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Abstract: This paper investigates the vibration control of a harmalhjcexcited Duffing oscillator via a simple pendulum. The
amplitude-phase modulating equations governing the systgnamics are extracted utilizing perturbation methodéurBation
analyses are conducted and the Lyapunov direct method Iedgp study the system stability. The uncontrolled sysesthibits

a variety of nonlinear phenomena such as jump phenomenddlesaode, and transcritical bifurcations. The analybioaed that
the oscillator vibrational energy could be transferrechapendulum parametrically when the pendulum natural #equis equal to
one-half the oscillator natural frequency. Numericaldation for the obtained analytical results was performduckvis in excellent
agreement with the analytical ones. By the end of this wodqgraparison with published work is included.

Keywords: autoparametric, saturation phenomena, resonance, saoftifebifurcation, transcritical bifurcation.

1 Introduction base excitation of the primary system. Autoparametric
systems consist of two nonlinear subsystems coupled to
interact in a way so that one of them (high natural

Vibrations are initiated when an inertia element is frequency subsystem) transfers the exogenous energy

displaced from its equilibrium position due to an energy

. ed 1o th " th h : | parametrically to the other (low natural frequency
Imparted o {he system through an externa Sc’urcesubsystem). Warminski et al.7,8,9,10,11] discussed
Vibrations in many engineering systems can lead to

. L . .autoparametric system consists of a nonlinear oscillator
catastrophic _ situations _and. dangero_us accidents i ith an attached pendulum. In Refl][they derived the
uncontrolled. Therefore, vibration reduction, contraida system equations of motion. The model showed that the
stabilization of dynamical systems are quite 'mpor.tamsystem is strongly nonlinear and the motions of both
prott>le|ms. (\j/anous ttt_echnlques of . wbranor:j re‘?ucugnisubsystems are strongly coupled by inertial terms leading
control, ‘and some Ume Suppression aré developed 19, e so-called autoparametric vibration. An approximate
channel the excess energy from _the e>_<C|te_d system to gnalytical solution of the system model is obtained
slave one. One of the most feasible vibration reductlona plying the harmonic balance meth@. [The influence
tmhe:hﬁds 'S the jgturanondpgenﬁmefnﬁn lt)ased tﬁchmqué) some essential parameters on the system stability is
a taj tﬁetn .|sc?r:/ere y ?ye g ta]] [T eyl. discussed in Refd]. In Ref. [10], the authors studied the
reported that n € case Of quadralic COUPlINg ;s ation control of Duffing oscillator mounted on
nonlinearities th.e energy trgnsfer is complete if themagnetorheological (MR) damper and nonlinear spring
natural frequencies of the main system and the Seconda%tached to pendulum. Warminski et afll] studied

s;;}stem are Irh] ths rat;ﬁ twob_ tot ofne.tThg S?gurat'?nv'bration analysis of an autoparametric pendulum-like
phenomenon nas been the SUbject of ExIenSIVE INEOTEUCH o oy anigm subjected to harmonic excitation. They

a_rg)d (i?(penrtr)\entgl rest(;artch 3’?('5’?' Oge of ttr;]e pastswet_ roposed a suspension composed of a semi-active MR
vibration absorbers that works based on the saturatio amper and a nonlinear spring. Kecik?] studied the

phenomenon is the autoparametric vibration absorloernonlinear oscillations of autoparametric system consists

The main structure of such system lies in attaCh'ngofanonIinear oscillator attached to pendulum system. A

absorber (pendulum) to the primary system (oscillator) Ncombination of MR damper together with a nonlinear
a way such that the pendulum is exposed to a parametric
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spring made from a shape memory alloy is proposed. Hgendulum inclination angle, respectivelys, u» Linear
concluded that it is possible to fit on-line the structure damping coefficients of the Duffing oscillator system and
response to the frequency and amplitude of externapendulum, respectivelyw; Linear natural frequency of
excitation. Brzeski et al.1[3] studied the dynamics of the the Duffing oscillator systenf3;, B, The system nonlinear
pendulum suspended on forced Duffing oscillator. Thestiffness coefficients.a;,a, The system nonlinear
detailed bifurcation analysis in two-parameter space hagsoupling coefficientsQ, y External excitation frequency
been performed. They found too large ranges of theand external excitation amplitude, respectively.
parameters space have only one attractor around 1:1 ) . ) )
principal resonance in neighborhood of 2: 1 internal ~ Replacing the nonlinear functions éinand co® in
resonance. Refs1§,1516,17,18 studied the same €quations (1) and (2) by their third-order approximating
model with different analytical techniques. In Refso] ~ Taylor series, yields:

