 the time derivatives can be expressed using the
chain rule as:

d
dt

= D0+ εD1 ,
d2

dt2 = D2
0+2εD0D1,

where D j =
∂

∂Tj
, j = 0,1 (7)

To make damping, nonlinearities, and the excitation
force appear in the same perturbed equation, the system
parameters have to be scaled as follows:

µn = εµ̂n , βn = εβ̂n , αn = εα̂n , γ = εγ̂ ; n = 1.2
(8)

Substituting equations (5) to (8) into equations (3) and
(4), and equating coefficients of like powers ofε, we get
the following set of differential equations:

O(ε0) :

(D2
0+ω2

1)y1 = 0 (9)

(D2
0+1)θ1 = 0 (10)
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Fig. 1: System model

O(ε1) :

(D2
0+ω2

1)y2 =−2D0D1y1− µ̂1D0y1− β̂1y3
1

− α̂1

(

(1−
1
6

θ 2
1 )θ1D2

0θ1+(1−
1
2

θ 2
1 )(D0θ1)

2
)

+ γ̂ cos(Ω t) (11)

(D2
0+1)θ2 =−2D0D1θ1− µ̂2D0θ1+ β̂2θ 3

1

− α̂2

(

(1−
1
6

θ 2
1 )θ1D2

0y1

)

(12)

The solution of equations (9) and (10), can be
expressed as

y1(T0,T1) = A(T1)e
iω1T0 + cc (13)

θ1(T0,T1) = B(T1)e
iT0 + cc (14)

where cc denotes the complex conjugate of the
preceding terms. Inserting equations (13) and (14) into
equations (11) and (12), we have

(D2
0+ω2

1)y2 = (−2iω1D1A− iµ̂1ω2A−3β̂1A2Ā)eiω1T0

− β̂1A3e3iω1T0 +2α̂1B2(1−
1
3

BB̄)e2iT0

−
2
3

α̂1B4e4iT0 +
γ̂
2

eiΩT0 + cc

(15)

(D2
0+1)θ2 = (−2iD1B− iµ̂2B+3β̂2B2B̄)eiT0

+ β̂2B3e3iT0 −
1
6

α̂2ω2
1AB3ei(ω1+3)T0

− α̂2ω2
1AB

(

1
2

BB̄−1

)

ei(ω1+1)T0

− α̂2ω2
1AB̄

(

1
2

BB̄−1

)

ei(ω1−1)T0

−
1
6

α̂2ω2
2AB̄3ei(ω1−3)T0 + cc

(16)

The deduced resonance conditions from equations
(15) and (16) are the primary resonance (Ω = ω1),
internal resonance (ω1 = 2,ω1 = 4), and simultaneous

resonance (Ω = ω1 = 2,Ω = ω1 = 4). In this paper, the
simultaneous resonances case (Ω = ω1 = 2) is
considered. So, the closeness of the considered
resonances can be described quantitatively by introducing
the detuning parametersσ1 andσ2 according to:

ω1 = 2+σ1 = 2+ εσ̂1 ,

Ω1 = 2+σ2 = 2+ εσ̂2 (17)

Inserting equations (17) into secular and the
small-divisor terms in equations (15) and (16), we get

(D2
0+ω2

1)y2 = (−2iω1D1A− iµ̂1ω1A−3β̂1A2Ā)eiω1T0

− β̂1A3e3iω1T0 +2α̂1B2(1−
1
3

BB̄)e−iσ̂1T1eiω1T0

−
2
3

α̂1B4e4iT0 +
γ̂
2

ei(σ̂2−σ̂1)T1eiω1T0 + cc

(18)

(D2
0+1)θ2 = (−2iD1B− iµ̂2B+3β̂2B2B̄)eiT0

+ β̂2B3e3iT0 −
1
6

α̂2ω2
1AB3ei(ω1+3)T0

− α̂2ω2
1AB

(

1
2

BB̄−1

)

ei(ω1+1)T0

− α̂2ω2
1AB̄

(

1
2

BB̄−1

)

eiσ̂1T1eiT0

−
1
6

α̂2ω2
1 ĀB3e−iσ̂1T1eiT0 + cc

(19)

The solvability conditions of equations (18) and (19)
are

− 2iω1D1A− iµ̂1ω1A−3β̂1A2Ā

+ 2α̂1B2(1−
1
3

BB̄)e−iσ̂1T1 +
γ̂
2

ei(σ̂2−σ̂1)T1 = 0 (20)

