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Abstract: In this work, we study the integrable sinh-Gordon (ShG) and the modified KdV-sinh-Gordon (MKdV-ShG) equations. We
show that these two equations pass the Painlevé test to confirm its integrabilities. We establish new complex forms of the simplified
Hirota’s method, to formally derive multiple complex soliton solutions for each equation. Our results show that the complex simplified
Hirota’s method explicitly constructs new multiple complex soliton solutions in addition to the multiple real solitonsolutions that each
equation generates.
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1 Introduction

The sinh-Gordon equation

uxt + sinhu= 0, (1)

is an elliptic PDE which appears naturally in surface
theory, and is widely used in physics and other sciences.
The sinh-Gordon equation (1) appears in integrable
quantum field theory, kink dynamics, fluid dynamics, and
in many other scientific applications [1]- [16]. It involves
the d’Alembert operatoruxt and the sinh of the unknown
functionu(x, t).

The modified KdV-sinh-Gordon (MKdV-ShG)
equation

uxt −α
(

3
2

u2
xuxx−uxxxx

)

−β sinhu= 0, (2)

where α and β are nonlinear constants, is a nonlinear
partial differential equation (PDE) involving the
d’Alembert operatoruxt, three distinct derivatives of
u(x, t) with respect tox, and the sinh of the unknown
function u(x, t) [1]- [16]. For α = 1 and β = 0, the
(MKdV-ShG) equation (2) passes into the defocusing

modified KdV equation for the functionux [9,16]

(ux)t −
3
2
(ux)

2(ux)x+(ux)xxx= 0. (3)

Forα = 0 andβ = 1, we obtain the sinh-Gordon equation
(ShG) equation. For anyα and β , the equation is
integrable as will be proved later. The constantsα and 3

2α
are related to the dispersion and nonlinear effects of the
medium. The MKdV, ShG, and MKdV-ShG equations are
completely integrable equations.

The sinh-Gordon equation (1) and the MKdV-ShG
equation (2) arise in models of interacting charged
particles in plasma physics [17]- [31]. The sinh-Gordon
equation (1) and the MKdV-ShG equation (2) are used to
model the interaction of neighboring particles of equal
mass in a lattice formation with a crystal. More
applications of these two equations are in the field of
thermodynamics, where partition and correlation
functions can be precisely computed and on effect of
weak dislocation potential on nonlinear wave propagation
in anharmonic crystal.

It is well known that completely integrable equations
possess remarkable properties, such as infinitely many
symmetries, infinitely many conservation laws, the
Painlevé property, Bäcklund transformations, Darboux
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transformations, bilinear forms, Lax pair, Hamiltonian
and bi-Hamiltonian structures, etc. A Painlevé integrable
model indicates that this model possesses the Painlevé
property.

The extensive research work was focused on
obtaining real soliton solutions, and mostly multiple real
soliton solutions. To the best of author’s knowledge,
much research has been done, for the last decades, on the
traditional real soliton solutions. However, the complex
solitons and the multiple complex soliton solutions have
not been investigated frequently in the literature. The
primary purpose of the present paper is to develop a new
reliable method which will effectively construct multiple
complex soliton solutions for integrable equations. Recall
that solitons can take on complex features, such as dipole
solitons, multi hump solitons, solitons organized as
necklaces, and even complex beams carrying angular
momentum, like rotating propellers [7,8].

We mainly aim to show that the sinh-Gordon (ShG)
equation and the modified KdV-sinh-Gordon
(MKdV-ShG) equation give multiple real soliton
solutions and multiple complex soliton solutions as well.
For this reason, complex forms of the simplified Hirota’s
method will be developed. For comparison reasons, we
will briefly report the multiple soliton solution for these
two equations. We then will introduce the complex forms
of the simplified Hirota’s method. We finally will close
our work by employing the newly developed complex
simplified Hirota’s forms to formally derive multiple
complex soliton solutions for each of the sinh-Gordon
equation (1) and the modified KdV-sinh-Gordon
(MKdV-ShG) equation (2).

