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Abstract: We propose an infection age HIV model that considers viousetl and cell-to-cell infections and immune responsds Th
new and more complex model combines and extends the moaxdegad in4,9]. We prove that the solution to the associated initial-
value problem is positive and bounded from above. Furtheznvwee analyze the stability of the infection-free equiliion.
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1 Introduction perfect treatment for HIV infection, but HIV medicines
can prevent HIV from advancing to AIDS. HIV

It is known that the human immunodeficiency virus (HIv) Medicines help people with HIV live longer, healthier
infects CD4 T helper cells, which are an important part IVes. HIV medicines also reduce the risk of HIV
of the immune system because they facilitate the body’dransmission to other people. For examples of how
response to many common but potentially fatal infections.Mathematical models predict HIV treatment outcomes,
Because of its lethality and quasi-incurability, HIV has S€€ 17,18 19,20,21,22 23], and references therein.
become a major prob|em for human health; it is In this paper, we introduce a new model b&-lsed on the
responsible for millions of infections and deaths so far.models presented and analyzed4h&nd [9], which our
Without treatment with HIV medicines, HIV infection Mmodel combines and extends.

advances in stages, getting worse over time. The phase of

primary infection is characterized by a strong viral

replication, which is followed by a strong immune .

response. In the second phase of HIV infection, infected2 New Model and Properties

individuals display no symptoms, but have persistent viral

replications, which eventually results in the development;, [4], the authors consider the following viral model

of AIDS [8], which is the final, most severe stage of HIV jycorporating mitosis of the healthy target cells which is
infection. Individuals are diagnosed with AIDS if they gegcribed by the logistic term, two routes of infection:
have a T cells count of less than 268lls/mn? or if they  yirys to-cell and cell-to-cell infection, and three time
have certain opportunistic infections. Without treatment ga|ays accounting, respectively, for a period of the
people with AIDS typically survive about 3 years. _ chemical reaction in the virus-to-cell infection, an
Mathematical models have made substantialintracellular incubation period in the cell-to-cell infam,

immune responses, and anti-retroviral treatment @&e [ gctivation and selection.

7,13,15,16], etc.). Time delays have also been
incorporated into mathematical models to study virus

dynamics; see for exampld,R,6,10,12,14,24], among daT T(t)
many others. There have also been a variety of i S— T (t)+rT (t)(l— T—)
modifications of these models that have resulted from max
incorporating drug therapies. It is known that there is no =BTV () — BT (1)) 1)
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% =Be 0T (t—1)V(t—11) in (1)-(4) and 6)-(7), and are self-explanatory.

+Boe 22T (t— 1)l (t — 1) daT T(t)

~ el (1) - SEQOI (D) @ @ =S AT T (o)
Vi) vt - L ATOVO-ATOI ®)
G G= | BTE-9vt-9 - p )
— =ce BB (t—13) — E() (4) 0
dt + BT (t—9)l (t—s))e F(s)ds

—SE()I(t) 9)
Here, the four dynamic variables are the healthy target dv

cells T(t), the infected cell$(t), the virusV (t), and the ot = Pl — KV (1) (10)
effector cellsg(t). In the equation) for T(t), sis the dE o

constant input rate, angy andp; are the virus-to-cell and — = c/ I(t—s)e ®f(s)ds— wE(1)  (11)
cell-to-cell infection rates, respectively. The mitosit o dt 0

healthy target cells is described by the logistic term .\ nat follows, we study some properties of this newly
rT(t) (1— %t;x) wherer is the intrinsic mitosis rate and introduced HIV mathematical model.

Tmax IS the carrying capacity of the target cell population.

That is, if the T cells population ever reachisy (in the

uninfected case) it should decrease. Thus, the constrair®.1 Positivity and boundedness of solutions

s < Ui Tmaxappears naturally. Furthermore, all cells have a

natural lifespan; herg, i = 1,...,4, denote the death rates Since all dynamic variables are populations, only
of populationsT (t), I(t), V(t), andE(t), respectively, and nonnegative, bounded initial conditions make sense for
0 is the death rate of infected cells due to action of thethe delay system8j-(11). With such initial conditions,
immune response. The first two terms in tiig equation  our first result states that the solution to the evolution
(2) represent the delayed sources of infection by freeproblem stays positive and bounded. One of the tools to
virus and infected cells, respectively, anih (3) denotes  be used in the proof is the classical Gronwall inequality,
the average production rate of virus from an infected cell.which states that i§ : [0, T] — R is differentiable ang/(t)

The first term of the equatior) quantifies the delayed satisfies the differential inequality

production rate of the effector celgt).

