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Abstract: In this paper, we firstly consider the properties of Genocchipolynomials, Fourier series and Zeta functions. In the special
cases, we see that the Fourier series yield Zeta functions. From here, we show that zeta functions for some special valuescan
be computed by Genocchi polynomials. Secondly, we considerthe Fourier series of periodic Genocchi functions. For odd indexes
of Genocchi functions, we construct good links between Genocchi functions and Zeta function. Finally, since Genocchi functions
reduce to Genocchi polynomials over the interval[0,1), we see that Zeta functions have integral representations in terms of Genocchi
polynomials.
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1 Introduction

Fourier series plays an important role in the principal
methods of analysis for mathematical physics,
engineering, and signal processing. While the original
theory of Fourier series applies to periodic functions
occurring in wave motion, such as with light and sound,
its generalizations often relate to wider settings, such as
the time-frequency analysis underlying the recent theories
of wavelet analysis and local trigonometric analysis.
Hurwitz found the Fourier expansion of the Bernoulli
polynomials over a century ago. In general, Fourier
analysis can be fruitfully employed to obtain properties of
the Bernoulli polynomials and related functions in a
simple manner. Very recently, the Fourier series
expansions of some special polynomials have been
studied in details, see [1]-[8].
The Riemann zeta function is useful in number theory for
investigating properties of prime numbers including
special function of mathematics and physics that arises in
definite integration given by

ζ (s) :=
∞

∑
n=1

1
ns (s ∈ C; ℜe(s)> 1) (1)

and

ζ (s) =
1

Γ (s)

∫ ∞

0
ts−1 e−t

1− e−t dt

whereΓ (s) is Gamma function forℜe(s) > 0 with s ∈ C

known as

Γ (s) =
∫ ∞

0
ts−1e−tdt (see [11]).

Srivastava [13,14,18] developed the family of rapidly
converging series representations for the Riemann Zeta
function ζ (s) at s = 2n + 1. We also note that the
Bernoulli numbers are interpolated by the Riemann zeta
function at negative integers, which plays an important
role in analytic number theory and has applications in
physics, probability theory and applied statistics, as
follows:

ζ (−n) =−
Bn+1

n+1

whereBn stands for Bernoulli numbers defined by means
of the following generating function:

∞

∑
n=0

Bn
tn

n!
=

t
et −1

(|t|< 2π) .
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A few Bernoulli numbers are listed below:

B0 = 1, B1 =−
1
2
, B2 =

1
6
, B4 =−

1
30

, B6 =
1
42

, · · ·

and
B2n+1 = 0 for n ≥ 1

(see [5],[6],[11], [18], [22] for details).
Euler also gave the following interesting equality

ζ (2n) =
(2π)2n (−1)n+1

2(2n)!
B2n, n = 0,1,2, · · · .

From here one may see that Riemann zeta functions at
even natural numbers can be computed by using this
equality (see [4],[5],[11],[13],[14],[18]), for example,

ζ (0) =−
1
2
, ζ (2) =

π2

6
, ζ (4) =

π4

90
, · · · .

λ andβ functions are also defined, respectively, by

λ (s) :=
∞

∑
m=0

1
(2m+1)s

=
2s −1

2s ζ (s) (s ∈ C;ℜe(s)> 1)

(2)
and

β (s) =
∞

∑
m=0

(−1)m

(2m+1)s (s ∈C;ℜe(s)> 0) (3)

(see [4],[5]).
A further generalization of Riemann zeta function is
Hurwitz zeta function given by

ζ (s,a) = ∑∞
n=0

1
(n+a)s

(s ∈C;ℜe(s)> 1;a 6= 0,−1,−2, · · ·) .

Obviously that ζ (s,1) := ζ (s) (see [11]). Digamma
function is also known as

Ψ (s) = d
ds logΓ (s) = Γ ′(s)

Γ (s) (s ∈ C;ℜe(s)> 0)

which has integral and series representations, respectively,
as follows:

Ψ (s) =
∫ ∞

0

(
e−x

x
+

e−sx

e−x −1

)
dx

and

Ψ (s) =−γ −
1
s
+

∞

∑
k=1

(
1
k
−

1
k+ s

)
(4)

whereγ := 0,57721... is Euler-Mascheroni constant (see
[11]).

Apostol Frobenius-Euler polynomials are known as

∞

∑
n=0

Hn (x,u,λ )
tn

n!
=

1− u
λ et − u

ext (u 6= 1, λ 6= 1, u 6= λ )

(see [9],[10],[16],[17],[19],[20],[21]). In the special cases,
we have

Hn (x,−1,1) := En (x) =
Gn+1(x)

n+1

where En (x) and Gn (x) are called, respectively, Euler
polynomials and Genocchi polynomials. These
polynomials in the valuex = 0 reduce to Euler numbers
and Genocchi numbers denoted byEn (0) := En ve
Gn (0) := Gn, cf. [8],[22].

