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1 Introduction

Let f (t) be a formal power series int. The Appell
polynomialsAn(x) defined by

f (t) ext =
∞

∑
n=0

An(x)
tn

n!
, (1)

have found remarkable applications in different branches
of mathematics, theoretical physics and chemistry [2,24].
Three special cases of these polynomials are the Bernoulli
polynomialsBn(x), the Euler polynomialsEn(x) and the
Genocchi polynomials [19] Gn(x) (see [19]) that are
generated by choosing in (1) the following values off (t):

f (t) =
t

et −1
, f (t) =

2
et +1

and f (t) =
2t

et +1
,

respectively, so that we have

text

et −1
=

∞

∑
n=0

Bn(x)
tn

n!
(|t|< 2π),

2ext

et +1
=

∞

∑
n=0

En(x)
tn

n!
(|t|< π)

and

2text

et +1
=

∞

∑
n=0

Gn(x)
tn

n!
(|t|< π).

In this sense, the Bernoulli numbersBn := Bn(0), the
Euler numbersEn := 2nEn

(1
2

)

and the Genocchi numbers
Gn := Gn(0) have found considerable applications in
Number Theory, Special Functions, Combinatorics and
Numerical Analysis. It is clear that

t
et −1

=
∞

∑
n=0

Bn
tn

n!
(|t|< 2π),

2et

e2t +1
=

1
cosht

=
∞

∑
n=0

En
tn

n!

(

|t|<
π
2

)

and

2t
et +1

=
∞

∑
n=0

Gn
tn

n!
(|t|< π).

The Apostol-Bernoulli polynomials defined by

text

λet −1
=

∞

∑
n=0

Bn(x;λ )
tn

n!
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(

λ ∈C; |t|< 2π when λ = 1; |t|< | logλ | when λ 6= 1
)

,

where Bn,λ := Bn(0;λ ) denotes the Apostol-Bernoulli
numbers, were introduced by Apostol [1] (see also [22])
in order to evaluate the Hurwitz-Lerch zeta function
Φ(z,s,a):

Φ(z,s,a) =
∞

∑
n=0

zn

(n+a)s

(

a∈C\Z−
0 ; s∈C when |z|< 1; ℜ(s)> 1 when |z|= 1

)

for negative integer values ofs, Z−
0 being the set of

non-positive integers. Apostol [1] gave several elementary
properties of Bn(x;λ ) including (for example) the
following interesting recursion formula for the numbers
Bn,λ :

Bn,λ = n
n−1

∑
k=0

k!(−λ )k

(λ −1)k+1 S(n−1,k) (λ 6= 1),

whereS(n,k) denotes the Stirling numbers of the second
kind defined by

S(n,k) =
(−1)k

k!

k

∑
j=1

(−1) j
(

k
j

)

jn.

The Apostol-Euler polynomialsEn(x;λ ) and the Apostol-
Genocchi polynomialsGn(x;λ ) are defined, respectively,
by

2ext

λet +1
=

∞

∑
n=0

En(x;λ )
tn

n!

(

|t|<
1
2
|log(−λ )|

)

and

2text

λet +1
=

∞

∑
n=0

Gn(x;λ )
tn

n!

(

|t|< |log(−λ )|
)

,

where

En,λ := En(0;λ ) and Gn,λ := Gn(0;λ )

denote the corresponding Apostol-Euler number and the
Apostol-Genocchi numbers, respectively.

Recently, many authors studied these Apostol type
Bernoulli, Euler and Genocchi polynomials and the
corresponding numbers. In particular, Cenkci and Can [3]
considered a q-analogue of the Apostol-Bernoulli
polynomialsBn(x;λ ). Luo (see [13] [14]) computed the
Fourier expansions and integral representations of the
Apostol-Bernoulli polynomials Bn(x;λ ) and the
Apostol-Euler polynomialsEn(x;λ ). Prévost [21], on the
other hand, investigated the Padé approximation for these
polynomials. Also, in [8] and [11], a q-extension of
Apostol-Euler polynomialsEn(x;λ ) was studied. Other
notable developments involving these Apostol type
polynnomials, including also the Genocchi and
Apostol-Genocchi polynomials, and their various

extensions and generalizations, see (for example) [4], [5],
[6], [7], [9], [10], [12], [15], [16], [17] and [23].

Our present paper is organized as follows. In Section
2, we introduce a parametric type of the
Apostol-Bernoulli polynomials Bn(x;λ ), the
Apostol-Euler polynomials En(x;λ ) and the
Apostol-Genocchi polynomialsGn(x;λ ) by means of
three separate generating functions. In Section3, we
obtain several basic properties of the introduced
parametric Apostol-Bernoulli polynomials and, in
Sections4 and 5, we simply record without proof the
corresponding basic properties of the introduced
parametric Apostol-Euler polynomials and the
Apostol-Genocchi polynomials. Finally, in Section6, an
application of the introduced polynomials is presented by
computing some new series of the Taylor type involving
the Apostol-Bernoulli numbersBn,λ , the Apostol-Euler
numbersEn,λ and the Apostol-Genocchi numbersGn,λ .