2 Painlev́e test

In this section, we will use the Painlevé test to confirm the
integrability of the sinh-Gordon (ShG) equation (1) and
the modified KdV-sinh-Gordon (MKdV-ShG) equation
(2).

2.1 The sinh-Gordon equation

To test the ShG equation (1) for complete integrability, we
introduce the transformation

v= eu
, (4)

which leads to
u(x, t) = lnv(x, t), (5)

and

sinhu=
1
2
(v−

1
v
). (6)

Substituting (4)–(6) into (1) changes the sinh-Gordon
equation to an equivalent partial differential equation
given as

2vvxt −2vxvt + v3− v= 0, (7)

Assuming (7) has a solution as a Laurent expansion
about a singular manifoldψ = ψ(x, t) as

v(x, t) =
∞

∑
k=0

vk(x, t)ψk−γ
, (8)

wherevk(x, t)′s (k = 0,1,2, ...) are the functions ofx and
t. On substitution of (8) in equation (7), then we can show
that the characteristic equation for resonances has one
branch with two resonances atk=−1 and 2. However, as
usual, the resonance atk = −1 corresponds to the
arbitrariness of singular manifoldψ(x, t) = 0. After
detailed computations, we observed explicit expressions
for u1, andu2 turns out to be arbitrary function and, hence
compatibility condition, fork = 2, is satisfied identically
which implies that equation (1) passes the Painlevé test
for complete integrability.

2.2 The modified KdV-sinh-Gordon equation

To confirm the integrability of the MKdV-ShG equation
(2), we proceed as before, and introduce the
transformation

v= eu
, (9)

which leads to
u(x, t) = lnv(x, t), (10)

and this in turn gives

sinhu=
1
2
(v−

1
v
). (11)

Substituting (9)–(11) into (2) changes the MKdV-ShG
equation (2) to an equivalent partial differential equation
given as

2αv3vxxxx−8αv2vxvxxx−6αv2(vxx)
2+21αv(vx)

2vxx

−9α(vx)
4+2v3vxt −2v2vxvt −βv5+βv3 = 0.

(12)
Using a Laurent expansion as

v(x, t) =
∞

∑
k=0

vk(x, t)ψk−γ
, (13)

wherevk(x, t)′s (k = 0,1,2, ...) are the functions ofx and
t. Substituting (13) in equation (12), then we can show
that the characteristic equation for resonances has one
branch with four resonances atk = −3,−1,4,6. The
resonance atk = −3 is ignored because it is< −1.
However, as usual, the resonance atk = −1 corresponds
to the arbitrariness of singular manifoldψ(x, t) = 0. After
detailed computations, we observed explicit expressions
for u1,u2,u3,u5. However, it turns out thatu4 andu6 are
arbitrary function and, hence compatibility condition, for
k = 4 andk = 6, are satisfied identically which implies
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that equation (2) passes the Painlevé test for complete
integrability.

In what follows, we briefly present the multiple
soliton solutions for the sinh-Gordon equation and the
modified KdV-sinh-Gordon equation obtained before by
distinct methods in [1]- [20]. For more details about the
formal construction of these solutions, we refer to the
works in [1]- [20] and some of the references therein.

3 Brief summary of multiple soliton solutions

For comparison reasons with the newly developed
complex derivations, we briefly summarize the obtained
results in [1]- [31].