20,21] the pendulum is studied as a nonlinear vibration

absorber attached to a horizontally moving Duffing v 1,y + w?y+ Bry® = ycog Qt)

oscillator at 1:1 internal resonance and 1:1 principal 1. 1. _ .

parametric resonance. Tusset et &2[ studied the + a1 <_9292+_993_92_99) ©)
chaotic behaviors control of parametrically excited 2 6

pendulum using two different control strategies. One of

this applied control method is via the active nonlinear .. : 1. .

saturation controller, and the other via introducing a6+“29+6_[3263:a2 (6y93—y9> )
passive rotational MR damper. Within this paper, a ] ] )

detailed analysis for a vertically moving Duffing Applying the multiple scales perturbation method
oscillator attached pendulum has been introduced. Base?3: we can obtain a first-order approximate solution to
on the results obtained in Refld, the 1:2 internal equations (3) and (4) by seeking the solution as:
resonance case is studied when the oscillator is excited

periodically near its natural frequency (primary _ 2

resonance). The system amplitude-phase modulating(t’g) =Ya(To, Ta) +&¥2(To, Ta) + O(e%) ©)
equations are extracted applying the multiple scales

perturbation technique. The frequency-response curves 2

before and after linking the absorber to the system aré(t:€) = 01(To, T1) + £62(To, Ta) + O(€) (6)
obtained. The effects of the coupling parameters, absorber \yhere ¢ is a small dimensionless perturbation
linear damping coefficient, and excitation amplitude ON harameter used for book-keeping orlly,= t andT; = &t
the frequency-response curve are explored. Numerical e the fast and slow time scales, respectively. In terms of

cgnfirmations for the all acquired results are performed.—r0 andT; the time derivatives can be expressed using the
Time-histories are conducted to show the exchange ofnhain rule as:

energy between the two subsystems (i.e. the Duffing
oscillator and the pendulum). Finally, important notes are

included for the optimal working conditions and design of E -D D d_ — D24 2¢DD
such system. at o+€&D, a2 6+ 2eDgD1,
0 .
where Dj_d_Tj’ 1=01 (7)

2 System model and Perturbation analysis To make damping, nonlinearities, and the excitation

écarce appear in the same perturbed equation, the system

The considered system consists of a pendulum suspend
Y P P parameters have to be scaled as follows:

on the Duffing oscillator, where the oscillator is excited
periodically in the vertical direction as shown in Fig.1€Th
system dimensionless equations of motions are given ag, = (i, , B = £0n, On = &Gn, y=¢€y; n=1.2
follows [7,8] 8

) ) Substituting equations (5) to (8) into equations (3) and
Y+ H1y+ iy + By’ = ycogQt) — a1(6sin6 + 62cosh) (4), and equating coefficients of like powersgfwe get
(1)  the following set of differential equations:

6 + U6 + Sin6 = —azysind 2

H2 2y ( ) 0(80) :