In [9], the authors propose a model that incorporates Y (t) <h(t) +g(t)y(t).
both the cell-to-cell infection mechanism and the virus-to

. . S . with ntin ndh locally integrable, then
cell infection mode, considering infection age as well (the g continuous ant locally integrable, the

notations are synchronized with the notations of the model Gt GGl

(1)-(4)). y(t) < y(0)€ ‘)+/0 et ~Ch(s)ds
LR S S A
- =S— M1 — b1 — b2
dt . Theorem 1. Let (T(t),1(t),V(t),E(t)) be the solution of
ﬂ_/ BiT(t—s)\V(t—s) the system &)-(11) with continuous, bounded initial

— 1 e .

dt 0 conditionsTo, lg, Vo, Ep : (—,0] — [0,0). Assume that

+BoT(t—9)l(t—9)e ®f(s)ds— ol (t)  (6)  eitherl(to) > 0 orVo(to) > O for somety € (—0,0] (i.e.,
dv infection occurs). Thef (t), 1(t), V(t), andE(t) are all
i bl(t) — psV(t) @) positive and bounded far> 0.

Proof. First, let us prove that the solution o8)¢(11) is
Here, it is assumed that the infected cells may die or bd?0Sitive for allt > 0. Observe thal (t), I(t), V(t), and
cleared at a rate before becoming productively infected, E(t) mustbe positive in aright-side neighborhood 0.
that is, only a proportior—2 survives after a time period This foIIow_s from continuity (|.1c elther_ one is positive at
s. As explained in 9], the time for infected cells to Z€T0 then it must be positive in a neighborhood of zgrp),
become productively infected may vary from case to case©" from the fact that the derivative at zero must be positive
this explains the distribution functioh: [0,0) — [0,00), if either one is zero at = 0. Arguing by contradiction,
which is nonnegative, has compact support, and satisfie@Sume that there exigis> 0 such that

“f(s)ds= 1. .
Jo 19 | Min{T (t),(t2),V (t), E(tr)} =0
Based on1)-(4) and 6)-(7), we propose the following
model, whose dynamical variables and parameters are dser first time.
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First, assumé (t;) = 0. Then, from §) it follows that ~ bounds foi/(t) andE(t) fort >0
T'(t1) = s> 0, which is in contradiction with the positivity
of T(t) in a left-side neighborhood of. In fact, exactly the .t DM ot
same argument proves thaft) must be positive on the V(t) <V(0)e s+ E(l_e &)
entire intervall0, ), independently of the behavior of the bM
other variables of the system. Next, we prove the positivity <V(0)+ —,
of I(t). If I(t) = 0, then, from 9), we get Hs "
3 E(t) < E(0)e Mt 4 %(1—e‘“4‘)
4
') = [ (BT t-9V(n-s) oM
0 S E(O) + TR
+ BT (ta — 91 (tg — s)]e 2%f(s)ds> O, Ha

which contradicts the positivity of (t) in a left-side

whereM, is an upper bound df(t) on (—, ) (possibly

neighborhood of;. Similar arguments show that neither greater tha). CJ.

V(t1) norE(t;) can be zero. In conclusion, the solution to

(8)-(11) is positive for allt > 0.

