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Abstract: We propose an infection age HIV model that considers virus-to-cell and cell-to-cell infections and immune response. This
new and more complex model combines and extends the models proposed in [4,9]. We prove that the solution to the associated initial-
value problem is positive and bounded from above. Furthermore, we analyze the stability of the infection-free equilibrium.
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1 Introduction

It is known that the human immunodeficiency virus (HIV)
infects CD4+ T helper cells, which are an important part
of the immune system because they facilitate the body’s
response to many common but potentially fatal infections.
Because of its lethality and quasi-incurability, HIV has
become a major problem for human health; it is
responsible for millions of infections and deaths so far.
Without treatment with HIV medicines, HIV infection
advances in stages, getting worse over time. The phase of
primary infection is characterized by a strong viral
replication, which is followed by a strong immune
response. In the second phase of HIV infection, infected
individuals display no symptoms, but have persistent viral
replications, which eventually results in the development
of AIDS [8], which is the final, most severe stage of HIV
infection. Individuals are diagnosed with AIDS if they
have a T cells count of less than 200cells/mm3 or if they
have certain opportunistic infections. Without treatment,
people with AIDS typically survive about 3 years.

Mathematical models have made substantial
contributions to our understanding of HIV infection,
immune responses, and anti-retroviral treatment (see [3,5,
7,13,15,16], etc.). Time delays have also been
incorporated into mathematical models to study virus
dynamics; see for example [1,2,6,10,12,14,24], among
many others. There have also been a variety of
modifications of these models that have resulted from
incorporating drug therapies. It is known that there is no

perfect treatment for HIV infection, but HIV medicines
can prevent HIV from advancing to AIDS. HIV
medicines help people with HIV live longer, healthier
lives. HIV medicines also reduce the risk of HIV
transmission to other people. For examples of how
mathematical models predict HIV treatment outcomes,
see [17,18,19,20,21,22,23], and references therein.

In this paper, we introduce a new model based on the
models presented and analyzed in [4] and [9], which our
model combines and extends.

2 New Model and Properties

In [4], the authors consider the following viral model
incorporating mitosis of the healthy target cells which is
described by the logistic term, two routes of infection:
virus-to-cell and cell-to-cell infection, and three time
delays accounting, respectively, for a period of the
chemical reaction in the virus-to-cell infection, an
intracellular incubation period in the cell-to-cell infection,
and a period of the immune lag incurred by antigenic
activation and selection.

dT
dt

= s− µ1T(t)+ rT (t)
(

1− T(t)
Tmax

)

−β1T(t)V(t)−β2T(t)I(t) (1)
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dI
dt

= β1e−a1τ1T(t − τ1)V(t − τ1)

+β2e
−a2τ2T(t − τ2)I(t − τ2)

− µ2I(t)− δE(t)I(t) (2)

dV
dt

= bI(t)− µ3V(t) (3)

dE
dt

= ce−a3τ3I(t − τ3)− µ4E(t) (4)

Here, the four dynamic variables are the healthy target
cells T(t), the infected cellsI(t), the virusV(t), and the
effector cellsE(t). In the equation (1) for T(t), s is the
constant input rate, andβ1 andβ2 are the virus-to-cell and
cell-to-cell infection rates, respectively. The mitosis of
healthy target cells is described by the logistic term

rT (t)
(

1− T(t)
Tmax

)

, wherer is the intrinsic mitosis rate and

Tmax is the carrying capacity of the target cell population.
That is, if the T cells population ever reachesTmax (in the
uninfected case) it should decrease. Thus, the constraint
s< µ1Tmaxappears naturally. Furthermore, all cells have a
natural lifespan; hereµi , i = 1, ...,4, denote the death rates
of populationsT(t), I(t), V(t), andE(t), respectively, and
δ is the death rate of infected cells due to action of the
immune response. The first two terms in theI(t) equation
(2) represent the delayed sources of infection by free
virus and infected cells, respectively, andb in (3) denotes
the average production rate of virus from an infected cell.
The first term of the equation (4) quantifies the delayed
production rate of the effector cellsE(t).

In [9], the authors propose a model that incorporates
both the cell-to-cell infection mechanism and the virus-to-
cell infection mode, considering infection age as well (the
notations are synchronized with the notations of the model
(1)-(4)).

dT
dt

= s− µ1T(t)−β1T(t)V(t)−β2T(t)I(t) (5)

dI
dt

=
∫ ∞

0
[β1T(t − s)V(t − s)

+β2T(t − s)I(t − s)]e−asf (s)ds− µ2I(t) (6)

dV
dt

= bI(t)− µ3V(t) (7)

Here, it is assumed that the infected cells may die or be
cleared at a ratea before becoming productively infected,
that is, only a proportione−as survives after a time period
s. As explained in [9], the time for infected cells to
become productively infected may vary from case to case;
this explains the distribution functionf : [0,∞) → [0,∞),
which is nonnegative, has compact support, and satisfies
∫ ∞

0 f (s)ds= 1.