2 Parametric Type of Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi
polynomials

We begin by introducing the binomial convolution of two
sequencesan andbn given by

A(t) =
∞

∑
n=0

an
tn

n!
and B(t) =

∞

∑
n=0

bn
tn

n!
,

so that, by the Cauchy product, we have

C(t) := A(t)B(t) =
∞

∑
n=0

cn
tn

n!
,

where cn denotes the binomial convolution of the
sequencesan andbn defined as follows (see [18]):

cn = an∗bn :=
n

∑
k=0

(

n
k

)

akbn−k =
n

∑
k=0

(

n
k

)

an−kbk. (2)

For p,q ∈ R, it was proved in [20] that the Taylor
expansions of the two functions ept cos(qt) and
ept sin(qt) are given by

ept cos(qt) =
∞

∑
k=0

Ck(p,q)
tk

k!

and

ept sin(qt) =
∞

∑
k=0

Sk(p,q)
tk

k!
,

where

Ck(p,q) =
[ k

2 ]

∑
j=0

(−1) j
(

k
2 j

)

pk−2 j q2 j (3)
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and

Sk(p,q) =
[ k−1

2 ]

∑
j=0

(−1) j
(

k
2 j +1

)

pk−2 j−1 q2 j+1
. (4)

By noting the definitions ofCn(p,q), Sn(p,q) and the
Apostol type numbersBn,λ , En,λ and Gn,λ , we can
introduce two parametric kinds of Apostol-Bernoulli,
Apostol-Euler and Apostol-Genocchi polynomials as
follows:

B
(c)
n (p,q;λ ) = Bn,λ ∗Cn(p,q) and B

(s)
n (p,q;λ ) = Bn,λ ∗Sn(p,q), (5)

E
(c)
n (p,q;λ ) = En,λ ∗Cn(p,q) and E

(s)
n (p,q;λ ) = En,λ ∗Sn(p,q) (6)

and

G
(c)
n (p,q;λ ) = Gn,λ ∗Cn(p,q) and G

(s)
n (p,q;λ ) = Gn,λ ∗Sn(p,q), (7)

whose exponential generating functions are given,
respectively, by

tept

λet −1
cos(qt) =

∞
∑

n=0
B
(c)
n (p,q;λ )

tn

n!
and

tept

λet −1
sin(qt) =

∞
∑

n=0
B
(s)
n (p,q;λ )

tn

n!
, (8)

2ept

λet +1
cos(qt) =

∞
∑

n=0
E
(c)
n (p,q;λ )

tn

n!
and

2ept

λet +1
sin(qt) =

∞
∑

n=0
E
(s)
n (p,q;λ )

tn

n!
(9)

2tept

λet +1
cos(qt) =

∞
∑

n=0
G
(c)
n (p,q;λ )

tn

n!
and

2tept

λet +1
sin(qt) =

∞
∑

n=0
G
(s)
n (p,q;λ )

tn

n!
. (10)

Hence, according to the relation (2), we can represent these
polynomials as follows:

B
(c)
n (p,q;λ ) =

n
∑

k=0

(

n
k

)

Bn−k,λ Ck(p,q) and B
(s)
n (p,q;λ )=

n
∑

k=0

(

n
k

)

Bn−k,λ Sk(p,q), (11)

E
(c)
n (p,q;λ ) =

n
∑

k=0

(

n
k

)

En−k,λ Ck(p,q) and E
(s)
n (p,q;λ )=

n
∑

k=0

(

n
k

)

En−k,λ Sk(p,q) (12)

and

G
(c)
n (p,q;λ )=

n
∑

k=0

(

n
k

)

Gn−k,λ Ck(p,q) and G
(s)
n (p,q;λ )=

n
∑

k=0

(

n
k

)

Gn−k,λ Sk(p,q). (13)

We note from the above equations that

B
(c)
n (p,0;λ )= Bn(p;λ ), E

(c)
n (p,0;λ ) = En(p;λ ) and G

(c)
n (p,0;λ )= Gn(p;λ ).

Thus, for example, we have

B
(c)
0 (p,q;λ )= 0, B

(c)
1 (p,q;λ )=

1
λ −1

, B
(c)
2 (p,q;λ )=

2λ −2

(λ −1)2
p−

2λ
(λ −1)2

,

B
(s)
0 (p,q;λ )= 0, B

(s)
1 (p,q;λ ) = 0, B

(s)
2 (p,q;λ ) =

2q
λ −1

,

E
(c)
0 (p,q;λ )=

2
λ +1

, E
(c)
1 (p,q;λ )=

2λ +2

(λ +1)2
p−

2λ
(λ +1)2

,

E
(c)
2 (p,q;λ )=

2λ2+4λ +2

(λ +1)3
p2−

4λ2+4λ
(λ +1)3

p−
2λ2+4λ +2

(λ +1)3
q2+

2λ2−2λ
(λ +1)3

,

E
(s)
0 (p,q;λ )= 0, E

(s)
1 (p,q;λ )=

2q
λ +1

, E
(s)
2 (p,q;λ )=

4qλ +4q

(λ +1)2
p−

4qλ
(λ +1)2

,

G
(c)
0 (p,q;λ )= 0, G

(c)
1 (p,q;λ )=

2
λ +1

, G
(c)
2 (p,q;λ ) =

4λ +4

(λ +1)2
p−

4λ
(λ +1)2

,

G
(s)
0 (p,q;λ )= 0, G

(s)
1 (p,q;λ )= 0, G

(s)
2 (p,q;λ )=

4q
λ +1

.

