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Received: 2 Oct. 2017, Revised: 12 Dec. 2017, Accepted: 29 Jan. 2018
Published online: 1 Mar. 2018

Abstract: A mathematical formulation suitable for the application ofa novel Hermite finite element method, to solve electro-
magnetic field problems in two- and three-dimensional domains is studied. This approach offers the possibility to generate accurate
approximations of Maxwell’s equations in smooth domains, with a rather rough interpolation and without curved elements. Method’s
degrees of freedom are the normal derivative mean values of the electric field across the edges or the faces of a mesh consisting of
N-simplices, in addition to the mean value in the mesh elements of the field itself. Second-order convergence of the electric field in
the mean-square sense and first-order convergence of the magnetic field in the same sense are rigorously established, if the domain is a
convex polytope. Numerical results for two-dimensional problems suggest however that second-order convergence can also be expected
of the magnetic field. Both behaviors are shown to apply to thecase of curved domains as well, provided a simple interpolated boundary
condition technique is employed.
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1 Introduction

The classical Lagrange family of finite elements is not
suitable for the numerical solution of Maxwell’s
equations governing electro-magnetic field generation.
One of the main reasons for this is the fact that boundary
conditions applying to the tangential component of the
electric field are not compatible with vertex-based
methods. That is why to date well-established techniques
to solve this kind of problems proposed several decades
ago are widely in use, such as Nédélec edge elements (cf.
[17]). Indeed in this kind of method mean values along
triangle or tetrahedron edges of the tangential
components of the electric field are method’s degrees of
freedom. This enables enforcement of the above
boundary conditions avoiding inconsistencies at corner
nodes. Moreover Nédélec elements are curl conforming,
which makes them suitable to approximate the fields
involved in the equations of electromagnetism. Some
practitioners use divergence conforming methods to solve
the equations under certain circumstances. One of the
methods of the latter type is known in the specialized
literature as the Rao-Wilton-Glisson triangular element
[16]. It is based on an interpolation of the electric field,
which is nothing but the one of the flux variable in the
lowest-order Raviart-Thomas mixed element [20].
Whatever the case, this kind of method couples helplessly
the components of the electric field, in such a way that

algorithms allowing for an uncoupled solution of
Maxwell’s equations become difficult to implement.

In order to cope with the issues pointed out in the
introductory considerations above, we present in this
work a finite element method to solve Maxwell’s
equations in a boundedN-dimensional domain, forN = 2
and N = 3. The purpose of this proposal is three-fold.
First of all our method takes boundary conditions on the
tangential component into account as Neumann boundary
conditions in a suitable variational framework. In this
manner they are implicit in the formulation and by no
means strongly enforced. A second method’s interesting
feature is the fact that theN components of the unknown
fields are equally represented everywhere, which renders
it well suited to uncoupling solution algorithms. Finally
an important point is the use of a special interpolation to
represent the unknown discrete electric field, which
happens to be the Hermite counterpart of the
Raviart-Thomas mixed finite element method of the
lowest order. This allows to recover second-order
approximations in the sense ofL2, in contrast to the
mixed method, though at practically the same cost. This is
because the total number of degrees of freedom is the
same for a given mesh. In this respect the authors should
clarify beforehand, that, as far as the spatial discretization
is concerned, the new method can be viewed as a vector
version of the Hermite finite element method introduced
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in [23], for the solution of scalar second-order elliptic
boundary value problems. However we should point out
that the method studied in this paper is mostly aimed at
providing optimal approximations of solutions to
Maxwell’s equations at reasonable cost, in the case of
domains which are at least as regular as convex polytopes.
In short, singular behavior of solutions arising in the case
of boundary re-entrant corners (see e.g. [9], [10], [18],
[19] and references therein) cannot be dealt with by
means of our numerical model. Actually our method’s
main goal is to provide second-order numerical solutions
in sufficiently smooth domains, using a rather rough and
inexpensive interpolation.
An outline of this paper is as follows. In Section 2 we first
recall the equations to solve in the time-dependent case.
Then we recast them in the form of a second-order
hyperbolic system in terms of the electric-field
components. This system is shown to be equivalent to the
original system in non singular cases. In the same section
we set up the stationary counterpart of the latter system,
to be taken as a model problem in the subsequent
numerical studies. In Section 3 we describe our numerical
formulation of the model problem, together with the
underlying Hermite finite-element solution method. In the
same section method’s numerical analysis is conducted
and optimal error estimates are derived for the case of
polygonal and polyhedral domains. In Section 4 results of
numerical experiments in the two-dimensional case are
reported, for both rectangular and smooth curved
domains. For the latter case we describe an interpolated
boundary condition technique, which prevents the
numerical solution from any order erosion, owing to the
approximation of the curved boundary by a polygon. We
conclude in Section 5 with a few remarks on the extension
of our numerical formulation to the case of variable
coefficients, among other comments on the whole work.

