Appl. Math. Inf. Sci.12, No. 1, 227-231 (2018) %N ==\ 227

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120122

A Note on the (p,g)-Hermite Polynomials

Ugur Duran', Mehmet Acikgoz!, Ayhan Esi? and Serkan Araci®*

1 Department of Mathematics, Faculty of Arts and Sciencegjatep University, TR-27310 Gaziantep, Turkey.

2 Department of Mathematics, Science and Art Faculty, Adsmtdniversity, TR-02040 Adiyaman, Turkey.

3Department of Economics, Faculty of Economics, Admintsteaand Social Sciences, Hasan Kalyoncu University, TR1B7
Gaziantep, Turkey.

Received: 10 Nov. 2017, Revised: 4 Dec. 2017, Accepted: 15 BL7
Published online: 1 Jan. 2018

Abstract: In this paper, we introduce a new generalization of the Hermpolynomials via(p,q)-exponential generating function
and investigate several properties and relations for meetl polynomials including derivative property, expli@tmula, recurrence

relation, integral representation. We also defingay)-analogue of the Bernstein polynomials and acquire theirestormulas. We

then provide someép, q)-hyperbolic representations of tlip, q) -Bernstein polynomials. In addition, we obtain a correlatbetween

(p,q)-Hermite polynomials andp, q)-Bernstein polynomials.
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1 Introduction polynomials. Furthermore, he stated the fundamental
theorem of (p,q)-calculus and proved the formula of

During the last three decades, applicationsqoéntum  (p,q)-integration by part.

calculus based ong-numbers have been studied and  The(p,q)-number is defined as

investigated succesfully, densely and considerably (see

[7,8]). In conjunction with the motivation and inspiration

of these applications and introduction of the

(p,q)-numbers, many mathematicians and physicists have

(O<g<p=1).

extensively developed the theory gfost quantum  Note that[n;, = p"*l[n]q/p, where [y, stands for
calculus based on(p,q)-numbers along the traditional : ~ (a/p"-1
lines of classical and quantum calculus. Agyaizl. [2] g-number known asnjg,, = q/p1+ One can see that

presented some novel results of multiplications of (Pd)-number is cr:]l_olsely related tg-number with this
(p,q)-Bernstein polynomials and derived several new'elation [nlyq = p"“[njs. By appropriately using this
relations with related tqp,q)-Gamma and(p,q)-Beta  obvious relation between thgnotation and its variant,
functions. Duranet al. [3] introduced a new class of the (p,q)-notation, most (if not all) of the (,g)-results
Bernoulli, Euler and Genocchi polynomials based on thecan be derived from the corresponding knoganesults
(p,g)-calculus and investigated their many propertiesby merely changing the parameters and variables involved
involving addition theorems, difference equations, (see #], [95]).

derivative properties, recurrence relationships, andrso o~ The (p, g)-derivative operatoDp g f (x) of a function
Furthermore, they derivedp,q)-extension of Cheon's f with respecttocgiven as

main result and(p,qg)-analogue of the Srivastava and

Pintér's addition theorem. Sadjang] investigated some Dy gxf (x):=Dpqf (X) = w (Dpgf (X) whenx + 0; f (0) whenx = 0)
properties of the (p,q)-derivative and the P o)
(p,q)-integration and presented two appropriateis a lineer operator and satisfies the following property
polynomials basis for thép,q)-derivative, and then he

derived various properties of these bases. As an Dpq(f(X)g(x)) = f(pX)Dpqd(X)+g(ax)Dpqf (X).
application, he provided twdp, q)-Taylor formulas for (2)
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. . 2 Main Results
The(p,q)-power basis is defined by

(x+-a)(px4-a) - (P 2.+ a0 2) (o™ x +-agh 1) if n> 1, For a long time, the Hermite polynomials and its various
1 ifn=0, generalizations have been extensively studied and
investigated by many mathematicians and physicists (see
[6-8] and cited references therein).
Dorn (k) (”*k) KNk We introduce (p,q)-extension of the Hermite
Z polynomials via the following (p,q)-exponential
generating function