3.1 The sinh-Gordon equation

We use sinh-Gordon equation

uxt + sinhu= 0, (14)

where we approximate sinhu by the linear termu, to find
the dispersion relation as

αi =
1
ki
, i = 1,2, · · ·N, (15)

and henceθi becomes

θi = kix−
1
ki

t. (16)

In [1-10], it was shown that the multi-soliton solutions
of the sinh-Gordon equation are expressed by

u(x, t) = 4arctanh(
f (x, t)
g(x, t)

). (17)

Based on this result, we can rewrite (17) as

tanh(
u(x, t)

4
) =

f (x, t)
g(x, t)

. (18)

Using the hyperbolic identity for sinhu, we can show that

sinhu=
4g f(g2+ f 2)

(g2− f 2)2 . (19)

The auxiliary functionsf (x, t) andg(x, t) for the single
soliton solution are defined by

f (x, t) = eθ1 = ek1x−α1 t ,

g(x, t) = 1.
(20)

Consequently, the single soliton solution reads

u(x, t) = 4arctanh(
f (x, t)
g(x, t)

) = 4arctanh
(

ek1x−α1 t
)

. (21)

For the two-soliton solutions the two auxiliary
functions f (x, t) andg(x, t) are defined by

f (x, t) = eθ1 +eθ2 = ek1x−α1 t +ek2x−α2 t ,

g(x, t) = 1+a12eθ1+θ2 = 1+a12e(k1+k2)x−(α1+α2) t .

(22)
Using (22) in (17) and proceeding as before, we find the
phase shifta12 is given by

a12=
(k1− k2)

2

(k1+ k2)2 , (23)

and hence we set

ai j =
(ki − k j)

2

(ki + k j)2 ,1≤ i < j ≤ 3. (24)

Consequently, the two-soliton solutions are obtained by
substituting (23) and (34) into (17), where we obtain

u(x, t) = 4arctanh





ek1x−α1 t +ek2x−α2 t

1+ (k1−k2)2

(k1+k2)2
e(k1+k2)x−(α1+α2) t



 .

(25)
For the three-soliton solutions, the auxiliary functions

take the forms

f (x, t) = eθ1 +eθ2 +eθ3 +b123eθ1+θ2+θ3,

g(x, t) = 1+a12eθ1+θ2 +a13eθ1+θ3 +a23eθ2+θ3.
(26)

where
b123= a12a23a13. (27)

Based on this result, the three–soliton solutions for the
sinh-Gordon equation (14) are obtained immediately.

3.2 The modified KdV-sinh-Gordon equation

We give here a brief summary of the results obtained in
[1]- [14] for the MKdV-ShG equation

uxt −α
(

3
2

u2
xuxx−uxxxx

)

−β sinhu= 0. (28)

The dispersion relation is given as

ci = αk3
i −

β
ki
, i = 1,2, · · ·N, (29)

and hence the wave variableθi becomes

θi = kix−
(

αk3
i −

β
ki

)

t. (30)

In [16]- [31], it was shown that the multi-soliton
solutions of the MKdV-ShG equation are expressed by

u(x, t) = 4arctanh(
f (x, t)
g(x, t)

), (31)
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where we can show that

sinhu=
4g f(g2+ f 2)

(g2− f 2)2 . (32)

The single soliton solution reads

u(x, t) = 4arctanh

(

e
k1x−

(

αk3
1−

β
k1

)

t
)

. (33)

For the two-soliton solutions, we use the two auxiliary
functions f (x, t) andg(x, t) as

f (x, t) = eθ1 +eθ2,

g(x, t) = 1+a12eθ1+θ2,
(34)

to find the phase shifta12 by the form

a12 =
(k1− k2)

2

(k1+ k2)2 . (35)

For the three-soliton solutions, the auxiliary functions
take the forms

f (x, t) = eθ1 +eθ2 +eθ3 +b123eθ1+θ2+θ3,

g(x, t) = 1+a12eθ1+θ2 +a13eθ1+θ3 +a23eθ2+θ3.
(36)

where
b123= a12a23a13. (37)

Based on this result, the three–soliton solutions for the
MKdV-ShG equation (28) are obtained immediately upon
using (31).

As stated earlier, we plan to show that the integrable
ShG equation (1) and the integrable MKdV-ShG equation
(28) give multiple complex soliton solutions in addition to
the traditional multiple soliton solutions, we therefor
present the complex forms of the simplified Hirota’s
method. The complex forms will shed light on the new
development of multiple complex soliton solutions for
integrable equations.