Let us now prove that the solution is bounded from

above. To prove the boundednesg ¢f), observe that

dr < s—ulT(t)—HT(t)(

dt — _w)’

max

which when coupled with the constrag 3 Tnax Shows
thatT < Tmaxfor alltimet > 0, becaus@&’(t) < O wherever

Let m be the maximum value of the functigty) :=
s+ r1y(1—y/Tmay, that ism:= s+ rTmax/4. Consider the
function

H(t) ::/ T(t—s)e ®f(s)ds+1 (1),
0
and observe that

‘2—': - /O T o(T(t—9)e*F(s)ds

—ulfowT(t—s)e‘asf(s)ds
— ol (1) — SEOI (1)

where u := min{uy, 2 }. From Gronwall's inequality, it
follows that

H(t) <H(0)e ™
t
+/ e HHHSmds< H(O)e*“H—%1
0

< Tmax+1(0) +g fort > 0.

HenceH (t) is bounded byl := Tmax+1(0) +m/u, which
in turn implies the boundednessIdf).

From equations 10) and (1), together with

2.2 Stability of the Infection-free Equilibrium
Solution

System 8)-(11) admits an infection-free equilibriuigy =
(T,0,0,0), with

_-_Tm_ax _ TRV
T:= 3 (r P14/ (r— )%+

4rs )

Tm ax

Define the basic reproduction numbgg by

_ b T % (a) N BT % (a)

%0 .
H2 3 U2

3

where %t (a) = [y e 2%f(s)dsis the Laplace transform
of f ata. Observe thatZy depends on the delays related
to infections but not on the delay related to the effector
cells production. As explained id], the first term in the
definition of %o, o1 := bBi T Zs(a) Uy U5 L, measures
the average number of secondary infected generation
caused by an existing free virus, while the second term,
Koz = BoT.L4 (a)ugl, measures the average number of
secondary infected generation caused by an infected cell.

The following result shows tha#, is a measure of
whether or not an infection caused by a small inoculation
of virus can persist.

Theorem 2. Consider the systen8)-(11) with continuous,
bounded initial conditions. The infection-free equililom
Ey is locally asymptotically stable # < 1, and unstable
if Ko > 1.

Proof. In order to analyze the stability of the
infection-free equilibrium Eg, we calculate the
linearization of system8)-(11) aboutEgy. That is, we
consider small perturbations of the componentsEgf
T(t) =T +u(t), 1(t) =0+ up(t), V(t) = 0+us(t), and

Gronwall's inequality, one can obtain the following upper E(t) = 0+ u4(t) in (8)-(11). Dropping the second order
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terms gives which would imply Zo > 1. Thus, the real part of any
solutionA to (17) must be negative i%Zp < 1, and soEg
dug 2 — — is locally asymptotically stable in this case.
at (r—p)*+ ax AT —BTw. (12) Next, let us prove tha€g is unstable if%, > 1.
du, w _ as Consider the function
— = Tug(t— Tux(t — —of
dt 0 [Bl U3( S) +BZ u2( S)]e (S)ds F()\) . A+ U3 . gf( ) ( A N 1) %
— LU, (13) A(Zoz2/%o) + 1z Na(A) \He
dus Observe thaF (0) = 1— %o < 0 if Z > 1. On the other
ot Pl kel (14) hand, lim_F(A) = . Therefore, there exists a
duy o _ positive root ofF (A) and so, the characteristic equation
T C/O Up(t — s)e"*F (s)ds— pauia. (15) " of the linear system1@)-(15) has a positive eigenvalue.

The characteristic equation of the linear systdr){(15)
is
,, Hrs
(A + ) (A= )24 )

Tm ax

[(A+p3) (A + 2 — na(A )B2T)
—bna(A)BiT] =0,

wherena(A) := [5 e (@1)sf(s)ds Observe thatl(6) has
two negative eigenvalues, namely; = —us and

A2 = —/(r—p1)2+4rs/Tmax  Any other eigenvalue
must be a root of the equation

(A + 13)(A + H2 — Na(A)BoT) —bna(A)BT =0. (17)

Taking into account thaip T = [z %01/ % (a), BoT =
UoZ02/ £+ (), andZo = Zo1+ Zo2, the equation7) can
be written as

(16)

(A +p3) (A + pi2) = (A + H3)na(A )BZT_+_b'7a(/\ )1_31'F
= Na(A)(AB2T + u3fT +bpiT)

Al U213
=Na(A) | ——= =%
Na( )(ff(a) 02t @y o2
Hop3 %01)

a) (AZo2+ UsZo)