(x@a)pq =

or equivalently by

where[ ] 0q IS given by

tn
n N, g Z Hn pq (X o . = €pg ([Z]p,qxt) epq(—t?). (6)
[ } =——P4____(n>kneNy) pa’
kipg [n—Klpq!Kpg'
i = _ RemarkWhen p = 1, the (p,q)-Hermite polynomials
!wth " S " Pa In= 1]p,q---[2] P 1] Pa and [0 pa' = reduce to th@-Hermite polynomials defined bg]
Let Ly tn

nZ{)Hn,q (x) W =€ ([2] p,th) € (_tZ) _

Remark.Whenq — p = 1, the(p, q)-Hermite polynomials
reduce to the classical Hermite polynomials defined®y (

€pq(X Z}p

denote(p,q)-exponential functlon havmg the following
(p, g)-derivative representation
Now we give a fundamental property (known also as
Dp.g€p.a(X) = €p.q(PX). () explicit formula) of the (p,q)-Hermite polynomials
Hn,p,q (X) by the following theorem.

The definite(p, g)-integral for a functionf is defined  Theorem 1.The explicit formula based on (p, g)-numbers

by for Hnp.q (X) is given below:
a o p P n-2
/ fX)dpox=(P~da} oxf (ma) ) 18] (12pax) (-1
0 Ko q Hup (X) = zo X X )
with - = [n— 2K, gt Klpg!
b b a . . .
/ F () dpgx = / F(X) dp.ox— / (%) dpgx. WhereLJ-rmansthegreateﬂmteger function.
' ' ' Proof.Using
To see further detailed studies and investigations for « w | 3]
(p,qg)-calculus, one can look at [2-8] and cited 20 Z A(m,n) = A(mn—2m) (see p])
references therein. m=0 n=0m=0

Throughout the paper, Ié{o, N, Z, R andC denote,  and ), we get
respectively, the set of all nonnegative integers, the et 0 . n
all natural numbers, the set of all integers, the setof all re 2 Hnpa®) [y~ P ([2]p.qxt)ep-,q(*t2)
numbers and the set of all complex numbers. n .
The classical Hermite polynomials are defined by the _ (i”@) ([z]pqﬂ) ) (ip(g) (—2) >
following exponential generating function to be = Moot J\& [

(Mpq! (

3 o=@ eeBLI7 ). —;(M(m“,? et ”)[nf:qw

In the followin arts. we introduce a new which gives the asserted formuld)(by comparing the
o g parts, . coefficients"/ [n] , 4! of both sides above.
generalization of the Hermite polynomials based on the P4

(p,a)-numbers via an exponential generating function  The first few(p,q)-Hermite polynomials are listed via
and investigate several properties and relations for(7) below:
mentioned polynomials including derivative property, Hopq(®) = 1,

explicit  formula, recurrence relation, integral Hipq(x) = [2pqx.

representation. We also define(p,g)-analogue of the n,,,x = 22,2~ (25,

Bernstein polynomials and acquire their some formulas,, ) = 2P (3], [2Rx

We then provide somép,q)-hyperbolic representations " o R

of the (p.q)-Bernstein polynomials. In addition, we "»s® = 2paX' = [4nal¥al2oeX + a3

obtain a correlation betwegp, q)-Hermite polynomials — Hspa(X) = [2150X — 8], [4lp[254 +[8]4!
and(p,g)-Bernstein polynomials. Ho.pa (X = [215,4X — (6,4 [5]pql2lqX* + 6] — [6]pq[5)pq [4pg
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Notice that upon setting— p = 1 on the above gives the Lemma 1.\e have

classical Hermite polynomials.
From Eq. ), we get the following corollary.

Corollary 1.For n € Ny, we have

[2n], ¢! (-=1)"
H2n’p’q (0) == L and H2n+l’p!q (O) = 0.
M p.q!
The following proposition is a symmetric property for
anp7q (X)'
Proposition 1.For n € Ng, we have

Hnp.q(—X) = (—1)"Hnpq (X). (8)

Proof.We readily obtain that
z Hin,p.q ( =€pq ([2] 0.0 (—X)t) epa(—t?)
= €pg ([2] p,qx(—t)) €pg (— (—t)z)

[=4) tn

ZO(—l)n Hn,p.q(X)

n=

which yields to the claimed resulB)

o Jpq!

Npg!

Now we research some behaviours téf pq(x) by
applying(p, q)-derivative operator with respect xoandt
respectively.