2 Model equations

Henceforth we consider that the method studied in this
work applies to the solution of Maxwell’s equations in a
bounded domainΩ of ℜN, for N = 2,3 in a slightly
simplified form. For more details on these equations we
refer to [8].
For the purpose of the numerical analysis to be conducted
hereafter it is convenient to restrict the presentation to the
case whereΩ is a polygon forN = 2 and a polyhedron
for N = 3. As pointed out above, in order to avoid
singular behaviors, we assume thatΩ is convex.
Irrespective of convexity, the case of smoother domains
will be addressed afterward in the framework of
numerical experimentation.
Letting Γ be the boundary ofΩ , we denote byn the unit
outer normal vector defined everywhere onΓ except at its
vertices. Then given an electric fielde0 and a solenoidal
magnetic fieldm0 at the initial timet = 0, andγ ∈ ℜ+,
we wish to determine the couple of electric and magnetic

fields (e,m) depending on the space variablex and time
t ∈ (0,T], whereT is a final time, such that,
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Givenρ ∈ H1(Ω), j ∈ {H1[(0,T);L2(Ω)]}N,

(e,m) fulfills:

div e= ρ anddiv m = 0 in Ω × (0,T],
∂m
∂ t

+ γ curl e= 0 in Ω × (0,T],

∂e
∂ t

− γ curl m =−j in Ω × (0,T],

e×n = 0 onΓ × (0,T].

(1)

The assumption that the electric charge densityρ does
not depend ont requires that the electric current densityj
be solenoidal, which is the main particularity of equation
(1) as compared to the general form of Maxwell’s
equations. Notice that this assumption also requires that
div e0 = ρ in Ω
Taking into account that∂curl m/∂ t = −γ curl curl e,
settingλ = γ2, we can manipulate system (1) to obtain :
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Givenρ ∈ H1(Ω), j ∈ {H1[(0,T);L2(Ω)]}N

with div j |t=0, (e,m) fulfills:

div e= ρ in Ω × (0,T],
∂m
∂ t

=−γ curl e in Ω × (0,T],

∂ 2e
∂ t2 +λ curl curl e=−

∂ j
∂ t

in Ω × (0,T],

e(·,0) = e0(·),
∂e
∂ t

(·,0) = γ curl m0− j |t=0

andm(·,0) = m0(·) in Ω ,

e×n = 0 onΓ × (0,T]

(2)

Notice that the assumption thatdiv j = 0 at t = 0,
together with the third equation of (2) suffice to guarantee
that div j = 0 for every t. Otherwise stated the initial
condition ondiv j is equivalent to requiring thatdiv j = 0
for all t.
Now we use the well-knon identity applying to the
laplacian of a vector field, namely,

−∆e= curl curl e−grad dive.
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Plugging this relation into (2) and observing thatdive= ρ
onΓ , we rewrite (2) as follows:


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Givenρ ∈ H1(Ω), j ∈ {H1[(0,T);L2(Ω)]}N

with div j = 0 ∀t, (e,m) fulfills:

∂m
∂ t

=−γ curl e in Ω × (0,T],

∂ 2e
∂ t2 −λ ∆e=−λgrad ρ −

∂ j
∂ t

in Ω × (0,T],

e(·,0) = e0(·),
∂e
∂ t

(·,0) = γ curl m0− j |t=0

andm(·,0) = m0(·) in Ω ,

e×n = 0 onΓ × (0,T]

div e= ρ onΓ × (0,T].

(3)

Conversely, it is easy to see that if the pair(e,m)
fulfills (3) then it also satisfies (2). Indeed, taking the
divergence of both sides of the second equation of (3) and
denoting byd the divergence ofe, d is seen to satisfy the
equation
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Givenρ ∈ H1(Ω), find d such that:
∂ 2d
∂ t2 −λ ∆d =−λ ∆ρ in Ω × (0,T],

d(·,0) = ρ and
∂d
∂ t

(·,0) = 0 in Ω ,

d = ρ onΓ × (0,T].

(4)

Obviously enough hyperbolic equation (4) has a
unique solution given byd = ρ . It follows that
λ (−∆e+gradρ) = λcurl curl e and we are done.

