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Abstract: In this paper, we introduce a new generalization of the Hermite polynomials via(p,q)-exponential generating function
and investigate several properties and relations for mentioned polynomials including derivative property, explicitformula, recurrence
relation, integral representation. We also define a(p,q)-analogue of the Bernstein polynomials and acquire their some formulas. We
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1 Introduction

During the last three decades, applications ofquantum
calculus based onq-numbers have been studied and
investigated succesfully, densely and considerably (see
[7,8]). In conjunction with the motivation and inspiration
of these applications and introduction of the
(p,q)-numbers, many mathematicians and physicists have
extensively developed the theory ofpost quantum
calculus based on(p,q)-numbers along the traditional
lines of classical and quantum calculus. Agyuzet al. [2]
presented some novel results of multiplications of
(p,q)-Bernstein polynomials and derived several new
relations with related to(p,q)-Gamma and(p,q)-Beta
functions. Duranet al. [3] introduced a new class of
Bernoulli, Euler and Genocchi polynomials based on the
(p,q)-calculus and investigated their many properties
involving addition theorems, difference equations,
derivative properties, recurrence relationships, and so on.
Furthermore, they derived(p,q)-extension of Cheon’s
main result and(p,q)-analogue of the Srivastava and
Pintér’s addition theorem. Sadjang [9] investigated some
properties of the (p,q)-derivative and the
(p,q)-integration and presented two appropriate
polynomials basis for the(p,q)-derivative, and then he
derived various properties of these bases. As an
application, he provided two(p,q)-Taylor formulas for

polynomials. Furthermore, he stated the fundamental
theorem of (p,q)-calculus and proved the formula of
(p,q)-integration by part.

The(p,q)-number is defined as

[n]p,q =
pn − qn

p− q
(0< q < p ≦ 1) .

Note that [n]p,q = pn−1 [n]q/p , where [n]q/p stands for

q-number known as[n]q/p = (q/p)n−1
(q/p)−1 . One can see that

(p,q)-number is closely related toq-number with this
relation [n]p,q = pn−1 [n] q

p
. By appropriately using this

obvious relation between theq-notation and its variant,
the (p,q)-notation, most (if not all) of the (p,q)-results
can be derived from the corresponding knownq-results
by merely changing the parameters and variables involved
(see [4], [5]).

The(p,q)-derivative operatorDp,q;x f (x) of a function
f with respect tox given as

Dp,q;x f (x) :=Dp,q f (x)=
f (px)− f (qx)

(p−q)x
(Dp,q f (x) whenx 6= 0; f ′ (0) whenx = 0)

(1)

is a lineer operator and satisfies the following property

Dp,q ( f (x)g(x)) = f (px)Dp,qg(x)+ g(qx)Dp,q f (x) .
(2)

∗ Corresponding author e-mail:mtsrkn@hotmail.com

c© 2018 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/120122


228 U. Duran et al.: A note on the (p,q)-Hermite Polynomials

The(p,q)-power basis is defined by

(x⊕a)n
p,q :=

{

(x+a)(px+aq) · · · (pn−2x+aqn−2)(pn−1x+aqn−1) if n ≥ 1,
1 if n = 0,

or equivalently by

=
n

∑
k=0

[n
k

]

p,q
p
(k

2

)

q
(n−k

2

)

xkan−k.

where
[ n

k

]

p,q is given by

[n
k

]

p,q
=

[n]p,q!

[n− k]p,q! [k]p,q!
(n ≥ k;n ∈ N0)

with [n]p,q! = [n]p,q [n−1]p,q · · · [2]p,q [1]p,q and [0]p,q! =
1.

Let

ep,q(x) =
∞

∑
n=0

p
(n

2

)

xn

[n]p,q!

denote(p,q)-exponential function having the following
(p,q)-derivative representation

Dp,qep,q(x) = ep,q(px). (3)

The definite(p,q)-integral for a functionf is defined
by

∫ a

0
f (x)dp,qx = (p− q)a

∞

∑
k=0

pk

qk+1 f

(

pk

qk+1 a

)

(4)

with
∫ b

a
f (x)dp,qx =

∫ b

0
f (x)dp,qx−

∫ a

0
f (x)dp,qx.

To see further detailed studies and investigations for
(p,q)-calculus, one can look at [2-5,9] and cited
references therein.

Throughout the paper, letN0, N, Z, R andC denote,
respectively, the set of all nonnegative integers, the set of
all natural numbers, the set of all integers, the set of all real
numbers and the set of all complex numbers.