3 Basic Properties of B
(c)
n (p,q;λ ) and

B
(s)
n (p,q;λ )

Proposition 1 For every n∈ N, the following identities
hold true:

λB
(c)
n (1+ p,q;λ )−B

(c)
n (p,q;λ ) = nCn−1(p,q) (14)

and

λB
(s)
n (1+ p,q;λ )−B

(s)
n (p,q;λ ) = nSn−1(p,q), (15)

N being the set of positive integers andN0 := N∪{0}.

Proof. We have

λ
∞

∑
n=0

B
(c)
n (1+ p,q;λ )

tn

n!
=

tept(λet −1+1)
λet −1

cos(qt) = tept cos(qt)+
tept

λet −1
cos(qt)

=
∞

∑
n=0

Cn(p,q)
tn+1

n!
+

∞

∑
n=0

B
(c)
n (p,q;λ )

tn

n!

=
∞

∑
n=1

nCn−1(p,q)
tn

n!
+

∞

∑
n=0

B
(c)
n (p,q;λ )

tn

n!
,

which proves the first assertion (14). The proof of the
second assertion (15) is similar.

Corollary 1 The relations(14) and(15) imply that

λB
(c)
2n+1(1,q;λ )−B

(c)
2n+1(0,q;λ ) = (2n+1)(−1)n q2n

and

λB
(s)
2n (1,q;λ )−B

(s)
2n (0,q;λ ) = 2n(−1)n+1 q2n−1

.

Proposition 2 For every n∈ N, the following identities
hold true:

B
(c)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

B
(c)
k (p,q;λ ) rn−k (16)

and

B
(s)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

B
(s)
k (p,q;λ ) rn−k

. (17)

Proof. We apply the relation (8) to obtain
∞

∑
n=0

B
(c)
n (p+ r,q;λ )

tn

n!
=

(

tept

λet −1
cos(qt)

)

ert

=

(

∞

∑
n=0

B
(c)
n (p,q;λ )

tn

n!

)

·

(

∞

∑
n=0

rn tn

n!

)

=
∞

∑
n=0

(

n

∑
k=0

(

n
k

)

B
(c)
k (p,q;λ )rn−k

)

tn

n!
,

which proves the result (16). The other result (17) can be
proved similarly.

Corollary 2 It is asserted that

B
(c)
n (p+1,q;λ )−B

(c)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

B
(c)
k (p,q;λ )

and

B
(s)
n (p+1,q;λ )−B

(s)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

B
(s)
k (p,q;λ ).
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Now, by combining these results and Proposition1, we
find the following recurrence relations:

B
(c)
n (p,q;λ ) =

1
λ −1

[

nCn−1(p,q)−λ
n−1

∑
k=0

(

n
k

)

B
(c)
k (p,q;λ )

]

(18)

and

B
(s)
n (p,q;λ ) =

1
λ −1

[

nSn−1(p,q)−λ
n−1

∑
k=0

(

n
k

)

B
(s)
k (p,q;λ )

]

,

(19)

where
B

(c)
0 (p,q;λ ) = B

(s)
0 (p,q;λ ) = 0.

Proposition 3 For every n∈ N, the following identities
hold true:

∂
∂ p

{

B
(c)
n (p,q;λ )

}

= nB
(c)
n−1(p,q;λ ), (20)

∂
∂q

{

B
(c)
n (p,q;λ )

}

=−nB
(s)
n−1(p,q;λ ), (21)

∂
∂ p

{

B
(s)
n (p,q;λ )

}

= nB
(s)
n−1(p,q;λ ) (22)

and

∂
∂q

{

B
(s)
n (p,q;λ )

}

= nB
(c)
n−1(p,q;λ ). (23)

Proof. In view of the equation (8), we have

∞

∑
n=0

∂
∂ p

{

B
(c)
n (p,q;λ )

} tn

n!
=

t2ept

λet −1
cos(qt) =

∞

∑
n=0

B
(c)
n (p,q;λ )

tn+1

n!

=
∞

∑
n=1

B
(c)
n−1(p,q;λ )

tn

(n−1)!
=

∞

∑
n=1

nB
(c)
n−1(p,q;λ )

tn

n!
,

which proves the result (20). The other results (21), (22)
and (23) can be proved similarly.

Proposition 4 The polynomials B
(c)
n (p,q;λ ) and

B
(s)
n (p,q;λ ) are, respectively, of degrees n−1 and n−2

in the variable p It is also asserted that

B
(c)
n (p,q;λ ) =

n
λ −1

pn−1−
n(n−1)λ
(λ −1)2 pn−2+ · · ·

(24)

and

B
(s)
n (p,q;λ ) =

n(n−1)q
λ −1

pn−2−
n(n−1)(n−2)qλ

(λ −1)2
pn−3+ · · · .