−2iD1B − iµ̂2B+3β̂2B2B̄− α̂2ω2
1AB̄(

1
2

BB̄−1)eiσ̂1T1

−
1
6

α̂2ω2
1 ĀB3e−iσ̂1T1 = 0 (21)

To analyze the solutions of equations (20) and (21), we
let

A(T1) =
1
2

α1(T1)e
iλ1(T1), B(T1) =

1
2

α2(T1)e
iλ2(T1)

(22)
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whereα1 and α2 are the steady-state amplitudes of
Duffing oscillator and pendulum, respectively,λ1 andλ2
are the phases of the two motions. Inserting equations
(22) into (20) and (21) with separating the real and
imaginary parts, we get the flowing amplitude-phase
modulating equations governing the system dynamics.

ȧ1 =− 1
2µ1a1−

1
2ω1

α1a2
2(1−

1
12a2

2)sin(ϕ2)−
γ

2ω1
sin(ϕ1) ,

(23.a)

ϕ̇1 =σ1−σ2+
3

8ω1
β1a2

1−
1

2ω1a1
α1a2

2(1−
1
12

a2
2)cos(ϕ2)

−
γ

2ω1a1
cos(ϕ1) , (23.b)

ȧ2 =−
1
2

µ2a2+
1
4

α2ω2
1a1a2

(

1−
1
12

a2
2

)

sin(ϕ2),

(23.c)

ϕ̇2 =σ1+
3

8ω1
β1a2

1+
3
4

β2a2
2−

γ
2ω1a1

cos(ϕ1)

−
1

2ω1a1
α1a2

2(1−
1
12

a2
2)cos(ϕ2)

−α2ω2
1a1

(

1
12

a2
2−

1
2

)

cos(ϕ2).

(23.d)

whereϕ1 = λ1− (σ2−σ1)t andϕ2 = λ1−2λ2+σ1t .
At steady-state oscillations, we have ˙a1 = ȧ2 = ϕ̇1 = ϕ̇2 =
0, substituting this conditions into equations (23), we get

µ1a1+
1

ω1
α1a2

2(1−
1
12

a2
2)sin(ϕ2)+

γ
ω1

sin(ϕ1) = 0

(24.a)

σ1−σ2+
3

8ω1
β1a2

1

−
1

2ω1a1
α1a2

2(1−
1
12

a2
2)cos(ϕ2)

−
γ

2ω1a1
cos(ϕ1) = 0 (24.b)

µ2a2−
1
2

α2ω2
1a1a2

(

1−
1
12

a2
2

)

sin(ϕ2) = 0 (24.c)

σ1+
3β1

8ω1
a2

1+
3β2

4
a2

2−
γ

2ω1a1
cos(ϕ1)

−
α1

2ω1a1
a2

2(1−
1
12

a2
2)cos(ϕ2)

−α2ω2
1a1

(

1
12

a2
2−

1
2

)

cos(ϕ2) = 0 (24.d)

The performance of the pendulum as a passive
vibration absorber can be evaluated by solving the
nonlinear algebraic equations (24) numerically in terms
of σ1,σ2,α1,α2,β1,µ2 andγ.

3 Steady state solution stability

The stability of the equilibrium solution is determined by
examining the Jacobian matrix eigenvalues of the
right-hand sides of equations (23). To derive the stability
criteria, we need to examine the behavior of small
perturbation from the steady-state solution(α10,α20,ϕ10
andϕ20) of equations (24). Thus, we assume that

a1 = a11+ a10, a2 = a21+ a20,

ϕ1 = ϕ11+ϕ10, ϕ2 = ϕ21+ϕ20

ȧ1 = ȧ11, ȧ2 = ȧ21, ϕ̇1 = ϕ̇11, ϕ̇2 = ϕ̇21

(25)

whereα11,α21,ϕ11 and ϕ21 are perturbations, which
are assumed to be small compared to the assumed steady
state solution (α10,α20,ϕ10 and ϕ20). Substituting
equations (25) into equations (23), and expanding for
smallα11,α21,ϕ11 andϕ21 and keeping linear terms only,
we get







ȧ11
ϕ̇11
ȧ21
ϕ̇21






=







r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44













a11
ϕ11
a21
ϕ21






(26)

where the above matrix represents the system
Jacobian matrix. Thus, the stability of the steady-state
motion depends on the eigenvalues of Jacobian matrix.
One can obtain the following eigenvalue equation

δ 4+ ζ1δ 3+ ζ2δ 2+ ζ3δ + ζ4 = 0 (27)

where δ denotes eigenvalues of Jacobian matrix,
ζ1,ζ2,ζ3 and ζ4 are coefficients of equation (27).
According to Routh-Hurwitz criterion, the necessary and
sufficient conditions for stable system are

ζ1 > 0, ζ1ζ2− ζ3 > 0, ζ3(ζ1ζ2− ζ3)− ζ 2
1 ζ4 > 0, ζ4 > 0.