4 Formulation of the complex forms

To achieve the goal set for this work, we introduce two
complex algorithms of the simplified Hirota’s method that
will be used for the determination of multiple complex
soliton solutions for the integrable equations in general.
Only the second form will be used for the sine-Gordon
equation and the sinh-Gordon equation, however, the first
form works effectively for other integrable equations:
1. Type I: The KdV type of dispersive equations:
(i) We assume the dependent variable transformation

u(x, t) = R(ln f (x, t))xx. (38)

(ii) For single complex soliton solution we use the
auxiliary complex function as

f (x, t) = I +ek1x−c1t
, I =

√
−1. (39)

where c1 is the dispersion relation which will be
determined in a regular way.
(iii) For two complex soliton solutions we use the
auxiliary complex function as

f (x, t) = I +ek1x−c1t +ek2x−c2t − Ia12e
(k1+k2)x−(c1+c2)t ,

(40)
where a12 is the phase shift that results from the
interaction of two solitons.
(iv) For three complex soliton solutions we use the
auxiliary complex function as

f (x, t) = I +eθ1 +eθ2 +eθ3 − Ia12eθ1+θ2 − Ia13eθ1+θ3 − Ia23eθ2+θ3 −b123eθ1+θ2+θ3,

(41)
where the phase variables are given by
θi = kix− cit,1 ≤ i ≤ 3. Note that forb123 = a12a13a23,
the equation gives three complex soliton solutions, and
hence multiple complex soliton solutions as examined in
the standard algorithm.

2. Type II: The modified KdV type of dispersive
equations:
(i) We assume the dependent variable transformation

u(x, t) = R(arctan

(

f (x, t)
g(x, t)

)

x
. (42)

However, we will use

u(x, t) = 4(arctan

(

f (x, t)
g(x, t)

)

, (43)

and

u(x, t) = 4(arctanh

(

f (x, t)
g(x, t)

)

, (44)

for the sine-Gordon and sinh-Gordon type equations
respectively.
(ii) For single complex soliton solution we use the
auxiliary complex function as

f (x, t) = Iek1x−c1t , I =
√
−1,

g(x, t) = 1.
(45)

(ii) For the two complex soliton solutions we set auxiliary
complex function as

f (x, t) = Iek1x−c1t + Iek2x−c2t)
,

g(x, t) = 1−a12e(k1+k2)x−(c1+c2)t ,
(46)

wherea12 is the phase shift.

(iii) For the three complex soliton solutions, we use
auxiliary complex function as

f (x, t) = Ieθ1 + Ieθ2 + Ieθ3 − Ia12a13a23eθ1+θ2+θ3

g(x, t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3,
(47)

5 Multiple complex soliton solutions

In this section, we employ the aforementioned complex
forms to determine multiple complex soliton solutions for
each of the two examined equations.

c© 2018 NSP
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5.1 Multiple complex soliton solutions for the
sinh-Gordon equation

The integrable sinh-Gordon equation reads

uxt + sinhu= 0. (48)

The dispersion relations for this equation areci =
1
ki

as
derived earlier. We first use the dependent variable
transformation

u(x, t) = 4(arctanh

(

f (x, t)
g(x, t)

)

, (49)

and by using the hyperbolic identity we find

sinhu=
4g f(g2+ f 2)

(g2− f 2)2 . (50)

For single complex soliton solution we use the auxiliary
complex function as

f (x, t) = Ie
k1x− 1

k1
t
, I =

√
−1,

g(x, t) = 1.
(51)

This in turn gives the single complex soliton solution as

u(x, t) = 4I(arctan

(

f (x, t)
g(x, t)

)

= 4I(arctan

(

e
k1x− 1

k1
t
)

, I =
√
−1.