List of symbols:y,y,y Displacement, velocity, and (D(2)+ 0)12))/12 0 )
acceleration of the Duffing oscillator system, respedyivel 2
8,0,6 Displacement, velocity, and acceleration of the (Po+1)61=0 (10)
(© 2018 NSP
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. o | resonance® = w; = 2,Q = w; = 4). In this paper, the
% f,=f cos(Q 1) simultaneous resonances cas® E w; = 2) is
\ 0 considered. So, the closeness of the considered
K ’\’ resonances can be described quantitatively by introducing
= - c the detuning parametegs ando, according to:
Fig. 1: System model W =2+01=2+¢€0,
QN =2+0,=2+¢£0, a7
O(eh) : Inserting equations (17) into secular and the
(D3 + w?)y, = —2DoD1y1 — fiDoy: — BA1Y§ small-divisor terms in equations (15) and (16), we get
1 1
—d1 ( (1—262)61D6; + (1— = 67)(Dob1)? , - 5 o
(- gehnoge: + 1 360 o) (D3 + @f)yz = (~2iaD1A— ifhcnA— SHAZR)ETO
+ VCOth) (11) _ B’\1A3e3i(4)_|_T0 + 20"182(1_ %BB_)efiUAlTleia)_]_To
R 2 . ) V in s .
(Dg + 1)92 = —2DOD161 — [szoel + 32613 - é 1B4e4IT0 + gel(az Ul)TlelwlTo +CC
- 1 18
~a ((1- 4 67)6:0%y, 12) (19)

The solution of equations (9) and (10), can be _, i . .
expressed as (D§+1)62 = (—2iD1B —if1:B+ 3B,B°B)€

+ B,B%e¥T0 — %o?za;fAB3é<‘*h+3>To

Y1(To, Ta) = A(TL)g“*™ +cc (13) 2an (Lng (DT
. _ A —_ _ 0
61(To, ) = B(T1)d™ +-cc (14) Gaofe (558-1)
where cc denotes the complex conjugate of the _ o?zwaET(}BE?— 1) gdiTigTo
preceding terms. Inserting equations (13) and (14) into 2

equations (11) and (12), we have
(D3 + wf)yz = (—2iwD1A — iflicpA— 3G A?A)“1TO
— BiA%S o 4 26, B2(1— %BB_)eZiTO

- éc‘rzwle_\B%*i‘flTleiTO +cc
(19)
The solvability conditions of equations (18) and (19)

2, - V are
- éalB“e‘“TO + ge'mo +cc

15 _ gigyDiA— i LA — 3B1AZA
R 1 — . Vic o
. S o + 2G,B%(1— zBB)e 9N 4 1% — g 20
(D3+1)6, = (—2iD1B—if1B+ 33,B°B)eT° ( 3 ) 2 (20)
+ B33 — %o?zafAB3é<M+3>To
1 _ , ~2iD1B — ifiB+33,B?B dzwleB_(:—ZLBB_ —1)goh
— GLw{AB (EBB— 1) d(@+1To L
L — édzwleB3e_'UlT1 =0 (21)
— d202AB (EBB_ — 1) d(@-1To
- }&za%AB_Bei(“’l*E’)TO +cc To analyze the solutions of equations (20) and (21), we
6 let
(16)

The deduced resonance conditions from equations 1 D (T 1 Do (T
(15) and (16) are the primary resonanc® & wy), A(T1) = ial(Tl)e' (M) B(Ty) = EUZ(Tl)e' 2(T)
internal resonancew§ = 2,w; = 4), and simultaneous (22)
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where a; and a, are the steady-state amplitudes of

Duffing oscillator and pendulum, respectively, and A,

The performance of the pendulum as a passive
vibration absorber can be evaluated by solving the

are the phases of the two motions. Inserting equationgionlinear algebraic equations (24) numerically in terms
(22) into (20) and (21) with separating the real and of 01,0, 01,02, B1, 42 andy.

imaginary parts, we get the flowing amplitude-phase

modulating equations governing the system dynamics.

&1 = —3H181 — 545 0185(1 — 1583) SiN(92) — 55 Sin($1),
(23.a)
b1 =01—0 3[3a2 apas(1— 1a)cos(¢)
171—2+ﬁ11—m12 1% 2
Zoola cos(¢1), (23.b)
. 1 1, 1
a = —§U232+ Zazwlalaz (1 1232> sin(¢2),
(23.c)
b =0 +iﬁa2+§ﬁa2——cos(¢)
2 =0U1 8(})_]_ 1 1 4 2 2 20.)_La. 1
1 2 1,
—malaz(l - 1—2a2) cog ¢7)
1
~apefan (7508 3 ) coste).
(23.d)

whereg; = A1 — (02 — o1)t andgp = A1 — 242+ o1t .
At steady-state oscillations, we haag=a, = ¢1 = ¢ =
0, substituting this conditions into equations (23), we get