(28)
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4 Results and discussions

Fig. 2: Duffing oscillator frequency-response curves at
different values of the excitation amplitudeγ

The considered system is investigated at different values
of its parameters. The obtained results are presented in
graphical forms as steady-state amplitudes against
detuning parameterσ2 and the excitation amplitudeγ.
The system is analyzed at the parameters values:
µ1 = 0.0716,µ2 = 0.0202,ω1 = 2,α1 = 0.3636,α2 =
0.25,β1 = 0.1031,β2 = 0.1666,σ1 = σ2 = 0.0 and
γ = 0.1 unless otherwise specified [7-13]. The bifurcation
diagrams were plotted as solid lines correspond to stable
solutions, and as dashed lines correspond to unstable
ones. To validate the accuracy of the analytical results, the
original equations (1) and (2) have been integrated
numerically using the slandered Matlab solver
ODE45.The obtained numerical results were shown as
small circles at the initial conditions
y(0) = ẏ(0) = θ̇ (0) = 0,θ (0) = 0.1 and as big-dots at the
initial conditions y(0) = ẏ(0) = θ̇ (0) = 0,θ (0) = −

π
2 .

Fig. 2 shows Duffing oscillator frequency-response curves
when exposed to various levels of excitation amplitudeγ.
It is clear from the figure that as the excitation amplitude
increases the response-curve bend to the right leading to
jump phenomenon occurrence and the nonlinearity
dominates the response. Fig. 3 shows the controlled
system frequency-response curve atγ = 0.1. The
response amplitude depends onσ2 and the initial
conditions, whereasσ2 increases gradually from a large
negative value, the absorber remains at static equilibrium
(trivial solution), while the oscillator vibrates with small
amplitude until σ2 reaches point B, beyond this point
there are two possible stable solutions, where the system
will follow one of them based on the its initial conditions.
If the initial conditions are small, the system will trace the

curve B-E until σ2 reaches point E. At point E, the
absorber loses the stability of its trivial solution through a
transcritical bifurcation and the resulting non-trivial
solution encounters a saddle-node bifurcation, leading to
jumping up to the point D. Further increasing ofσ2, the
system amplitude traces the curve D-F-K-G. whenσ2
reaches point G, the solution encounters a saddle-node
bifurcation leading to jumping to point H, where the
trivial solution of the absorber is reached again. If the
initial conditions are large, the system will trace the
A-B-C-D-F-K-G-H-I path. As σ2 decreases gradually
from a large positive value the absorber remains in static
equilibrium with the trivial solution, while the oscillator
vibrates at small amplitude untilσ2 reaches point H. After
σ2 crossing the point H, there are two possible solutions.
If the initial conditions are small the system response will
trace the curve H-J. When J is reached, the absorber loses
the stability of its trivial solution through a transcritical
bifurcation and the resulting non-trivial solution
encounters a saddle-node bifurcation leading to a jump to
point K. Further decreasing ofσ2, the system amplitude
traces the curve F-D until point C is reached, at that point
C, the solution encounters a saddle-node bifurcation
leading to a jump to point B, where the trivial solution of
the absorber is reached. If the initial conditions are large
the system will trace the I-H-G-K-F-D-C-B-A path. The
figure also verifies a good agreement between the
obtained analytical solutions and the numerical
simulations of the original equations (1) and (2). Fig. 4
shows the system time histories according to pointP1 that
marked on Fig. 3 (i.e. atσ2 = 0.0,γ = 0.1). It can be seen
from the figure that the vibrations are transferred
parametrically from the oscillator to the absorber. The
numerical solution of equations (23) for the chosen values
of the system parameters is presented graphically in Fig.
4. The dashed lines show the modulation of the
amplitudes for the generalized coordinates y andθ . The
simulation results show that equations (23) describe with
high accuracy not only the steady-state modulating
amplitudes, but also the transient modulating amplitudes
of the whole system. The time histories of the system
according to pointsP2 andP3 that marked on Fig. 3 are
shown in Fig. 5. It is noticed that the system parameters
according to the two pointsP2 and P3 are the same, but
the initial conditions of the pendulum are changed from
θ (0) = − π