(25)

Furthermore, if they are considered as polynomials in the
variable q, then

B
(c)
n (p,q;λ ) =























































(−1)
n+2

2

λ −1
n(n−1)

(

p−
λ

λ −1

)

qn−2+
(n−3)(−1)

n
2

λ −1

(

n
3

)

·

[

p3−
3λ p2

λ −1
+

3λ (λ +1)p
(λ −1)2 −

λ (λ 2+4λ +1)
(λ −1)3

]

qn−4+ · · ·

(n even)

n(−1)
n−1

2

λ −1
qn−1+

3(−1)
n+1

2

λ −1

(

n
3

)[

p2−
2λ p
λ −1

+
λ (λ +1)
(λ −1)2

]

qn−3+ · · ·

(n odd)

(26)
and

B
(s)
n (p,q;λ )=



































































n(−1)
n+2

2

λ −1
qn−1+

3(−1)
n
2

λ −1

(

n
3

)(

p2−
2λ p
λ −1

+
λ (λ +1)

(λ −1)2

)

qn−3+ · · ·

(n even)

(−1)
n+1

2

λ −1
n(n−1)

(

p−
λ

λ −1

)

qn−2+
(n−3)(−1)

n−1
2

λ −1

(

n
3

)

·

[

p3−
3λ p2

λ −1
+

3λ (λ +1)p

(λ −1)2
−

λ (λ2+4λ +1)

(λ −1)3

]

qn−4+ · · ·

(n odd).

(27)

Proof. We first prove (24) by applying the principle of
mathematical induction onn. Indeed, it is known from (18)
that

B
(c)
1 (p,q;λ ) =

1
λ −1

,

B
(c)
2 (p,q;λ ) =

2
λ −1

p−
2λ

(λ −1)2

and

B
(c)
3 (p,q;λ ) =

3
λ −1

p2−
6λ

(λ −1)2
p−

3
λ −1

q2+
3λ (λ +1)
(λ −1)3

.

Therefore, the assertion (24) holds true forn= 1,2,3. We
now assume that it is valid forn−1. By referring to (20),
we have
∂

∂ p

{

B
(c)
n (p,q;λ )

}

=
n(n−1)

λ −1
pn−2−

n(n−1)(n−2)λ
(λ −1)2

pn−3+ · · · .

In order to complete the proof, it is sufficient to integrate
the above equation with respect to the variablep to get
the result (24). By virtue of the relation (23), the result
(25) can be derived similarly.

To prove (26), we suppose that it holds true for
1,2,3, · · · ,n−1. If n= 2m, then from (18) we have

B
(c)
2m(p,q;λ ) =

1
λ −1

[

2m
m−1

∑
k=0

(−1)k
(

2m−1
2k

)

p2m−1−2k q2k

−λ
2m−1

∑
k=0

(

2m
k

)

B
(c)
k (p,q;λ )

]

.

(28)

Hence, clearly, the coefficient ofq2m−2 in the right-hand
side of (28) is equal to

1
λ −1

[

2m(−1)m−1

(

2m−1
2m−2

)

p2m−1−2m+2 −λ
(

2m
2m−1

)

(2m−1)(−1)m−1

λ −1

]

=
(−1)m+1

λ −1
2m(2m−1)

(

p−
λ

λ −1

)

c© 2018 NSP
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and the coefficient ofq2m−4 is equal to

1
λ −1

[

2m(−1)m−2

(

2m−1
2m−4

)

p3 −λ

{

(

2m
2m−1

)

3(−1)m

λ −1

(

2m−1
3

)

·

(

p2−
2λ

λ −1
p+

λ (λ +1)
(λ −1)2

)

+

(

2m
2m−2

)

(−1)m

λ −1
(2m−2)(2m−3)

(

p−
λ

λ −1

)

+

(

2m
2m−3

)

(2m−3)(−1)m−2

λ −1

}]

=
(2m−3)(−1)m

λ −1

(

2m
3

)(

p3−
3λ

λ −1
p2+

3λ (λ +1)
(λ −1)2 p−

λ (λ 2+4λ +1)
(λ −1)3

)

.

So, the assertion (26) is true forn= 2m. In the second case,
takingn= 2m+1 in (18), we get

B
(c)
2m+1(p,q;λ ) =

1
λ −1

[

(2m+1)
m

∑
k=0

(−1)k

(

2m
2k

)

p2m−2k q2k

−λ
2m

∑
k=0

(

2m+1
k

)

B
(c)
k (p,q;λ )

]

. (29)

Hence, clearly, the coefficient ofq2m in the right-hand side
of (29) is equal to

1
λ −1

[

(2m+1)(−1)m
(

2m
2m

)]

=
(2m+1)(−1)m

λ −1

and the coefficient ofq2m−2 is equal to

1
λ −1

[

(2m+1)(−1)m−1
(

2m
2m−2

)

p2−λ

{

(

2m+1
2m

)

(−1)m+1

λ −1
2m(2m−1)

(

p−
λ

λ −1

)

+

(

2m+1
2m−1

)

(2m−1)(−1)m−1

λ −1

}]

=
3(−1)m+1

λ −1

(

2m+1
3

)

(

p2−
2λ

λ −1
p+

λ (λ +1)

(λ −1)2

)

,

which completes the proof of (26). By combining (23) and
(26), we can also obtain the result (27).