Recently, Araci and Acikgoz have derived Fourier
expansion of Apostol Frobenius-Euler polynomials in the
Laurent series form, as follows:

Hn (x,u,λ ) =
u−1

u
n!
( u

λ

)x

∑
k∈Z

ak,n (λ ,u)zk (5)

where

z= e2π ix andak,n (λ ,u)=
1

(
2π ik− log

(
λ
u

))n+1 (see [8]) .

In the special cases of the parametersu and λ , one can
easily derive that

Fourier expansion of Euler polynomials ([3],[8]):

Hn (x,−1,1) := En (x) =
2n!

(2π i)n+1 ∑
k∈Z

e2π i(k+ 1
2)x

(
k+ 1

2

)n+1 .

Fourier expansion of Genocchi polynomials
([1],[8]):

nHn−1(x,−1,1) := Gn (x) =
2n!

(2π i)n ∑
k∈Z

e2π i(k+ 1
2)x

(
k+ 1

2

)n . (6)

In this paper, our main focus is going to be Genocchi
numbers and polynomials whose history can be traced
back to Italian mathematician Angelo Genocchi
(1817–1889). From Genocchi’s time to the present,
Genocchi numbers and polynomials have been
extensively studied in many different context in such
branches of Mathematics as, for instance, elementary
number theory, complex analytic number theory,
Homotopy theory (stable Homotopy groups of spheres),
differential topology (differential structures on spheres),
theory of modular forms (Eisenstein series),p-adic
analytic number theory (p-adic L-functions), quantum
physics (quantum groups). The works of Genocchi
numbers and their combinatorial relations have received
much attention [1,3,7,12,15]. For showing the value of
this type of numbers and polynomials, we list some
properties known in the literature:

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 5, 951-955 (2018) /www.naturalspublishing.com/Journals.asp 953

–
–Series representations of Genocchi polynomials
arising from its Fourier expansion (see [1]):

G2n (x) =
4(−1)n (2n)!

π2n

∞

∑
m=0

cos((2m+1)πx)

(2m+1)2n , (7)

G2n+1 (x) =
4(−1)n (2n+1)!

π2n+1

∞

∑
m=0

sin((2m+1)πx)

(2m+1)2n+1 .(8)

– Generating function of Genocchi polynomials (see
[7], [15]):

∞

∑
n=0

Gn (x)
tn

n!
=

2t
et +1

ext
.

–
– A few Genocchi polynomials (see [7],[15]):

G0 (x) = 0, G1 (x) = 1, G2 (x) = 2x−1, G3 (x) = 3x2−3x, · · · .

–
–The symmetric property for Genocchi polynomials
(see [7],[15]):

Gn (1− x) = (−1)n Gn (x) .

–
–A recurrence relation for Genocchi polynomials (see
[7] ,[15]):

(−1)n+1 Gn (−x) = Gn (x)−2nxn−1
.

The n−th periodic Genocchi function may be introduced
in the following way:

G̃n (x) := Gn (x) ,(0≤ x < 1) andG̃n (x+1) =−G̃n (x) (x ∈ R)

(see [1]). Note that the period of̃Gn is 2 since

G̃n (x+2) =−G̃n (x+1) = G̃n (x) .

2 Main Results

Now we are in a position to state and prove the zeta
functions and the uniform integral representations for
Genocchi polynomials as follows.

Theorem 1.The following equality holds

ζ (2n) =
1

4n+1−4
(2π)2n (−1)n

(2n)!
G2n

which seems to be a similar formula given by Euler as
follows

ζ (2n) =
(2π)2n (−1)n+1

2(2n)!
B2n.

Proof.Substitutingx = 0 into Eq. (8) yields

π2n (−1)n

4(2n)!
G2n =

∞

∑
m=0

1

(2m+1)2n = λ (2n) .

By using well-known equalityG2n = 2(1−4n)B2n in [14],
we have

λ (2n) =
π2n (−1)n

2(2n)!
(1−4n)B2n. (9)

Thus, from ([5]) and (9), we complete the proof.

Theorem 2.The following equality holds true

β (2n+1) =
(−1)n π2n+1

4(2n+1)!
G2n+1

(
1
2

)
.

Proof.It is proved by using (7) for the valuex = 1
2. So we

omit the proof.

Theorem2 shows thatβ functions at odd positive
integers can be computed by Genocchi polynomials at
x = 1

2, for example,

β (1) =
π
4
, β (3) =

π3

32
, · · · .