Based on (1)-(4) and (5)-(7), we propose the following
model, whose dynamical variables and parameters are as

in (1)-(4) and (5)-(7), and are self-explanatory.

dT
dt

= s− µ1T(t)+ rT(t)
(

1− T(t)
Tmax

)

−β1T(t)V(t)−β2T(t)I(t) (8)

dI
dt

=

∫ ∞

0
[β1T(t − s)V(t − s)− µ2I(t)

+β2T(t − s)I(t − s)]e−asf (s)ds

− δE(t)I(t) (9)

dV
dt

= bI(t)− µ3V(t) (10)

dE
dt

= c
∫ ∞

0
I(t − s)e−asf (s)ds− µ4E(t) (11)

In what follows, we study some properties of this newly
introduced HIV mathematical model.

2.1 Positivity and boundedness of solutions

Since all dynamic variables are populations, only
nonnegative, bounded initial conditions make sense for
the delay system (8)-(11). With such initial conditions,
our first result states that the solution to the evolution
problem stays positive and bounded. One of the tools to
be used in the proof is the classical Gronwall inequality,
which states that ify : [0,T]→R is differentiable andy(t)
satisfies the differential inequality

y′(t)≤ h(t)+g(t)y(t),

with g continuous andh locally integrable, then

y(t)≤ y(0)eG(t)+

∫ t

0
eG(t)−G(s)h(s)ds,

for G(t) :=
∫ t

0 g(r)dr.

Theorem 1. Let (T(t), I(t),V(t),E(t)) be the solution of
the system (8)-(11) with continuous, bounded initial
conditionsT0, I0,V0,E0 : (−∞,0] → [0,∞). Assume that
either I(t0) > 0 or V0(t0) > 0 for somet0 ∈ (−∞,0] (i.e.,
infection occurs). ThenT(t), I(t), V(t), andE(t) are all
positive and bounded fort > 0.

Proof. First, let us prove that the solution of (8)-(11) is
positive for all t > 0. Observe thatT(t), I(t), V(t), and
E(t)must be positive in a right-side neighborhood oft = 0.
This follows from continuity (if either one is positive at
zero, then it must be positive in a neighborhood of zero),
or from the fact that the derivative at zero must be positive
if either one is zero att = 0. Arguing by contradiction,
assume that there existst1 > 0 such that

min{T(t1), I(t1),V(t1),E(t1)}= 0

for first time.
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First, assumeT(t1) = 0. Then, from (8) it follows that
T ′(t1) = s> 0, which is in contradiction with the positivity
of T(t) in a left-side neighborhoodoft1. In fact, exactly the
same argument proves thatT(t) must be positive on the
entire interval[0,∞), independently of the behavior of the
other variables of the system. Next, we prove the positivity
of I(t). If I(t1) = 0, then, from (9), we get

I ′(t1) =
∫ ∞

0
[β1T(t1− s)V(t1− s)

+β2T(t1− s)I(t1− s)]e−asf (s)ds> 0,

which contradicts the positivity ofI(t) in a left-side
neighborhood oft1. Similar arguments show that neither
V(t1) norE(t1) can be zero. In conclusion, the solution to
(8)-(11) is positive for allt > 0.

Let us now prove that the solution is bounded from
above. To prove the boundedness ofT(t), observe that

dT
dt

≤ s− µ1T(t)+ rT(t)
(

1− T(t)
Tmax

)

,

which when coupled with the constraints< µ1Tmaxshows
thatT ≤Tmaxfor all timet > 0, becauseT ′(t)< 0 wherever
T(t) = Tmax.

Let m be the maximum value of the functiong(y) :=
s+ ry(1− y/Tmax), that ism := s+ rTmax/4. Consider the
function

H(t) :=
∫ ∞

0
T(t − s)e−asf (s)ds+ I(t),

and observe that

dH
dt

=

∫ ∞

0
g(T(t − s))e−asf (s)ds

− µ1

∫ ∞

0
T(t − s)e−asf (s)ds

− µ2I(t)− δE(t)I(t)

≤ m− µH(t),

whereµ := min{µ1,µ2}. From Gronwall’s inequality, it
follows that

H(t)≤ H(0)e−µt

+

∫ t

0
e−µt+µsmds≤ H(0)e−µt +

m
µ

≤ Tmax+ I(0)+
m
µ

for t ≥ 0.

Hence,H(t) is bounded byM := Tmax+ I(0)+m/µ , which
in turn implies the boundedness ofI(t).