Proposition 5 The following identities hold true:

B
(c)
n (p,q;λ ) =

[ n−1
2 ]

∑
k=0

(−1)k
(

n
2k

)

B
(c)
n−2k(p,0;λ )q2k (30)

and

B
(s)
n (p,q;λ ) =

[ n−2
2 ]

∑
k=0

(−1)k
(

n
2k+1

)

B
(c)
n−2k−1(p,0;λ )q2k+1

,

(31)

in which

B
(c)
n−2k(p,0;λ ) = Bn−2k(p;λ ) and B

(c)
n−2k−1(p,0;λ ) = Bn−2k−1(p;λ )

are the Apostol-Bernoulli polynomials.

Proof. According to (21) and (23), we first observe that

∂ 2k

∂ q2k

{

B
(c)
n (p,q;λ )

}

= (−1)k
n!

(n−2k)!
B
(c)
n−2k(p,q;λ )

(

k= 0,1,2, · · · ,

[

n−1
2

])

and

∂ 2k+1

∂ q2k+1

{

B
(c)
n (p,q;λ )

}

= (−1)k+1 n!
(n−2k−1)!

B
(s)
n−2k−1(p,q;λ )

(

k = 0,1,2, · · · ,

[

n−3
2

])

,

becauseB(c)
n (p,q;λ ) is a polynomial in the variableq of

degreen for even n and of degreen − 1 for odd n
according to Proposition4. The Taylor expansion of

B
(c)
n (p,q;λ ) gives

B
(c)
n (p,q+h;λ ) =

n

∑
k=0

1
k!

∂ k

∂qk

{

B
(c)
n (p,q;λ )

}

hk
,

in whichh∈R. Since

B
(s)
n (p,0;λ ) = 0

for everyn ∈ Z+, by settingq = 0 andh = q, we obtain
the assertion (30). In a similar way, the result (31) can be
derived.

Proposition 6 If m∈ N, n∈ Z
+ andλ > 0, then

B
(c)
n (mp,q;λ

1
m) = mn−1

m−1

∑
k=0

λ
k
m B

(c)
n

(

p+
k
m
,

q
m

;λ
)

(32)

and

B
(s)
n (mp,q;λ

1
m) = mn−1

m−1

∑
k=0

λ
k
m B

(s)
n

(

p+
k
m
,

q
m

;λ
)

.

(33)

Proof. To prove (32), it suffices to consider the following
relation:

∞

∑
n=0

λ
k
m B

(c)
n

(

p+
k
m
,

q
m

;λ
)

tn

n!
= λ

k
m

te(p+ k
m)t

λet −1
cos
(qt

m

)

and then take a sum from both sides of the above equation
to obtain

m−1
∑

k=0

[ ∞
∑

n=0
λ

k
m B

(c)
n

(

p+
k
m
,

q
m

;λ
)

tn

n!

]

=
tept

λet −1
cos
( qt

m

) m−1
∑

k=0

(

λ
1
m e

t
m
)k

= m
t
me

mp
(

t
m

)

λ
1
m e

t
m −1

cos
( qt

m

)

=
∞
∑

n=0
m1−n

B
(c)
n

(

mp,q;λ
1
m
)

tn

n!
.

In a similar way, we can prove (33).

In the next two sections, we just present the

corresponding basic properties ofE (c)
n (p,q;λ ),

E
(s)
n (p,q;λ ), G

(c)
n (p,q;λ ) and G

(s)
n (p,q;λ ). The proofs

are similar and will, therefore, be omitted.

4 Basic Properties of E
(c)
n (p,q;λ ) and

E
(s)
n (p,q;λ )

Proposition 7 For every n∈ N, the following identities
hold true:

λE
(c)
n (1+ p,q;λ )+E

(c)
n (p,q;λ ) = 2Cn(p,q) (34)

and

λE
(s)
n (1+ p,q;λ )+E

(s)
n (p,q;λ ) = 2Sn(p,q). (35)
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Corollary 3 The relations(34) and(35) imply that

λE
(c)
2n (1,q;λ )+E

(c)
2n (0,q;λ ) = 2(−1)n q2n

and

λE
(s)
2n+1(1,q;λ )+E

(s)
2n+1(0,q;λ ) = 2(−1)n q2n+1

.

Proposition 8 For every n∈ Z+, the following identities
hold true:

E
(c)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

E
(c)
k (p,q;λ ) rn−k

and

E
(s)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

E
(s)
k (p,q;λ ) rn−k

.

Corollary 4 It is asserted that

E
(c)
n (p+1,q;λ )−E

(c)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

E
(c)
k (p,q;λ )

and

E
(s)
n (p+1,q;λ )−E

(s)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

E
(s)
k (p,q;λ ).

Now, by combining these results and Proposition7, we
have the following recurrence relations:

E
(c)
n (p,q;λ ) =

1
λ +1

[

2Cn(p,q)−λ
n−1

∑
k=0

(

n
k

)

E
(c)
k (p,q;λ )

]

and

E
(s)
n (p,q;λ ) =

1
λ +1

[

2Sn−1(p,q)−λ
n−1

∑
k=0

(

n
k

)

E
(s)
k (p,q;λ )

]

,

where

E
(c)
0 (p,q;λ ) =

2
λ +1

and E
(s)
0 (p,q;λ ) = 0.