2 to θ (0) = 0.1 , whereas other initial
conditions remain zeros. The figure confirms the
sensitivity of the system to the initial conditions. In Fig.
6, we illustrate the force-response curves of both Duffing
oscillator and pendulum at four different values ofσ2. We
can trace the histories of bothα1 and α2 when the
excitation amplitudeγ is slowly increased beyond zero.
Initially, both α1 and α2 are zeros and they follow the
curve according to the value ofσ2. Fig. 6a shows that at
σ2 = 0 the oscillator steady-state amplitude increases as
the excitation force amplitude increases untilγ reaches a
critical value, while the absorber steady-state amplitude
remains zero. Beyond this critical value the oscillator
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Fig. 3: System frequency-response curves: (a) Duffing oscillator,and (b) pendulum, atγ = 0.1, the circles denote the
numerical solutions according to initial conditionsy(0) = ẏ(0) = θ̇ (0) = 0, θ (0) = 0.1, while the big-dots represent the
numerical solutions according to initial conditionsy(0) = ẏ(0) = θ̇ (0) = 0, θ (0) =− π

2 .

Fig. 4: System time-histories according to pointP1 that marked on Fig. 3: (a) Duffing oscillator, and (b) pendulum

Fig. 5: System time-histories according to pointsP2 and P3 that illustrated in Fig. 3: (a) Duffing oscillator, and (b)
pendulum

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 203-215 (2018) /www.naturalspublishing.com/Journals.asp 209

Fig. 6: Effect of varying the external detuning parameterσ2 on the force-response curves: Duffing oscillator (left column),
and pendulum (right column)

steady-state amplitude saturates to a constant value and
all excessive energy due to excitation force is channeled
to the pendulum as shown in Fig. 6b. In addition, the
figure shows that the system motion is independent of the
initial conditions. Figs. 6c and 6d show the
force-response curves atσ2 = −0.1. It is clear that the

amplitude of the response depends onγ magnitude and
the system initial conditions. Forγ < γB, the absorber
remains in static equilibrium, while the oscillator vibrates
at small amplitude, but whenγ exceedsγB, there are two
possible solutions and the system follows one of them
based on the initial conditions. If the initial conditions are

c© 2018 NSP
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Fig. 6: (continued)

Fig. 7: System time-histories according to pointsP1 (i.e.σ2 =−0.1, γ = 0.08) andP2 (σ2 =−0.1, γ = 0.24) that marked
on Fig. 6: (a) Duffing oscillator, and (b) pendulum

small the system traces the curve A-B-C. When reaching
point C, the absorber loses its trivial solution through a
transcritical bifurcation and the resulting non-trivial
solution encounters a saddle-node bifurcation leading to a
jump to point D. Upon further increasing ofγ the system
amplitude traces the curve D-E-F. If the initial conditions
are large the system will trace A-B-D-E-F path. Figs. 6e
and 6f show the system force-response curve when
σ2 = −0.2 while Figs. 6g and 6h show the system
force-response curve atσ2 = 0.1. Fig. 7 shows the time
histories for both the oscillator and pendulum
displacements according to pointsP1 andP2 that marked
on Fig. 6. The influence of the nonlinear parameterα1 on
the system frequency-response curve is presented in Fig.
8. The figure shows that asα1 increases both the
oscillator and the pendulum steady state amplitudes
decrease without observable effect on the pendulum
bandwidth. Fig. 9 shows the time histories according to
pointsP1, P2, andP3 that marked on Fig. 8. In Fig. 10, we
show the influence of α2 on the system

frequency-response curve. Increasingα2, decreases both
the oscillator and pendulum steady state amplitudes and
increases the pendulum active bandwidth. The time
histories for both the oscillator and pendulum according
to pointsP1 andP2 that marked on Fig. 10 are shown in
Fig. 11. Fig. 12 shows the effect of the pendulum linear
damping coefficientµ2 on the frequency-response curve
of the system. It is noted that decreasingµ2 decreases the
oscillator steady-state amplitude and increases the
pendulum steady-state amplitude. Fig. 13 and 14 show
the time histories according to pointsP1 and P2 that
marked on Fig. 12, where Fig. 13 was plotted at initial
conditionsy(0) = ẏ(0) = θ̇ (0) = 0,θ (0) = 0.1 and Fig.
14 was plotted at initial conditions
y(0) = ẏ(0) = θ̇ (0) = 0,θ (0) = −