Theorem 2.\\e have
DpgxHnpa(X) = Hj p.q (X) = (2] [N p.qHn-1.p.q(PX).
9)

Proof.Applying the (p, q)-derivative operatoDpq (1) to
the both sides offf) with respect tax and using 2), we
acquire

n

hd t
Dp,gixHn,pq (X)
nZO p.axin,p.q Inl,,

o Dp.gx€p.q ([2] p,qﬂ) €pq <—t2>

= [2pqtenq <[2] P PXt) €pq <—t2> :

By comparing the coeﬁicientﬁ% of both sides above,
p.9
we get the alleged resuld)

The immediate results of the E@)(are stated below:

[2n+1], 4! (="

Dp.axHanpq(0) = O
pa’

0 andDp gxHzn11,pq(0) = | p.q

Another result of the Eq9j is given form < n as follows:

p(";) [2]?,(1 [n] p,q!

_.gm _
D gixHn.pa (X) =: Hapq (X) = !

Hnfm,p,q (me) )

whereD{ ., shows(p, g)-derivative operator of ordenas

D yx = DT, XD
p1 p,g;x~ PG x-
n order to state Theorer®, we need the following

lemma.

Dpgtepq <—t2> = —ptepg (‘ (pt)2> —Qtepg (‘ (R/@)2>

(10)
Proof.We observe that
) n m D ! ;tt2n B oo R n [Zn] ' thfl
qu;tep.q (7t2) - nzb(i:L) p(Z) ﬁ B nzl(il) p(Z) [r:](:)q'
t2n+1 [2n+2],,
- 20 o I,
— ;(71) p 2 | (pn+1+qn+1)

= w3, ol -
= —t&pq (*( p) )*qtep.q (* ty/pa) )
Theorem 3.\\e have
~ [lp.q 02 Hnpq (/P

g\ 0l nl
[]p,an—l.p.q(;)X)*q 2 p 2 [pgHn- 1pq(/:>'

Proof.Applying (1) to the both sides of), we obtain

Hnia, pq
2 [n

Hni1,p,q(

o0 th— 1
LHS= %Hn.p.q Hi,p.q (X
& Z [n 1,

and, by using:ﬁ) and @0,
RHS = Dyt (€pa ([2paXt) ea (—13))
= epq (-~ (tvP)?) [2pXepa ([2pex/P(tyP)
+epq ([2pq @) (~Plenq (- (tp)?) ~dtepq (- (tyPD?) )

o © nil
= [Z]p.anZth»p»q (xv/'P) ([tr;ﬁ:), - PanHn-,p-,q (%X> p" [rt]]pq!
(Mpgt

*qniHn, pa (X\/g> (pa) 2

Comparing-HSandRHSgives the asserted resuitl).

As a result of 9) and (1), we give the following
identity for (p,q)-Hermite polynomials.

Corollary 2.We have

qutt

n+2 _ IS E _a
Hni1,pq(X) = [2 ]quPZHn pa(Xy/P) — qpquHl;ApAq(qp zx)fq pﬁq H,qu(ql/zp 3/2x)'

The(p, g)-integral representation of thi@, q)-Hermite
polynomials is given by the following theorem.

Theorem 4.\\e have

oo ) o)
A [2lpgn+pq

Proof.Since

/ Dpgf (X)dpgx = f (b) - f(a) (see #])

in view of Theorem2 and using Eqgs.4) and (2), we
obtain

/ HnPQ()dqu 2]pq n+1 / Hn+lpq( )dpqx

Hni1,pq ( ) Hni1,pg <p)
[2pqn+1pq ’
Therefore, we complete the proof of this theorem.

12)
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We now give the following theorem.

Theorem 5.W\e have

3

nZDHnqu (y) % = n; p<g B

wherey =

T 25 DFna (P 7 sat). 09

o
3

_pZnX_
Proof.We consider that
12155 DB o (~ [2pgtx) = PO (—0)"eng (~P"[2]pqtx).

and hence,

2n

3 anl

wherey = —p?"x. Thus, we obtain the claimed resul3}.

p—Zn [2] p.q yt) =€pq (7t2) €pa ([2] p.q yt) ’

2n
DpAq;xep-,q (

3 Further Remarks

Let us introduce thép,q)-Bernstein operator of order
for f € C[0,1] given by

Brpq(f|X) = Zf( )Bkn x|p,a) (nkeN),

where the(p,q)-Bernstein polynomial of degrea is
defined by

Binxlp.a) =[] p2) g (20"

(nke Nwith0<k<n). (14)

By (14), the generating function of tHe, g)-Bernstein
polynomials is given by

b5

szkn leq []

From here, it is obvious that

epq( (1—x)).