1 1 y
[has + aala%(l 12a2)sm(¢2) + o sin(¢1) =0
(24.3)
3 2
01— 02+ mﬁlal
1 2 1,
— m aas(1— 1—2612) cog ¢2)
y
_ — 24.
Seona cog ¢1) (24.b)

1 1 .
Uoap — Eazwfalaz (1 — 1—2a§> sin(p2) =0  (24.c)

3B, 3B, Vv
01+8wlal+ 4 ® 20.>la1005(¢1)
01 2 1
2wna 5(1— 1232)005(452)
1
~apofes (@5 )ooto) =0 (240)

3 Steady state solution stability

The stability of the equilibrium solution is determined by
examining the Jacobian matrix eigenvalues of the
right-hand sides of equations (23). To derive the stability
criteria, we need to examine the behavior of small
perturbation from the steady-state soluti@n, 20, $10
and¢yo) of equations (24). Thus, we assume that

a1 = ai1+aio, & = az1-+ ago,
$1= ¢11+ P10, $2 = P21+ P20

a=a11, a=ay Q1=0¢11, P2=20x

(25)

where a1, 021, 911 and ¢,1 are perturbations, which
are assumed to be small compared to the assumed steady
state solution (aig, 020,10 and ¢op). Substituting
equations (25) into equations (23), and expanding for
smallaii, az1, $11 and o1 and keeping linear terms only,
we get

a1 r11r12 13 ri4] [aa1
$11| _ |raafoaragrloal |¢u1 (26)
ao1 r31r32r33ras| |ao1
02 F41 742743744 (0]

where the above matrix represents the system
Jacobian matrix. Thus, the stability of the steady-state
motion depends on the eigenvalues of Jacobian matrix.
One can obtain the following eigenvalue equation

3+ 018° +226° + 436+ 4 =0 (27)

where & denotes eigenvalues of Jacobian matrix,
(1,{2,{3 and (4 are coefficients of equation (27).
According to Routh-Hurwitz criterion, the necessary and
sufficient conditions for stable system are

{24>0, {>0.
(28)