25 (
Na(A
?,s,ﬂf @)

+

“Zi(a
Na

= U

()\ K02

o =+ H3)=%O

Solving for#y, one obtains

A+us Zi(a)
: +1
MRo2/ Z0) + M3 Na(A) (H )
Let us prove that all roots ofL{#) must have negative real

parts whery < 1. Arguing by contradiction, assume that
A =Xx+1iy is a complex root of17) with x > 0. Then, the

Ho =

(18)

modulus of each of the three factors on the right-hand sid

of equation 18) must be greater than or equal to 1, that is

Hence Eg is unstabled

Remarkrhe system &)-(11) also admits an infected
equilibriumEj = (T*,1*,V*,E*), where

r—u1+9(bﬁ1+[52)+x/—

T = ,
2|:an1ax+ (bBl+B):|
I*=aT*—-0,
V*:El*,
H3
e SZi(@),.
Ha
with 0
Mol _ v
- c0.%%(a) anda = T%O
and
oefomeo (o]
b
+4s[ +a( B1+B>]
Tmax

wheneve* > T /Zy.

The necessary and sufficient condition for the
existence of the infected equilibriui; is that % > 1.
The proof uses the same ideas and techniques &4;in [
we include it here for reader’s convenience. béx) :=
S — X+ 1X(1 — X/Tmaw) — (Bibuzt + B2)(ax? — 6x).
Observe thah(T*) =0, h(x) >0 for 0< x < T*, and
h(x) <0 for T* < x < o. A simple calculation shows that

T2
()= (3 (o )

which implies thafl* > T /%, if and only if % > 1.
Determining the stability and other properties of the

infected equilibriunEg requires further work, and will be

the subject of a forthcoming paper. For example, local

@symptotlc stability is expected ¥y > 1 (as for the

source models presented i and [9]) and determining
the global convergence to the infected equilibrium or
represent

A+l Z(a) A uniform persistence of solutions would
— | >1 >1,and|—+1/>1, i i irecti
2 (Zoa) o) + ll3‘ =z ‘ Na()) ’ ‘Hz ’ interesting directions of study.
@© 2018 NSP
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3 Conclusion [11] S. Liu and L. WangGlobal stability of an HIV-1 model with
distributed intracellular delays and a combination theyap
In this paper, we have proposed and analyzed a new Math. Biosci. Eng7 (2010), 675-685. . N
mathematical model for an HIV virus transmission [12] C. Monica and M. PitchaimaniAnalysis of stability
process that takes into account mitosis of healthy target and Hopf bifurcation for HIV-1 dynamics with Pl and
Ce”s and three |nfect|on age tlme delays |n the Way Of thl’ee Int.l’acellular delaySNOn“near AnalySIS: Real World
virus-to-cell and cell-to-cell infections and immune _ Applications27 (2016), 5569 , .
response. The delays indicate the times for processingt3] M-A. Nowak and C.R. Banghankopulation dynamics of
chemical reaction in virus-to-cell infection, intracé#iu gzn;tsne responses to persistent virysiziences258 (1996),
incubation period in cell-to-cell infection, and the time o . . -
lag in immune response to active viruses. First, We[14] K.dA.lP?weIek,_ ‘? Liu, F. rl}?ahle\_/am,da:wd I__|b|n hRong,_ |
showed that the solution of the initial-value problem model of HIV-1 infection with two time delays: mathematica
associated to the svstem is positive and bounded: a analysis and comparison with patient daMath Biosci.235
e Sy POSItive » & (2012), 98109.
necessary condition for the model's Well-posedness[15

. ) o ; ] A.S. Perelson, Modelling viral and immune system
Then, we proved that the infection-free equilibrium is dynamicsNat. Rev. Immunol1 (2002), 28-36.

locally asymptotically stable if and only if the basic [16]AS. Perelson and P.W. Nelsokathematical analysis of
reproduction number is strictly less than one. HIV-1 dynamics in vivpSIAM Rev. 41 (1999), 3-44.
[17] Sutimin, F. Chirove, E. Soewono, N. Nuraini, L.B. Suram
A model incorporating combined RTIs and Pls therapy
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