Proposition 9 For every n∈ N, the following identities hold
true:

∂
∂ p

{

E
(c)
n (p,q;λ )

}

= nE
(c)
n−1(p,q;λ ),

∂
∂q

{

E
(c)
n (p,q;λ )

}

=−nE
(s)
n−1(p,q;λ ),

∂
∂ p

{

E
(s)
n (p,q;λ )

}

= nE
(s)
n−1(p,q;λ )

and

∂
∂q

{

E
(s)
n (p,q;λ )

}

= nE
(c)
n−1(p,q;λ ).

Proposition 10 If E
(c)
n (p,q) and E

(s)
n (p,q) are considered as

polynomials in the variable p, then they are of degree n and n−1,
respectively, and it is asserted that

E
(c)
n (p,q;λ ) =

2
λ +1

pn−
2nλ

(λ +1)2
pn−1+ · · ·

and

E
(s)
n (p,q;λ ) =

2nq
λ +1

pn−1−
2n(n−1)qλ
(λ +1)2

pn−2+ · · · .

Furthermore, if E
(c)
n (p,q) and E

(s)
n (p,q) are considered as

polynomials in the variable q, then

E
(c)
n (p,q;λ )=



































































(−1)
n−1

2

λ +1
2n

(

p−
λ

λ +1

)

qn−1+
2(−1)

n+1
2

λ +1

·

(

n
3

)(

p3−
3λ p2

λ +1
+

3λ (λ −1)p

(λ +1)2
−

λ (λ2−4λ +1)

(λ +1)3

)

qn−3+ · · ·

(n odd)

2(−1)
n
2

λ +1
qn+

(−1)
n+2

2 n(n−1)
λ +1

(

p2−
2λ p
λ +1

+
λ (λ −1)

(λ +1)2

)

qn−2+ · · ·

(n even)

and

E
(s)
n (p,q;λ )=



































































2(−1)
n−1

2

λ +1
qn+

n(n−1)(−1)
n+1

2

λ +1

(

p2−
2λ p
λ +1

+
λ (λ −1)

(λ +1)2

)

qn−2+ · · ·

(n odd)

2n(−1)
n+2

2

λ +1

(

p−
λ

λ +1

)

qn−1+
2(−1)

n
2

λ +1

·

(

n
3

)(

p3−
3λ p2

λ +1
+

3λ (λ −1)p

(λ +1)2
−

λ (λ2−4λ +1)

(λ +1)3

)

qn−3+ · · ·

(n even).

Proposition 11 The following identities hold true:

E
(c)
n (p,q;λ ) =

[ n
2 ]

∑
k=0

(−1)k
(

n
2k

)

E
(c)
n−2k(p,0;λ ) q2k

and

E
(s)
n (p,q;λ ) =

[ n−1
2 ]

∑
k=0

(−1)k
(

n
2k+1

)

E
(c)
n−2k−1(p,0;λ ) q2k+1

,

in which

E
(c)
n−2k(p,0;λ ) = En−2k(p;λ )

and

E
(c)
n−2k−1(p,0;λ ) = En−2k−1(p;λ )

are the Apostol-Euler polynomials.

Proposition 12 If n ∈ N, λ > 0 and m is an odd positive
integer, then

E
(c)
n

(

mp,q;λ
1
m
)

= mn
m−1

∑
k=0

(−1)k λ
k
m E

(c)
n

(

p+
k
m
,

q
m

;λ
)

and

E
(s)
n

(

mp,q;λ
1
m
)

= mn
m−1

∑
k=0

(−1)k λ
k
m E

(s)
n

(

p+
k
m
,

q
m

;λ
)

.
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5 Basic Properties of G
(c)
n (p,q;λ ) and

G
(s)
n (p,q;λ )

Proposition 13 For every n∈ N, the following identities hold

λG
(c)
n (1+ p,q;λ )+G

(c)
n (p,q;λ ) = 2nCn−1(p,q) (36)

and

λG
(s)
n (1+ p,q;λ )+G

(s)
n (p,q;λ ) = 2nSn−1(p,q). (37)

Corollary 5 The relations(36) and (37) imply that

λG
(c)
2n+1(1,q;λ )+G

(c)
2n+1(0,q;λ ) = 2(2n+1)(−1)n q2n

and

λG
(s)
2n (1,q;λ )+G

(s)
2n (0,q;λ ) = 4n(−1)n+1 q2n−1

.

Proposition 14 For every n∈ N, the following identities hold
true:

G
(c)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

G
(c)
k (p,q;λ ) rn−k

and

G
(s)
n (p+ r,q;λ ) =

n

∑
k=0

(

n
k

)

G
(s)
k (p,q;λ ) rn−k

.

Corollary 6 It is asserted that

G
(c)
n (p+1,q;λ )−G

(c)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

G
(c)
k (p,q;λ )

and

G
(s)
n (p+1,q;λ )−G

(s)
n (p,q;λ ) =

n−1

∑
k=0

(

n
k

)

G
(s)
k (p,q;λ ).

Now, by combining these results and Proposition13, we can
derive the following recurrence relations:

G
(c)
n (p,q;λ ) =

1
λ +1

[

2nCn−1(p,q)−λ
n−1

∑
k=0

(

n
k

)

G
(c)
k (p,q;λ )

]

and

G
(s)
n (p,q;λ ) =

1
λ +1

[

2nSn−1(p,q)−λ
n−1

∑
k=0

(

n
k

)

G
(s)
k (p,q;λ )

]

,

where

G
(c)
0 (p,q;λ ) = 0 and G

(s)
0 (p,q;λ ) = 0.