(>0, 18— 43> 0, (3(GLl—{3) —
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4 Results and discussions curve B-E until o> reaches point E. At point E, the
absorber loses the stability of its trivial solution thréua
transcritical bifurcation and the resulting non-trivial
solution encounters a saddle-node bifurcation, leading to
jumping up to the point D. Further increasing @f, the
i unstable region system amplitude traces the curve D-F-K-G. when
35} [5] stuble region reaches point G, the solution encounters a saddle-node
bifurcation leading to jumping to point H, where the
trivial solution of the absorber is reached again. If the
=05 initial conditions are large, the system will trace the
A-B-C-D-F-K-G-H-1 path. As 0, decreases gradually
from a large positive value the absorber remains in static
equilibrium with the trivial solution, while the oscillato
vibrates at small amplitude untib reaches point H. After
0, crossing the point H, there are two possible solutions.
If the initial conditions are small the system response will
trace the curve H-J. When J is reached, the absorber loses
the stability of its trivial solution through a transcriic
bifurcation and the resulting non-trivial solution
encounters a saddle-node bifurcation leading to a jump to
point K. Further decreasing af,, the system amplitude
traces the curve F-D until point C is reached, at that point
Fig. 2: Duffing oscillator frequency-response curves atC, the solution encounters a saddle-node bifurcation
different values of the excitation amplitugle leading to a jump to point B, where the trivial solution of
the absorber is reached. If the initial conditions are large
the system will trace the I-H-G-K-F-D-C-B-A path. The
The considered system is investigated at different valuesigure also verifies a good agreement between the
of its parameters. The obtained results are presented inbtained analytical solutions and the numerical
graphical forms as steady-state amplitudes againssimulations of the original equations (1) and (2). Fig. 4
detuning parameteo, and the excitation amplitudg. shows the system time histories according to pBjrthat
The system is analyzed at the parameters valuesnarked on Fig. 3 (i.e. at» = 0.0,y = 0.1). It can be seen
Up = 0.0716 o = 0.0202wy = 2,01 = 0.36360, = from the figure that the vibrations are transferred
0.25,3; = 0.10313, = 0.166601 = 0> = 0.0 and parametrically from the oscillator to the absorber. The
y = 0.1 unless otherwise specified [7-13]. The bifurcation numerical solution of equations (23) for the chosen values
diagrams were plotted as solid lines correspond to stablef the system parameters is presented graphically in Fig.
solutions, and as dashed lines correspond to unstablé. The dashed lines show the modulation of the
ones. To validate the accuracy of the analytical resulés, th amplitudes for the generalized coordinates y &éxdhe
original equations (1) and (2) have been integratedsimulation results show that equations (23) describe with
numerically using the slandered Matlab solver high accuracy not only the steady-state modulating
ODE45.The obtained numerical results were shown asamplitudes, but also the transient modulating amplitudes
small circles at the initial conditions of the whole system. The time histories of the system
y(0) = y(0) = 6(0) = 0,6(0) = 0.1 and as big-dots at the according to point$ andP; that marked on Fig. 3 are
initial conditionsy(0) = y(0) = 6(0) = 0,6(0) = — 7. shown in Fig. 5. It is noticed that the system parameters
Fig. 2 shows Duffing oscillator frequency-response curvesaccording to the two point®, and Ps are the same, but
when exposed to various levels of excitation amplityde the initial conditions of the pendulum are changed from
It is clear from the figure that as the excitation amplitude 8(0) = —7 to 6(0) = 0.1 , whereas other initial
increases the response-curve bend to the right leading toonditions remain zeros. The figure confirms the
jump phenomenon occurrence and the nonlinearitysensitivity of the system to the initial conditions. In Fig.
dominates the response. Fig. 3 shows the controlled, we illustrate the force-response curves of both Duffing
system frequency-response curve gt= 0.1. The  oscillator and pendulum at four different valuesmf We
response amplitude depends a’p and the initial can trace the histories of bott; and a, when the
conditions, whereag, increases gradually from a large excitation amplitudey is slowly increased beyond zero.
negative value, the absorber remains at static equilibriunnitially, both a1 and a, are zeros and they follow the
(trivial solution), while the oscillator vibrates with stha curve according to the value @h. Fig. 6a shows that at
amplitude until o> reaches point B, beyond this point 0, = 0 the oscillator steady-state amplitude increases as
there are two possible stable solutions, where the systerthe excitation force amplitude increases uptileaches a
will follow one of them based on the its initial conditions. critical value, while the absorber steady-state amplitude
If the initial conditions are small, the system will traceth remains zero. Beyond this critical value the oscillator

0.5F

0
-0.
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Fig. 3: System frequency-response curves: (a) Duffing oscillatod, (b) pendulum, ay = 0.1, the circles denote the
numerical solutions according to initial condition®) = y(0) = 6(0) =0, 8 (0) = 0.1, while the big-dots represent the

numerical solutions according to initial condition®) =y(0) = 6(0) =0, 6 (0) = — 7.

b ——— fit] numerical integrations
sevens @[t} pariurbation solution

With numerical Integrations
vemensd (i} poeriurbations solution

osfd

oz % E EE1S

(' Ier'ﬂ.-ﬁﬂ et Inln'nl [—T—
YUDI=3A0) =0, il jm-1er 3, (g 0=id
e Bt for =023 mrd Initial condibons

WD) =y (0F=0, (5K i, 1, hym0)=th

I |

Y{O)=y(0)=0, 0{0)=—m/2 H(0)=0
S it} for 0,=-0.23 and initial conditions

VIO)=y(0}=0. B(0)= 1) 100 )~0

1
yit) for 5, =-0.23 and Initial conditions u

o 50 100 150 200 250 300 =
t t

Fig. 5: System time-histories according to poirs and P; that illustrated in Fig. 3: (a) Duffing oscillator, and (b)
pendulum

@© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 1, 203-215 (2018)www.naturalspublishing.com/Journals.asp %_ﬁ N//Sh}i’) 209

1.5 1
Stable perturbation solutions a — stable perturbation solutions b
=== unstable perturbation solutions 0.9 4 === unstable perturbation solutions
o Numerical integrations for o Numerical integrations for
Y(0)=y(0)=0, O(H)=0.1, ()= A 0.8 1 Y(0)=v(0)=0,0(0)=0.1, (H(0)=0
" Numerical integrations for — « Numerical Integrations for /

y(0)=¥{0)=0, O(0)=-7t/2, {0)=0 // 0.7 4 ytD)-v(OJ-o.0(0)=-mz.0(lll=il/

19
// 69 /
- //
P
0.5 //
/ e <
___________._——v
o=
o
a 0.05 0.1 0.185
Y
0.6
0.5
0.4 4
03 /
C -~
0.2 1
- *
0.1 4 /
A

Fig. 6: Effect of varying the external detuning parametgon the force-response curves: Duffing oscillator (left ca),
and pendulum (right column)

steady-state amplitude saturates to a constant value aramplitude of the response dependsjyomagnitude and
all excessive energy due to excitation force is channeledhe system initial conditions. Foy < yg, the absorber
to the pendulum as shown in Fig. 6b. In addition, the remains in static equilibrium, while the oscillator vibeat
figure shows that the system motion is independent of theat small amplitude, but whep exceedss, there are two
initial conditions. Figs. 6¢c and 6d show the possible solutions and the system follows one of them
force-response curves ap = —0.1. It is clear that the based on the initial conditions. If the initial conditionga
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= it} for Y=0.24
—— [)tjforY=0.08

5I0 IEIO |'50 E%U 2;0 260 zia aéa aéff 400
t

Fig. 7: System time-histories according to poifig(i.e. g, = —0.1, y= 0.08) andP; (0> = —0.1, y = 0.24) that marked

on Fig. 6: (a) Duffing oscillator, and (b) pendulum

small the system traces the curve A-B-C. When reachindgrequency-response curve. Increasimg decreases both
point C, the absorber loses its trivial solution through athe oscillator and pendulum steady state amplitudes and
transcritical bifurcation and the resulting non-trivial increases the pendulum active bandwidth. The time
solution encounters a saddle-node bifurcation leading to distories for both the oscillator and pendulum according
jump to point D. Upon further increasing gfthe system to pointsP; andP, that marked on Fig. 10 are shown in
amplitude traces the curve D-E-F. If the initial conditions Fig. 11. Fig. 12 shows the effect of the pendulum linear
are large the system will trace A-B-D-E-F path. Figs. 6e damping coefficient, on the frequency-response curve
and 6f show the system force-response curve wherof the system. It is noted that decreaspggdecreases the
o> = —0.2 while Figs. 6g and 6h show the system oscillator steady-state amplitude and increases the
force-response curve ab = 0.1. Fig. 7 shows the time pendulum steady-state amplitude. Fig. 13 and 14 show
histories for both the oscillator and pendulum the time histories according to poin® and P, that
displacements according to poires and P, that marked marked on Fig. 12, where Fig. 13 was plotted at initial
on Fig. 6. The influence of the nonlinear parametgeon  conditionsy(0) = y(0) = 6(0) = 0,6(0) = 0.1 and Fig.

the system frequency-response curve is presented in Fid.4 was  plotted at initial conditions

8. The figure shows that as; increases both the y(0)=y(0)=6(0)=0,6(0)=—7Z. Itis clear from both
oscillator and the pendulum steady state amplitudedigures that the energy transfer from the oscillator to the
decrease without observable effect on the pendulunpendulum increases as decreases. However, changing
bandwidth. Fig. 9 shows the time histories according tothe initial conditions affect only the transient respone o
pointsP;, P,, andP; that marked on Fig. 8. In Fig. 10, we the system.

show the influence of a, on the system
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A\
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\

] cx.]=ﬂ.l
] u[=l.l]