The classical Hermite polynomials are defined by the
following exponential generating function to be

∞

∑
n=0

Hn (x)
tn

n!
= e2xt−t2 (see [6], [7], [8]). (5)

In the following parts, we introduce a new
generalization of the Hermite polynomials based on the
(p,q)-numbers via an exponential generating function
and investigate several properties and relations for
mentioned polynomials including derivative property,
explicit formula, recurrence relation, integral
representation. We also define a(p,q)-analogue of the
Bernstein polynomials and acquire their some formulas.
We then provide some(p,q)-hyperbolic representations
of the (p,q)-Bernstein polynomials. In addition, we
obtain a correlation between(p,q)-Hermite polynomials
and(p,q)-Bernstein polynomials.

2 Main Results

For a long time, the Hermite polynomials and its various
generalizations have been extensively studied and
investigated by many mathematicians and physicists (see
[6-8] and cited references therein).

We introduce (p,q)-extension of the Hermite
polynomials via the following (p,q)-exponential
generating function

∞

∑
n=0

Hn,p,q (x)
tn

[n]p,q!
= ep,q

(

[2]p,q xt
)

ep,q
(

−t2) . (6)

Remark.When p = 1, the (p,q)-Hermite polynomials
reduce to theq-Hermite polynomials defined by [8]

∞

∑
n=0

Hn,q (x)
tn

[n]q!
= eq

(

[2]p,q xt
)

eq
(

−t2) .

Remark.Whenq → p = 1, the(p,q)-Hermite polynomials
reduce to the classical Hermite polynomials defined by (5).

Now we give a fundamental property (known also as
explicit formula) of the (p,q)-Hermite polynomials
Hn,p,q (x) by the following theorem.

Theorem 1.The explicit formula based on (p,q)-numbers
for Hn,p,q (x) is given below:

Hn,p,q (x) =
⌊ n

2⌋
∑
k=0

(

[2]p,q x
)n−2k

(−1)k [n]p,q!

[n−2k]p,q! [k]p,q!
(7)

where ⌊·⌋ means the greatest integer function.

Proof.Using

∞

∑
n=0

∞

∑
m=0

A(m,n) =
∞

∑
n=0

⌊ n
2⌋

∑
m=0

A(m,n−2m) (see [6])

and (6), we get
∞

∑
n=0

Hn,p,q (x)
tn

[n]p,q!
= ep,q

(

[2]p,q xt
)

ep,q
(

−t2)

=





∞

∑
n=0

p
(n

2

)

(

[2]p,q xt
)n

[n]p,q!





(

∞

∑
n=0

p
(n

2

)

(

−t2
)n

[n]p,q!

)

=
∞

∑
n=0







⌊ n
2⌋
∑
k=0

(

[2]p,q x
)n−2k

[n]p,q! (−1)k

[n−2k]p,q! [k]p,q!







tn

[n]p,q!
,

which gives the asserted formula (7) by comparing the
coefficientstn/ [n]p,q! of both sides above.

The first few(p,q)-Hermite polynomials are listed via
(7) below:
H0,p,q (x) = 1,

H1,p,q (x) = [2]p,q x,

H2,p,q (x) = [2]2p,q x2− [2]p,q ,

H3,p,q (x) = [2]3p,q x3− [3]p,q [2]
2
p,q x,

H4,p,q (x) = [2]4p,q x4− [4]p,q [3]p,q [2]
2
p,q x2+[4]p,q [3]p,q ,

H5,p,q (x) = [2]5p,q x5− [5]p,q [4]p,q [2]
3
p,q x3+[5]p,q!x,

H6,p,q (x) = [2]6p,q x6− [6]p,q [5]p,q [2]
4
p,q x4+[6]p,q!x2− [6]p,q [5]p,q [4]p,q .
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Notice that upon settingq → p = 1 on the above gives the
classical Hermite polynomials.

From Eq. (7), we get the following corollary.

Corollary 1.For n ∈ N0, we have

H2n,p,q (0) =
[2n]p,q! (−1)n

[n]p,q!
and H2n+1,p,q (0) = 0.

The following proposition is a symmetric property for
Hn,p,q (x).