Proposition 15 For every n∈N, the following identities
hold true:

∂
∂ p

{

G
(c)
n (p,q;λ )

}

= nG
(c)
n−1(p,q;λ ),

∂
∂q

{

G
(c)
n (p,q;λ )

}

=−nG
(s)
n−1(p,q;λ ),

∂
∂ p

{

G
(s)
n (p,q;λ )

}

= nG
(s)
n−1(p,q;λ )

and

∂
∂q

{

G
(s)
n (p,q;λ )

}

= nG
(c)
n−1(p,q;λ ).

Proposition 16 If G
(c)
n (p,q) and G

(s)
n (p,q) are

considered as polynomials in the variable p, then they are
of degrees n−1 and n−2, respectively, and it is asserted
that

G
(c)
n (p,q;λ ) =

2n
λ +1

pn−1−
2n(n−1)λ
(λ +1)2 pn−2+ · · ·

and

G
(s)
n (p,q;λ ) =

2n(n−1)q
λ +1

pn−2−12

(

n

3

)

qλ
(λ +1)2 pn−3 + · · · .

Furthermore, if G
(c)
n (p,q) and G

(s)
n (p,q) are considered

as polynomials in the variable q, then

G
(c)
n (p,q;λ )=











































































(−1)
n+2

2

λ +1
2n(n−1)

(

p−
λ

λ +1

)

qn−2+
2(n−3)(−1)

n
2

λ +1

·

(

n
3

)(

p3−
3λ p2

λ +1
+

3λ (λ −1)p

(λ +1)2
−

λ (λ2−4λ +1)

(λ +1)3

)

qn−4+ · · ·

(n even)

2n(−1)
n−1

2

λ +1
qn−1+

6(−1)
n+1

2

λ +1

(

n
3

)(

p2−
2λ p
λ +1

+
λ (λ −1)

(λ +1)2

)

qn−3+ · · ·

(n odd)

and

G
(s)
n (p,q;λ )=



































































2n(−1)
n+2

2

λ +1
qn−1+

6(−1)
n
2

λ +1

(

n
3

)(

p2−
2λ p
λ +1

+
λ (λ −1)

(λ +1)2

)

qn−3+ · · ·

(n even)

(−1)
n+1

2

λ +1
2n(n−1)

(

p−
λ

λ +1

)

qn−2+
2(n−3)(−1)

n−1
2

λ +1

·

(

n
3

)(

p3−
3λ p2

λ +1
+

3λ (λ −1)p

(λ +1)2
−

λ (λ2−4λ +1)

(λ +1)3

)

qn−4+ · · ·

(n odd).

Proposition 17 The following identities hold true:

G
(c)
n (p,q;λ ) =

[ n−1
2 ]

∑
k=0

(−1)k
(

n
2k

)

G
(c)
n−2k(p,0;λ ) q2k

and

G
(s)
n (p,q;λ ) =

[ n−2
2 ]

∑
k=0

(−1)k
(

n
2k+1

)

G
(c)
n−2k−1(p,0;λ ) q2k+1

,

in which
G

(c)
n−2k(p,0;λ ) = Gn−2k(p;λ )

and
G

(c)
n−2k−1(p,0;λ ) = Gn−2k−1(p;λ )

are the Apostol-Genocchi polynomials.

Proposition 18 If n ∈N, λ > 0 and m is an odd positive
integer, then

G
(c)
n

(

mp,q;λ
1
m

)

= mn−1
m−1

∑
k=0

(−1)k λ
k
m G

(c)
n

(

p+
k
m
,

q
m

;λ
)

and

G
(s)
n

(

mp,q;λ
1
m

)

= mn−1
m−1

∑
k=0

(−1)k λ
k
m G

(s)
n

(

p+
k
m
,

q
m

;λ
)

.
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6 New Taylor Type Series Involving the
Apostol Type Numbers
Bn,λ , En,λ and Gn,λ

One of the applications of the relations (8), (9) and (10) is
that they can be considered as the Taylor expansion of
some special functions aboutt = 0 involving the Apostol
type numbersBn,λ , En,λ andGn,λ . In other words, upon
substituting the relations (11), (12) and (13) into the
relations (8), (9) and (10), we find that

f (c)
B,λ (t; p,q) =

tept

λet −1
cos(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n
k

)

Bn−k,λCk(p,q)

]

tn

n!
, (38)

f (s)
B,λ (t; p,q) =

tept

λet −1
sin(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n
k

)

Bn−k,λCk(p,q)

]

tn

n!
, (39)

f (c)
E ,λ (t; p,q) =

2ept

λet +1
cos(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n
k

)

En−k,λCk(p,q)

]

tn

n!
, (40)

f (s)
E ,λ (t; p,q) =

2ept

λet +1
sin(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n

k

)

En−k,λCk(p,q)

]

tn

n!
, (41)

f (c)
G ,λ (t; p,q) =

2tept

λet +1
cos(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n
k

)

Gn−k,λCk(p,q)