1 uI—IU.IJ

Fig. 8: Effect of increasing the nonlinear parameterson the system frequency-response curves: (a, b, ¢) Duffing
oscillator, and (d) pendulum

bl — (] for =0,
a b )
0.5 v['lJ'roru‘-u.‘l ik —— 00t fore, =10
_ FEIJ fera, =1.0 — O{t}lor o, =10
¥ for o, =10 ik
0.5k
3 o 0 WV‘W
0.5
A
1.5
0.5
L : " 2 b= N " L M i
a 50 100 150 200 250 300 a 50 100 150 200 250 300
t

Fig. 9: System time-histories according to poft P», andP; that illustrated in Fig. 8: (a) Duffing oscillator, and (b)
pendulum
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Fig. 10: Effect of increasing the nonlinear parametegsn the frequency-response curves: (a) Duffing oscillatut, (&)
pendulum.

+ v T v T —r v
— yit) fora 0.5 E —— it} fora,=0.5 b
0.3} ==== yit) Tor «c,21.0 ——== Otifor i =1.0
|
(18] 3
ad | l
= 0
I 4
0.1 i 1l I
a2
0.3f
il i i “ A i i \ L i i i H i i
"o 20 40 60 BO 100 120 140 160 180 200 O 100 1z 140 160 180 200

t t

Fig. 11: System Time-histories according to poit(g, = 0.17,a, = 0.5), andP, (0> = 0.17, a, = 1.0) that marked on
Fig. 10: Duffing oscillator, and (b) pendulum.

5 Conclusions reaches a critical value, beyond this value the
pendulum adds more vibrational energy to the
oscillator instead of absorbing it. Accordingly, the
occurrence of positive detuning must be avoided in
the design of such systems.

1.At perfect external tuning (i.er» = 0), the saturation
phenomenon occurs and the Duffing oscillator
vibration amplitude saturates to a very small value,
while all excessive vibrational energy of the oscillator In comparison with previous work7[8,9,10,11,12,
due to increasing of the excitation amplitude is the authors discussed an autoparametric system consists
pumped to the pendulum parametrically. of a nonlinear oscillator attached to pendulum system.

2.At negative external detuning (i.e-0.2 < 0» < 0), They obtained an approximate analytical solution for the
increasing the excitation force amplitudey),( system equations of motion using harmonic balance
increases vibration amplitude of Duffing oscillator method. The influence of some essential parameters on
until y reaches a critical value, beyond this value thethe system stability is studied. Iri1(] they studied the
Duffing oscillator vibration amplitude decreasesyas vibration control of Duffing oscillator mounted on
increases. magnetorheological (MR) damper and nonlinear spring

3.At positive external detuning (i.e& o> < 0.1)), attached to a pendulum. They concluded that the control
increasing the excitation force amplitudey),( methods allow the system to maintain on the desirable
increases the oscillator vibration amplitude until  attractor. Warminski et al.1[1] studied vibration analysis
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Fig. 12: Effect of decreasing the absorber linear damping coeffigignon the frequency-response curves: Duffing
oscillator (left column), and pendulum (right column).

of an autoparametric pendulum-like mechanism subjecteénd a nonlinear spring made from a shape memory alloy

to harmonic excitation. They proposed a suspensiorare proposed.

composed of a semi-active MR damper and a nonlinear |n this paper, the system amplitude-phase modulating

spring. Kecik [L2] studied the nonlinear oscillations of equations are extracted utilizing the multiple scales

autoparametric system consists of a nonlinear oscillatoperturbation method. Bifurcation behavior of the system

attached to a pendulum. A combination of MR damperis explained in details. The effects of the coupling
parameters, pendulum linear damping coefficient, and
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Fig. 13: System time-histories according to poifsandP; that showed on Fig. 12 and initial conditiopf) =y (0) =
6(0) =0, 6(0) =0.1 of: (a) Duffing oscillator, and (b) pendulum.
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Fig. 14: System time-histories according to poifisandP; that marked on Fig. 12 at the initial conditiop&) =y (0) =
6(0) =0, 6(0) = —Z: (a) Duffing oscillator, and (b) pendulum.
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