π
2 . It is clear from both

figures that the energy transfer from the oscillator to the
pendulum increases asµ2 decreases. However, changing
the initial conditions affect only the transient response of
the system.
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Fig. 8: Effect of increasing the nonlinear parametersα1 on the system frequency-response curves: (a, b, c) Duffing
oscillator, and (d) pendulum

Fig. 9: System time-histories according to pointP1, P2, andP3 that illustrated in Fig. 8: (a) Duffing oscillator, and (b)
pendulum
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Fig. 10: Effect of increasing the nonlinear parametersα2on the frequency-response curves: (a) Duffing oscillator, and (b)
pendulum.

Fig. 11: System Time-histories according to pointP1 (σ2 = 0.17,α2 = 0.5), andP2 (σ2 = 0.17,α2 = 1.0) that marked on
Fig. 10: Duffing oscillator, and (b) pendulum.

5 Conclusions

1.At perfect external tuning (i.e.σ2 = 0), the saturation
phenomenon occurs and the Duffing oscillator
vibration amplitude saturates to a very small value,
while all excessive vibrational energy of the oscillator
due to increasing of the excitation amplitude is
pumped to the pendulum parametrically.

2.At negative external detuning (i.e.−0.2 ≤ σ2 < 0),
increasing the excitation force amplitude (γ),
increases vibration amplitude of Duffing oscillator
until γ reaches a critical value, beyond this value the
Duffing oscillator vibration amplitude decreases asγ
increases.

3.At positive external detuning (i.e.0< σ2 ≤ 0.1)),
increasing the excitation force amplitude (γ),
increases the oscillator vibration amplitude untilγ

reaches a critical value, beyond this value the
pendulum adds more vibrational energy to the
oscillator instead of absorbing it. Accordingly, the
occurrence of positive detuning must be avoided in
the design of such systems.

In comparison with previous work [7,8,9,10,11,12],
the authors discussed an autoparametric system consists
of a nonlinear oscillator attached to pendulum system.
They obtained an approximate analytical solution for the
system equations of motion using harmonic balance
method. The influence of some essential parameters on
the system stability is studied. In [10] they studied the
vibration control of Duffing oscillator mounted on
magnetorheological (MR) damper and nonlinear spring
attached to a pendulum. They concluded that the control
methods allow the system to maintain on the desirable
attractor. Warminski et al. [11] studied vibration analysis
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Fig. 12: Effect of decreasing the absorber linear damping coefficient µ2 on the frequency-response curves: Duffing
oscillator (left column), and pendulum (right column).

of an autoparametric pendulum-like mechanism subjected
to harmonic excitation. They proposed a suspension
composed of a semi-active MR damper and a nonlinear
spring. Kecik [12] studied the nonlinear oscillations of
autoparametric system consists of a nonlinear oscillator
attached to a pendulum. A combination of MR damper

and a nonlinear spring made from a shape memory alloy
are proposed.

In this paper, the system amplitude-phase modulating
equations are extracted utilizing the multiple scales
perturbation method. Bifurcation behavior of the system
is explained in details. The effects of the coupling
parameters, pendulum linear damping coefficient, and
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Fig. 13: System time-histories according to pointsP1 andP2 that showed on Fig. 12 and initial conditionsy(0) = ẏ (0) =
θ̇ (0) = 0, θ (0) = 0.1 of: (a) Duffing oscillator, and (b) pendulum.

Fig. 14:System time-histories according to pointsP1 andP2 that marked on Fig. 12 at the initial conditionsy(0) = ẏ(0) =
θ̇ (0) = 0, θ (0) =−

π
2 : (a) Duffing oscillator, and (b) pendulum.

excitation amplitude on the system response curves are
explored. Numerical confirmations for the all acquired
results are performed. The time histories are conducted to
show the exchange of energy between the two subsystems
(i.e. Duffing oscillator and the pendulum). The optimal
working conditions of such system are concluded. The
force-response curve before and after attaching the
pendulum to the oscillator is investigated for the first
time, where an interesting phenomenon that is not
reported before that is “At small negative detuning
parameter (i.e.−0.2 ≤ σ2 < 0), beyond specific value of
the excitation force (γ), the vibration amplitude of
Duffing oscillator decreases as the excitation force
increases”.
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