Proposition 1.For n ∈N0, we have

Hn,p,q (−x) = (−1)n Hn,p,q (x) . (8)

Proof.We readily obtain that
∞

∑
n=0

Hn,p,q (−x)
tn

[n]p,q!
= ep,q

(

[2]p,q (−x)t
)

ep,q
(

−t2)

= ep,q

(

[2]p,q x(−t)
)

ep,q

(

−(−t)2
)

=
∞

∑
n=0

(−1)n Hn,p,q (x)
tn

[n]p,q!
,

which yields to the claimed result (8).

Now we research some behaviours ofHn,p,q (x) by
applying(p,q)-derivative operator with respect tox andt
respectively.

Theorem 2.We have

Dp,q;xHn,p,q (x) =: H ′
n,p,q (x) = [2]p,q [n]p,q Hn−1,p,q (px) .

(9)

Proof.Applying the (p,q)-derivative operatorDp,q (1) to
the both sides of (6) with respect tox and using (2), we
acquire

∞

∑
n=0

Dp,q;xHn,p,q (x)
tn

[n]p,q!
= Dp,q;xep,q

(

[2]p,q xt
)

ep,q

(

−t2
)

= [2]p,q tep,q

(

[2]p,q pxt
)

ep,q

(

−t2
)

.

By comparing the coefficients tn

[n]p,q! of both sides above,

we get the alleged result (9).

The immediate results of the Eq. (9) are stated below:

Dp,q;xH2n,p,q (0) = 0 andDp,q;xH2n+1,p,q (0) = [2]p,q
[2n+1]p,q! (−1)n

[n]p,q!
.

Another result of the Eq. (9) is given form < n as follows:

Dm
p,q;xHn,p,q (x) =: H(m)

n,p,q (x) = p(
m
2)
[2]mp,q [n]p,q!

[n−m]p,q!
Hn−m,p,q (pmx) ,

whereDm
p,q;x shows(p,q)-derivative operator of orderm as

Dm
p,q;x = Dm−1

p,q;xDp,q;x.
In order to state Theorem3, we need the following

lemma.

Lemma 1.We have

Dp,q;t ep,q

(

−t2
)

=−ptep,q

(

−(pt)2
)

−qtep,q

(

−(t
√

pq)2
)

.

(10)

Proof.We observe that

Dp,q;tep,q
(

−t2) =
∞

∑
n=0

(−1)n p
(n

2

)

Dp,q;tt2n

[n]p,q!
=

∞

∑
n=1

(−1)n p
(n

2

) [2n]p,q t2n−1

[n]p,q!

= −
∞

∑
n=0

(−1)n p
(n

2

)

+n t2n+1

[n]p,q!

[2n+2]p,q
[n+1]p,q

= −
∞

∑
n=0

(−1)n p
(n

2

)

+n t2n+1

[n]p,q!

(

pn+1 +qn+1)

= −pt
∞

∑
n=0

(−1)n p
(n

2

)

(pt)2n

[n]p,q!
−qt

∞

∑
n=0

(−1)n p
(n

2

)

(

t
√

pq
)2n

[n]p,q!

= −tep,q

(

−(t p)2
)

−qtep,q

(

−(t
√

pq)2
)

.

Theorem 3.We have

Hn+1,p,q (x) = [2]p,q xp
n
2 Hn,p,q (x

√
p)−pn [n]p,q Hn−1,p,q

(

q
p

x

)

−q
n+1

2 p
n−1

2 [n]p,q Hn−1,p,q

(√

q
p

x

)

.

(11)

Proof.Applying (1) to the both sides of (6), we obtain

LHS =
∞

∑
n=0

Hn,p,q (x)
Dp,q;ttn

[n]p,q!
=

∞

∑
n=1

Hn,p,q (x)
tn−1

[n−1]p,q!
=

∞

∑
n=0

Hn+1,p,q (x)
tn

[n]p,q!

and, by using (3) and (10),

RHS = Dp,q;t

(

ep,q

(

[2]p,q xt
)

ep,q
(

−t2)
)

= ep,q

(

−(t
√

p)2
)

[2]p,q xep,q

(

[2]p,q x
√

p (t
√

p)
)

+ep,q

(

[2]p,q qxt
)(

−ptep,q

(

−(t p)2
)

−qtep,q

(

−(t
√

pq)2
))

= [2]p,q x
∞

∑
n=0

Hn,p,q (x
√

p)

(

t
√

p
)n

[n]p,q!
− p

∞

∑
n=0

Hn,p,q

(

q

p
x

)

pn tn+1

[n]p,q!