Bin(1-xlp.a) =[] pl"2)1-x 0 a9

Remark.We have

“IXg (tx)
- p.g - _ (1-x)
qanf* < [k pq! ePQ(t (1 X)) Kl et
p=1 ’
0 tn
= Bkn(X) =
&l

which is already introduced by Acikgoz and Arat].[

A triangular recurrence relation for the
(p,q)-Bernstein polynomials is given in the following
theorem.

Theorem6.For x € [0,1] and 0 £ k £ n, the
(p, g)-Bernstein polynomials satisfy the following formula

0" %X qBk-1n-1(X|P.Q).
(16)

Bin (XIP,q) = (1—X) p" 1By o1 (X|P,q) +

Proof.Using the(p, g)-Pascal rule given by

Bl

and (L4), we observe that

-1
+q“k[” ] (see B, [9)
L,q k-1 p.d

n-1] ("N K n—k
B n(x[p.a) = { } Pt 2 )X q(1-x%)
.n K . 2]

_ k{nfl} n—k[”*l} ) ("3 kg ank

=(p +q p [Xp,q1=x)
( K Jpg k=1]pg pa
_ k[nfl} (n ,1} (ngk
—p p p

k Jpa ~1lpg
= 19" B 1 (XIp.a) +a" KK p g B 101 (XIP.A),

which is the wanted formuldlg).

K
2) 5 qa-xn K gnk [: nk

) g1

Theorem 7.The following identity holds true for x € [0, 1]
andk,ne Nwithk < n:

Bnskanek (XP. ) = [ ey [ o Bronerc (x[P. )
17)
Proof.From (14), we calculate that
("] eneanectipa) = [T p® i
_ tKpd Kpg'llpg n Nt Kpg .P(n)[]pqﬂfﬂ”‘

[Np,g'+Kpg!n+Kpq! PaT Npg' Kp.g!

which gives the asserted resulf7j.

The (p,q)-hyperbolic sine and cosine functions are
defined by

€pa(X) —€pg(—X)
2

and coshgx= Mw (see f]). (18)

tn
nlp.q!) W

COSMyq (t(1—X)) = —Z[leq (i(lﬂl}”) 7Bk'"[*nk+(kxlp’q> [n]t:q!).

k }p«q

sinhygx=
Theorem 8.We have for x € (0,1]

sinfpq(t(1-x)) = 2[>j]-k (i(l -=1" 7Bk=”[:k+(k)j|p’q>
pa \ 1=
pa

k

Proof.Since

(3 gepq(t (1-x) ~ XK gepal

) Kpg ~t(1-x))
sinhpq(t(1-x)) = Zlk[x]l,(lq< [Kp,q! )
_ Mpg' (2 "2 k"
S (nngk’n(x‘p’q) ! Z B CP I T
_ Mod (& ek “
- ok <n§k<1 1" ) By (xlp.a) Tpg
Kpa' [ & o
- i (B e )

="

By nik (XIp.q) N
[n+k} L
K Jpa

L (=
= — 1—
2K q (nZo(

[p.q!

we get the desired result (20) The other can be shown

similarly.
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Here we give a correlation betwedp,q)-Hermite
polynomials and p,q)-Bernstein polynomials.

Theorem 9.Thefollowing correlationisvalid for x € [0,1)
3] [2]2112((71) pf(n—ZZk)
P 2

Proof.The proof of this theorem follows fron¥) and (L5).

2], !
o Bakn(1—X|p,q).

4 Conclusion

In the paper, we have first introduced a new generating
function of (p,q)-Hermite polynomials. From these
generating functions, we have obtained explicit formulas.
Next we have considered a modification of
(p, g)-Bernstein type polynomials which is different from
[2]. We saw that jp, g)-Bernstein polynomials are related
to (p,qg)-Bernstein polynomials defined in the paper.
Furthermore, §§,q)-Bernstein polynomials are closely
related to hypergeometric function such as hyperbolic
sine and hyperbolic cosine based @nd)-numbers.
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