]

tn

n!
(42)

and

f (s)
G ,λ (t; p,q) =

2tept

λet +1
sin(qt) =

∞

∑
n=0

[

n

∑
k=0

(

n
k

)

Gn−k,λCk(p,q)

]

tn

n!
, (43)

whereCk(p,q) andSk(p,q) are defined in (3) and (4).
In order to evaluate the above functions for some specific
parameters, we first prove the following identities:

Ck(p, p) = 2
k
2 pk cos

(

kπ
4

)

, (44)

Sk(p, p) = 2
k
2 pk sin

(

kπ
4

)

, (45)

Ck(0,q) = qk cos

(

kπ
2

)

, (46)

Sk(0,q) = qk sin

(

kπ
2

)

(47)

and

Ck(p,0) = pk and Sk(p,0) = 0. (48)

It is easily observed that

coskθ + isin(kθ) = (cosθ + isinθ)k

=

[

k
2

]

∑
j=0

(−1) j

(

k
2 j

)

(sinθ)2 j (cosθ)k−2 j

+ i

[

k−1
2

]

∑
j=0

(−1) j

(

k
2 j +1

)

(sinθ)2 j+1 (cosθ)k−2 j−1
.

Thus, upon settingθ = π
4 , we obtain

cos

(

kπ
4

)

+ isin

(

kπ
4

)

= 2−
k
2

[

k
2

]

∑
j=0

(−1) j

(

k
2 j

)

+ i 2− k
2

[

k−1
2

]

∑
j=0

(−1) j

(

k
2 j +1

)

,

which leads to the relations (44) and (45). The relations
(46), (47) and (48) are also clear by noting the relations
(3) and (4).
We now consider some particular illustrative examples.

Example 1 In (38), we takep = 0 andq = 1. Then, by
noting (46) and (47), we obtain

f (c)
B,λ (t;0,1) =

t
λet −1

cost =
∞

∑
n=0

[

n

∑
k=0

(

n
k

)

Bn−k,λ cos

(

kπ
2

)

]

tn

n!

=
∞

∑
n=0





[ n
2 ]

∑
k=0

(

n
2k

)

Bn−2k,λ (−1)k





tn

n!
.

Therefore, we have

t
λet −1

cost =
∞

∑
n=0





[ n
2 ]

∑
k=0

(−1)k

(

n
2k

)

Bn−2k,λ





tn

n!

as well as

t
λet −1

sint =
∞

∑
n=0





[ n−1
2 ]

∑
k=0

(−1)k
(

n
2k+1

)

Bn−2k−1,λ





tn

n!
,

1
λet +1

cost =
∞

∑
n=0





[ n
2 ]

∑
k=0

(−1)k

2

(

n
2k

)

En−2k,λ





tn

n!
,

1
λet +1

sint =
∞

∑
n=0





[ n−1
2 ]

∑
k=0

(−1)k

2

(

n
2k+1

)

En−2k−1,λ





tn

n!
,

t
λet +1

cost =
∞

∑
n=0





[ n
2 ]

∑
k=0

(−1)k

2

(

n
2k

)

Gn−2k,λ





tn

n!

and

t
λet +1

sint =
∞

∑
n=0





[ n−1
2 ]

∑
k=0

(−1)k

2

(

n
2k+1

)

Gn−2k−1,λ





tn

n!
.

Example 2 Puttingp= q= 1 in (38), we get

f (c)
B,λ (t;1,1) =

tet

λet −1
cost =

∞

∑
n=0

[

n

∑
k=0

2
k
2

(

n

k

)

Bn−k,λ cos
kπ
4

]

tn

n!
.

In a similar way, we have

tet

λet −1
sint =

∞

∑
n=0

[

n

∑
k=0

2
k
2

(

n
k

)

Bn−k,λ sin
kπ
4

]

tn

n!
,
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et

λet +1
cost =

∞

∑
n=0

[

n

∑
k=0

2
k
2−1

(

n
k

)

En−k,λ cos

(

kπ
4

)

]

tn

n!
,

et

λet +1
sint =

∞

∑
n=0

[

n

∑
k=0

2
k
2−1

(

n
k

)

En−k,λ sin

(

kπ
4

)

]

tn

n!
,

tet

λet +1
cost =

∞

∑
n=0

[

n

∑
k=0

2
k
2−1

(

n
k

)

Gn−k,λ cos

(

kπ
4

)

]

tn

n!

and

tet

λet +1
sint =

∞

∑
n=0

[

n

∑
k=0

2
k
2−1

(

n
k

)

Gn−k,λ sin

(

kπ
4

)

]

tn

n!
.

7 Perspective

In this paper, we have introduced a new kind of
parametric Apostol-Bernoulli polynomials, Apostol-Euler
polynomials and Apostol-Genocchi polynomials by
defining six special generating functions. We have
systematically investigated some basic properties of each
of these parametric Apostol-Bernoulli polynomials,
Apostol-Euler polynomials and Apostol-Genocchi
polynomials. As an interesting application, we have used
such parametric polynomials to explicitly compute some
new series of the Taylor type containing the
Apostol-Bernoulli numbersBn,λ , the Apostol-Euler
numbersEn,λ and the Apostol-Genocchi numbersGn,λ .
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