−q
∞

∑
n=0

Hn,p,q

(

x
√

q
p

)

(pq)
n
2

tn+1

[n]p,q!
.

ComparingLHS andRHS gives the asserted result (11).

As a result of (9) and (11), we give the following
identity for (p,q)-Hermite polynomials.

Corollary 2.We have

Hn+1,p,q (x) = [2]p,q xp
n
2 Hn,p,q

(

x
√

p
)

− pn+2

q2+pq
H ′

n,p,q

(

qp−2x
)

− q
n
2 p

n
2+1

p+q H ′
n,p,q

(

q1/2p−3/2x
)

.

The(p,q)-integral representation of the(p,q)-Hermite
polynomials is given by the following theorem.

Theorem 4.We have

∫ b

a
Hn,p,q (x)dp,qx = p

Hn+1,p,q

(

b
p

)

−Hn+1,p,q

(

a
p

)

[2]p,q [n+1]p,q
.

Proof.Since
∫ b

a
Dp,q f (x)dp,qx = f (b)− f (a) (see [4]) (12)

in view of Theorem2 and using Eqs. (4) and (12), we
obtain
∫ b

a
Hn,p,q (x)dp,qx =

p
[2]p,q [n+1]p,q

∫ b

a
H ′

n+1,p,q

(

x
p

)

dp,qx

= p
Hn+1,p,q

(

b
p

)

−Hn+1,p,q

(

a
p

)

[2]p,q [n+1]p,q
.

Therefore, we complete the proof of this theorem.
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We now give the following theorem.

Theorem 5.We have
∞

∑
n=0

Hn,p,q (y)
tn

[n]p,q!
=

∞

∑
n=0

p(
n
2)−(

2n
2 ) (−1)n

[n]p,q!
[2]−2n

p,q D2n
p,q;xep,q

(

p−2n [2]p,q yt
)

, (13)

where y =−p2nx.

Proof.We consider that

[2]−n
p,q Dn

p,q;xep,q

(

− [2]p,q tx
)

= p(
n
2) (−t)n ep,q

(

−pn [2]p,q tx
)

,

and hence,

∞

∑
n=0

p(
n
2)−(

2n
2 ) (−1)n

[n]p,q!
[2]−2n

p,q D2n
p,q;xep,q

(

p−2n [2]p,q yt
)

= ep,q
(

−t2)ep,q

(

[2]p,q yt
)

,

wherey =−p2nx. Thus, we obtain the claimed result (13).

3 Further Remarks

Let us introduce the(p,q)-Bernstein operator of ordern
for f ∈C [0,1] given by

Bn,p,q ( f |x ) =
n

∑
k=0

f

(

k
n

)

Bk,n (x |p,q) (n,k ∈ N) ,

where the(p,q)-Bernstein polynomial of degreen is
defined by

Bk,n (x |p,q ) =
[n

k

]

p,q
p
(n−k

2

)

[x]kp,q (1− x)n−k

(n,k ∈ N with 0< k ≦ n) . (14)

By (14), the generating function of the(p,q)-Bernstein
polynomials is given by

∞

∑
n=k

Bk,n (x |p,q )
tn

[n]p,q!
=

tk [x]kp,q
[k]p,q!

ep,q (t (1− x)) .

From here, it is obvious that

Bk,n (1− x |p,q) =
[n

k

]

p,q
p
(n−k

2

)

[1− x]kp,q xn−k. (15)

Remark.We have

lim
q→1−

p=1

(

tk [x]kp,q
[k]p,q!

ep,q (t (1− x))

)

=
(tx)k

k!
et(1−x)

=
∞

∑
n=k

Bk,n (x)
tn

n!

which is already introduced by Acikgoz and Araci [1].

A triangular recurrence relation for the
(p,q)-Bernstein polynomials is given in the following
theorem.

Theorem 6.For x ∈ [0,1] and 0 ≦ k ≦ n, the
(p,q)-Bernstein polynomials satisfy the following formula

Bk,n (x |p,q ) = (1− x) pn−1Bk,n−1 (x |p,q)+ qn−k [x]p,q Bk−1,n−1(x |p,q) .