(52)
For the two complex soliton solutions we set auxiliary

complex function as

f (x, t) = Ie
k1x− 1

k1
t
+ Ie

k2x− 1
k2

t)
,

g(x, t) = 1−a12e
(k1+k2)x−( 1

k1
+ 1

k2
)t
,

(53)

wherea12 is the phase shift, where we find that the phase
shift as

a12 =
(k1− k2)

2

(k1+ k2)2 , (54)

which can be generalized as

ai j =
(ki − k j)

2

(ki + k j)2 ,1≤ i < j ≤ 3, (55)

which is the same as used for deriving the real soliton
solutions. Combining all previous results we obtain the
two complex soliton solutions.

For the three complex soliton solutions, we use
auxiliary complex function as

f (x, t) = Ieθ1 + Ieθ2 + Ieθ3 − Ia12a13a23eθ1+θ2+θ3

g(x, t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3,
(56)

and substitute these functions in (49).

5.2 Multiple complex soliton solutions for the
MKdV-ShG equation

The integrable MKdV-ShG equation reads

uxt −α
(

3
2

u2
xuxx−uxxxx

)

−β sinhu= 0. (57)

To determine the dispersion relation, we substitute

u(x, t) = eθi ,θi = kix− ci t, (58)

into the linear terms of (57), where we approximated sinhu
by the linear termu, to find the dispersion relation

ci = αk3
i −

β
ki
, i = 1,2, · · ·N, (59)

and hence the wave variableθi becomes

θi = kix−
(

αk3
i −

β
ki

)

t. (60)

We first set the dependent variable transformation

u(x, t) = 4(arctan

(

f (x, t)
g(x, t)

)

, (61)

and by using the hyperbolic identity we find

sinhu=
4g f(g2+ f 2)

(g2− f 2)2 . (62)

For single complex soliton solution we use the auxiliary
complex function as

f (x, t) = Ie
k1x−

(

αk3
1−

β
k1

)

t
, I =

√
−1,

g(x, t) = 1.
(63)

This in turn gives the single complex soliton solution as

u(x, t) = 4arctanh
(

f (x,t)
g(x,t)

)

= 4I arctan

(

e
k1x−

(

αk3
1−

β
k1

)

t
)

= 4arctanh

(

Ie
k1x−

(

αk3
1−

β
k1

)

t
)

.

(64)
For the two complex soliton solutions we set auxiliary

complex function as

f (x, t) = Ie
k1x−

(

αk3
1−

β
k1

)

t
+ Ie

k2x−
(

αk3
2−

β
k2

)

t)
,

g(x, t) = 1−a12e
(k1+k2)x−

(

αk3
1+k3

2)−( β
k1
+ β

k2
)
)

t
,

(65)

wherea12 is the phase shift, where we find that the phase
shift as

a12=
(k1− k2)

2

(k1+ k2)2 , (66)

which can be generalized as

ai j =
(ki − k j)

2

(ki + k j)2 ,1≤ i < j ≤ 3, (67)
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which is the same as used for deriving the real soliton
solutions. Combining all previous results we obtain the
two complex soliton solutions.

For the three complex soliton solutions, we use
auxiliary complex function as

f (x, t) = Ieθ1 + Ieθ2 + Ieθ3 − Ia12a13a23eθ1+θ2+θ3

g(x, t) = 1−a12eθ1−θ2 −a13eθ1+θ3 −a23eθ2+θ3,
(68)

and substitute these functions in (61) to obtain the three
complex soliton solutions..

6 Conclusion

In summary, we have showed that the integrable
sinh-Gordon equation and the integrable modified
KdV-sinh-Gordon equation give not only multiple real
soliton solutions, but also give multiple complex soliton
solutions. To confirm this findings, we established the
complex forms of the simplified Hirota’s method that will
aid in the determination of the complex soliton solutions.
To the author’s belief, the findings of complex formulas,
that will give multiple complex soliton solutions, are
presented for the first time. Several well known integrable
equations were used to derive multiple complex soliton
solutions for each examined model. The obtained results
may be helpful to examine other integrable applications
for more findings.
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