Recall from Eq. (8) that forx ∈R

G̃2n+1 (x) = 4(−1)n (2n+1)!
∞

∑
m=0

sin[(2m+1)πx]

((2m+1)π)2n+1 .

(10)

When x > 0 we can derive uniformly convergent

series forG̃2n+1(x)
x from (10) and integration from zero to

infinity using the well-known formula in complex
analysis ∫ ∞

0

sin(ax)
x

dx =
π
2

(a > 0) . (11)

Theorem 3.For n ∈N, we have

ζ (2n+1) =
4n (−1)n π2n

(2n+1)! (22n+1−1)

∫ ∞

0

G̃2n+1(x)
x

dx.

(12)
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Proof.By (10) and (11), we see that
∫ ∞

0

G̃2n+1 (x)
x

dx = 4(−1)n (2n+1)!
∞

∑
m=0

1

((2m+1)π)2n+1

∫ ∞

0

sin[(2m+1)πx]
x

dx

=
4(−1)n (2n+1)!

π2n+1

∞

∑
m=0

1

(2m+1)2n+1

π
2

=
2(−1)n (2n+1)!

π2n
λ (2n+1) .

which, from (2), gives the following relation:

ζ (2n+1) =
4n (−1)n π2n

(2n+1)! (22n+1−1)

∫ ∞

0

G̃2n+1(x)
x

dx.

Thus our assertion is proven.

Theorem 4.The following equality holds true

∫ ∞
0

G̃2n+1(x)
x dx =

∫ 1
0 G2n+1(x)

(
1
x −∑∞

k=1
1

(x+2k)(x+2k−1)

)
dx.

(13)

Proof.From the definition of periodic Genocchi function,
we have
∫ ∞

0

G̃2n+1 (x)
x

dx =

∫ 1

0

G2n+1 (x)
x

dx+
∫ ∞

1

G̃2n+1(x)
x

dx

=
∫ 1

0

G2n+1 (x)
x

dx+
∞

∑
k=1

∫ 2k+1

2k−1

G̃2n+1(x)
x

dx.

Integrating by substitutionx= t+2k in the second integral
on the right hand side of the above equality yields

∫ ∞

0

G̃2n+1(x)
x

dx =
∫ 1

0

G2n+1(x)
x

dx+
∞

∑
k=1

∫ 1

−1

G̃2n+1 (t)
t +2k

dt.

(14)

Now it is sufficient to analyse the integral
∫ 1
−1

G̃2n+1(t)
t+2k dt as

follows:
∫ 1

−1

G̃2n+1(t)
t +2k

dt =
∫ 0

−1

G̃2n+1(t)
t +2k

dt +
∫ 1

0

G2n+1(t)
t +2k

dt

=

∫ 1

0

G2n+1 (u−1)
u−1+2k

du+
∫ 1

0

G2n+1(t)
t +2k

dt

= −

∫ 1

0

G2n+1(u)
u−1+2k

du+
∫ 1

0

G2n+1 (t)
t +2k

dt

= −

∫ 1

0

G2n+1(x)
(x+2k)(x+2k−1)

dx.

Thus, the proof is completed.

Theorem 5.For n ∈ N, we have

ζ (2n+1) = 4n(−1)nπ2n

(2n+1)!(22n+1−1)

∫ 1
0 G2n+1(x)

(
1

x−1 +Ψ
(

x−1
2

)
−Ψ

(
x
2

))
dx.

Proof.From (4), we derive

Ψ
(

x−1
2

)
−Ψ

( x
2

)
=

1
x
−

1
x−1

+
∞

∑
k=1

1
x+2k

−
1

x+2k−1

=
1
x
−

1
x−1

−
∞

∑
k=1

1
(x+2k) (x+2k−1)

.

One may see that this equality is closely related to Eq. (13).
So we derive that

Ψ
(

x−1
2

)
−Ψ

( x
2

)
+

1
x−1

=
1
x
−

∞

∑
k=1

1
(x+2k)(x+2k−1)

.

Thus, our assertion follows from Eq.(13) and last equality
on the above.

3 Perspective

We have derived new identities related to zeta functions.
From these identities, we have computed some values of
zeta functions using Genocchi polynomials. After that,
we have considered the Fourier series of periodic
Genocchi functions. For odd indexes of Genocchi
functions, we have constructed some new relations
between Genocchi functions and Zeta functions. Since
Genocchi functions reduce to Genocchi polynomials over
the interval [0,1) , we see that Zeta functions for odd
positive integers have integral representations in terms of
Genocchi polynomials.
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