(16)

Proof.Using the(p,q)-Pascal rule given by

[n
k

]

p,q
= pk

[

n−1
k

]

p,q
+ qn−k

[

n−1
k−1

]

p,q
(see [4], [9])

and (14), we observe that

Bk,n (x |p,q ) =

[

n−1
k

]

p,q
p
(n−k

2
)

[x]kp,q (1− x)n−k

=

(

pk
[

n−1
k

]

p,q
+qn−k

[

n−1
k−1

]

p,q

)

p
(n−k

2
)

[x]kp,q (1− x)n−k

= pk
[

n−1
k

]

p,q
p
(n−k

2
)

[x]kp,q (1− x)n−k +qn−k
[

n−1
k−1

]

p,q
p
(n−k

2
)

[x]kp,q (1− x)n−k

= (1− x) pn−1Bk,n−1 (x |p,q )+qn−k [x]p,q Bk−1,n−1 (x |p,q ) ,

which is the wanted formula (16).

Theorem 7.The following identity holds true for x ∈ [0,1]
and k,n ∈ N with k ≦ n:

Bn+k,2n+k (x |p,q) =
[2n+k]p,q![k]p,q!
[n+k]p,q![n+k]p,q! [x]

n
p,q Bk,n+k (x |p,q) .

(17)

Proof.From (14), we calculate that
[

n−1
k

]

p,q
Bn+k,2n+k (x |p,q ) =

[

2n+ k
n+ k

]

p,q
p
(n
2
)

[x]n+k
p,q (1− x)n

=
[2n+ k]p,q! [k]p,q! [n]p,q !

[n]p,q! [n+ k]p,q! [n+ k]p,q !
[x]np,q

[n+ k]p,q!

[n]p,q! [k]p,q!
p
(n
2
)

[x]kp,q (1− x)n ,

which gives the asserted result (17).

The (p,q)-hyperbolic sine and cosine functions are
defined by

sinhp,q x =
ep,q(x)− ep,q(−x)

2
and coshp,q x =

ep,q(x)+ ep,q(−x)

2
(see [4]). (18)

Theorem 8.We have for x ∈ (0,1]

sinhp,q (t (1− x)) =
1

2[x]kp,q







∞

∑
n=0

(1− (−1)n)
Bk,n+k (x |p,q )
[

n+k
k

]

p,q

tn

[n]p,q!






, (19)

coshp,q (t (1− x)) =
1

2[x]kp,q







∞

∑
n=0

(1+(−1)n)
Bk,n+k (x |p,q )
[

n+k
k

]

p,q

tn

[n]p,q!






.

Proof.Since

sinhp,q (t (1− x)) =
[k]p,q !

2tk [x]kp,q





tk [x]kp,q ep,q(t (1− x))− tk [x]kp,q ep,q(−t (1− x))

[k]p,q!





=
[k]p,q !

2tk [x]kp,q

( ∞
∑

n=k
Bk,n (x |p,q )

tn

[n]p,q!
−

∞
∑

n=k
Bk,n (x |p,q ) (−1)n−k tn

[n]p,q!

)

=
[k]p,q !

2tk [x]kp,q

( ∞
∑

n=k

(

1− (−1)n−k
)

Bk,n (x |p,q )
tn

[n]p,q!

)

=
[k]p,q!

2[x]kp,q

( ∞
∑

n=0

(

1− (−1)n
)

Bk,n+k (x |p,q )
tn

[n+ k]p,q !

)

=
1

2[x]kp,q







∞
∑

n=0

(

1− (−1)n
)

Bk,n+k (x |p,q )
[

n+k
k

]

p,q

tn

[n]p,q!






,,

we get the desired result (20) The other can be shown
similarly.
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Here we give a correlation between(p,q)-Hermite
polynomials and(p,q)-Bernstein polynomials.

Theorem 9.The following correlation is valid for x∈ [0,1)

Hn,p,q (x) =
⌊ n

2 ⌋
∑
k=0

[2]n−2k
p,q (−1)k p−

(n−2k
2

)

[2k]p,q!

[k]p,q! [1− x]2k
p,q

B2k,n (1− x |p,q ) .

Proof.The proof of this theorem follows from (7) and (15).

4 Conclusion

In the paper, we have first introduced a new generating
function of (p,q)-Hermite polynomials. From these
generating functions, we have obtained explicit formulas.
Next we have considered a modification of
(p,q)-Bernstein type polynomials which is different from
[2]. We saw that (p,q)-Bernstein polynomials are related
to (p,q)-Bernstein polynomials defined in the paper.
Furthermore, (p,q)-Bernstein polynomials are closely
related to hypergeometric function such as hyperbolic
sine and hyperbolic cosine based on (p,q)-numbers.
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