From equations (10) and (11), together with
Gronwall’s inequality, one can obtain the following upper

bounds forV(t) andE(t) for t ≥ 0

V(t) ≤V(0)e−µ3t +
bM
µ3

(1−e−µ3t)

≤V(0)+
bM
µ3

,

E(t)≤ E(0)e−µ4t +
cMI

µ4
(1−e−µ4t)

≤ E(0)+
cMI

µ4
,

whereMI is an upper bound ofI(t) on (−∞,∞) (possibly
greater thanM). �.

2.2 Stability of the Infection-free Equilibrium
Solution

System (8)-(11) admits an infection-free equilibriumE0 =
(T̄,0,0,0), with

T̄ :=
Tmax

2r

(

r − µ1+

√

(r − µ1)2+
4rs
Tmax

)

.

Define the basic reproduction numberR0 by

R0 :=
bβ1T̄L f (a)

µ2µ3
+

β2T̄L f (a)

µ2
,

whereL f (a) :=
∫ ∞

0 e−asf (s)ds is the Laplace transform
of f at a. Observe thatR0 depends on the delays related
to infections but not on the delay related to the effector
cells production. As explained in [4], the first term in the
definition of R0, R01 := bβ1T̄L f (a)µ−1

2 µ−1
3 , measures

the average number of secondary infected generation
caused by an existing free virus, while the second term,
R02 := β2T̄L f (a)µ−1

2 , measures the average number of
secondary infected generation caused by an infected cell.

The following result shows thatR0 is a measure of
whether or not an infection caused by a small inoculation
of virus can persist.

Theorem 2. Consider the system (8)-(11) with continuous,
bounded initial conditions. The infection-free equilibrium
E0 is locally asymptotically stable ifR0 < 1, and unstable
if R0 > 1.

Proof. In order to analyze the stability of the
infection-free equilibrium E0, we calculate the
linearization of system (8)-(11) about E0. That is, we
consider small perturbations of the components ofE0:
T(t) = T̄ +u1(t), I(t) = 0+u2(t), V(t) = 0+u3(t), and
E(t) = 0+ u4(t) in (8)-(11). Dropping the second order
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terms gives

du1

dt
=−

√

(r − µ1)2+
4rs
Tmax

u1−β1T̄ u3−β2T̄ u2, (12)

du2

dt
=

∫ ∞

0
[β1T̄ u3(t − s)+β2T̄ u2(t − s)]e−asf (s)ds

− µ2u2, (13)

du3

dt
= bu2− µ3u3, (14)

du4

dt
= c

∫ ∞

0
u2(t − s)e−asf (s)ds− µ4u4. (15)

The characteristic equation of the linear system (12)-(15)
is

(λ + µ4)
(

λ +

√

(r − µ1)2+
4rs
Tmax

)

[(λ + µ3)(λ + µ2−ηa(λ )β2T̄)

−bηa(λ )β1T̄] = 0, (16)

whereηa(λ ) :=
∫ ∞

0 e−(a+λ )s f (s)ds. Observe that (16) has
two negative eigenvalues, namely,λ1 = −µ4 and
λ2 = −

√

(r − µ1)2+4rs/Tmax. Any other eigenvalue
must be a root of the equation

(λ + µ3)(λ + µ2−ηa(λ )β2T̄)−bηa(λ )β1T̄ = 0. (17)

Taking into account thatbβ1T̄ = µ2µ3R01/L f (a), β2T̄ =
µ2R02/L f (a), andR0=R01+R02, the equation (17) can
be written as

(λ + µ3)(λ + µ2) = (λ + µ3)ηa(λ )β2T̄ +bηa(λ )β1T̄

= ηa(λ )(λ β2T̄ + µ3β2T̄ +bβ1T̄)

= ηa(λ )
( λ µ2

L f (a)
R02+

µ2µ3

L f (a)
R02

+
µ2µ3

L f (a)
R01

)

= µ2
ηa(λ )
L f (a)

(λR02+ µ3R0)

= µ2
ηa(λ )
L f (a)

(

λ
R02

R0
+ µ3

)

R0

Solving forR0, one obtains

R0 =
λ + µ3

λ (R02/R0)+ µ3
· L f (a)

ηa(λ )
·
( λ

µ2
+1

)

. (18)

Let us prove that all roots of (17) must have negative real
parts whenR0 < 1. Arguing by contradiction, assume that
λ = x+ iy is a complex root of (17) with x≥ 0. Then, the
modulus of each of the three factors on the right-hand side
of equation (18) must be greater than or equal to 1, that is

∣

∣

∣

λ + µ3

λ (R02/R0)+ µ3

∣

∣

∣
≥ 1,

∣

∣

∣

L f (a)
ηa(λ )

∣

∣

∣
≥ 1, and

∣

∣

∣

λ
µ2

+1
∣

∣

∣
≥ 1,

which would imply R0 ≥ 1. Thus, the real part of any
solutionλ to (17) must be negative ifR0 < 1, and soE0
is locally asymptotically stable in this case.

Next, let us prove thatE0 is unstable ifR0 > 1.
Consider the function

F(λ ) :=
λ + µ3

λ (R02/R0)+ µ3
· L f (a)

ηa(λ )
·
( λ

µ2
+1

)

−R0.

Observe thatF(0) = 1−R0 < 0 if R0 > 1. On the other
hand, limλ→∞ F(λ ) = ∞. Therefore, there exists a
positive root ofF(λ ) and so, the characteristic equation
of the linear system (12)-(15) has a positive eigenvalue.
Hence,E0 is unstable.�

Remark.The system (8)-(11) also admits an infected
equilibriumE∗

0 = (T∗, I∗,V∗,E∗), where

T∗ =
r − µ1+θ

(

bβ1
µ3

+β2

)

+
√

∆

2
[

r
Tmax

+α
(

bβ1
µ3

+β2

)] ,

I∗ = αT∗−θ ,

V∗ =
b
µ3

I∗,

E∗ =
cL f (a)

µ4
I∗,

with

θ =
µ2µ3

cδL f (a)
andα =

θ
T̄

R0

and

∆ =

[

r − µ1+θ
(

bβ1

µ3
+β2

)]2

+4s

[

r
Tmax

+α
(

bβ1

µ3
+β2

)]

,

wheneverT∗ > T̄/R0.
The necessary and sufficient condition for the

existence of the infected equilibriumE∗
0 is thatR0 > 1.

The proof uses the same ideas and techniques as in [4];
we include it here for reader’s convenience. Leth(x) :=
s− µ1x + rx(1 − x/Tmax) − (β1bµ−1

3 + β2)(αx2 − θx).
Observe thath(T∗) = 0, h(x) > 0 for 0 ≤ x < T∗, and
h(x)< 0 for T∗ < x< ∞. A simple calculation shows that

h
( T̄

R0

)

=
(

1− 1
R0

)(

s+
rT̄2

TmaxR0

)

,

which implies thatT∗ > T̄/R0 if and only if R0 > 1.
Determining the stability and other properties of the

infected equilibriumE∗
0 requires further work, and will be

the subject of a forthcoming paper. For example, local
asymptotic stability is expected ifR0 > 1 (as for the
source models presented in [4] and [9]) and determining
the global convergence to the infected equilibrium or
uniform persistence of solutions would represent
interesting directions of study.
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3 Conclusion

In this paper, we have proposed and analyzed a new
mathematical model for an HIV virus transmission
process that takes into account mitosis of healthy target
cells and three infection age time delays in the way of
virus-to-cell and cell-to-cell infections and immune
response. The delays indicate the times for processing
chemical reaction in virus-to-cell infection, intracellular
incubation period in cell-to-cell infection, and the time
lag in immune response to active viruses. First, we
showed that the solution of the initial-value problem
associated to the system is positive and bounded; a
necessary condition for the model’s well-posedness.
Then, we proved that the infection-free equilibrium is
locally asymptotically stable if and only if the basic
reproduction number is strictly less than one.

Acknowledgement

This work was partially supported by a grant from the
Simons Foundation (#429449 to Nicoleta E. Tarfulea).

References

[1] M. Adimy, F. Crauste, and S. Ruan,Periodic oscillations
in leukopoiesis models with two delays, J. Theor. Biol.242
(2006), 288-299.

[2] H.T. Banks and D.M. Bortz,A parameter sensitivity
methodology in the context of HIV delay equation models, J
Math Biol. 50 (2005), 607625.

[3] D.S. Callaway and A.S. Perelson,HIV-1 infection and low
steady state viral loads, Bull. Math. Biol. 1 (2002), 29-64.

[4] S.-S. Chen, C.-Y Cheng, and Y. Takeuchi,Stability analysis
in delayed within-host viral dynamics with both viral and
cellular infections, Journal of Mathematical Analysis and
Applications442 (2016), 642-672.

[5] M.S. Ciupe, B.L. Bivort, and D.M. Bortz,Estimating kinetic
parameters from HIV primary infection data through the
eyes of three different mathematical models, Math. Biosci.1
(2006) 127.

[6] R.V. Culshaw and S. Ruan,A delay-differential equation
model of HIV infection of CD4+ T-cells, Math. Biosci.165
(2000), 27-39.

[7] N. M. Dixit and A. S. Perelson,Multiplicity of human
immunodeficiency virus infections in lymphoid tissue, J.
Virol., 78 (2004), pp. 8942-8945.

[8] G. Haas, A. Hosmalin, F. Hadida, J. Duntze, P. Debré, and
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