An interesting characteristic of system (3) is the fact
that theN components ofe are coupled only due to the
boundary conditions. Hence, as long as we can deal with
them in an uncoupled manner we can easily solve system
(3) component-by-component. This is precisely one of the
main features of the new numerical method to solve (1) -
i.e. (2) - in the equivalent form (3), which we describe in
the next section. Before doing so we introduce a vector
Poisson problem, which is a sort of stationary counterpart
of (3) for λ = 1:
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Giveng∈ H(curl,Ω)

andρ ∈ H1(Ω),

find e∈ [H1(Ω)]N such that:

−∆e= curl g−grad ρ in Ω ,

e×n = 0 onΓ ,

div e= ρ onΓ .

(5)

Taking the divergence of the fist equation of (5), in the
same way as for system (3), we conclude thatdiv e= ρ

a.e. inΩ . This implies that any solution of (5) solves the
system
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Givenj ∈ H(curl,Ω)∩Ker(div)

andρ ∈ H1(Ω),

find e∈ [H1(Ω)]N such that:

curl e= j in Ω ,

div e= ρ in Ω ,

e×n = 0 onΓ .

(6)

It is possible to prove thatj = g+ grad η where
η ∈ H1(Ω) is any solution of the Neumann problem
−∆η = div g in Ω and∂η/∂n=−g ·n onΓ .

We next introduce and study our finite element
method applied to model problem (5). Its application to
(3) is straightforward, as long as a suitable time-marching
scheme is implemented to complete the underlying space
discretization.

In the sequel we employ the following notations: For
a strictly positive integerM, S being a bounded open set
of ℜN, (·|·)S denotes the standard inner product of
[L2(S)]M. We denote the standard norm and semi-norm of
Sobolev space[Hm(S)]M (cf. [1]), for any positive integer
m by ‖ · ‖m,S and | · |m,S respectively, including[L2(S)]M

taking m= 0. We drop the subscriptS in all the above
notations in caseS= Ω .

3 A Hermite solution method

We are given a finite element partitionTh of Ω ,
consisting of triangles or tetrahedra according to the value
of N, and belonging to a regular family of partitions (cf.
[7]). h will denote the maximum diameter of the elements
of Th. We define a finite element spaceEh associated with
Th as follows. Every functione∈ Eh is such that in each
elementT ∈ Th it is expressed bya x · x/2+ b · x + c,
where x represents the space variable,b is a constant
vector ofℜN anda andc are two real constants. NowF
being an edge ifN = 2 or a face ifN = 3 belonging to the
boundary∂T of an elementT ∈ Th, andnF being the unit
normal vector onF oriented in a unique manner for the
whole mesh, every functione ∈ Eh is such that its
restriction to anyT ∈ Th is defined by means of the
following N+1 degrees of freedom:

1.TheN mean valuesνF(e) of the the fluxgrad e· nF
overF ⊂ ∂T;

2.The mean valueµT(e) of e overT.

The degrees of freedomνF(·) are required to coincide on
both sides of every faceF common to two elements of
Th.
The canonical basis functions for this space
corresponding to the above degrees of freedom can be
determined as follows. First we note that∀e ∈ Eh the
fluxes of e/T are constant over every edge or faceF of
any elementT of the mesh. Indeed from the particular
form of e/T we havegrad e/T = ax + b. Then from a
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well-known property of the lowest order Raviart-Thomas
mixed element, whose flux variable is locally defined by
functions of the same form, the result follows.
Incidentally this allows us to the determinea and b for
each basis functionϕ corresponding to a given flux, in the
same way as for the flux basis fields corresponding to the
lowest order Raviart-Thomas element. Then the value ofc
is adjusted in such a way that

∫

T ϕ/Tdx= 0, and the flux
canonical basis fields are uniquely defined. Finally the
basis function corresponding to degrees of freedomµT
are given bya= 0, b = 0 andc= 1.
Now let Eh be the space ofN-component vector fields
e= (e1, . . . ,eN) such thatei ∈ Eh for i = 1, . . . ,N andDh
be the subspace ofEh of those fieldsd that fulfill
νF(d · nF) = 0 for every edge or faceF of Th contained
in Γ . We further define a linear manifoldDρ

h of Eh
consisting of fields d such that
νF(d · nF) = [meas(F)]−1∫

F ρdF for every edge or face
F of Th contained inΓ .
Next we set up the discrete variational problem (7) aimed
at approximating (5), namely,
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Findeh ∈ Dρ
h such that

ah(eh,d) = L(d) ∀d ∈ Dh,

where:

ah(e,d) := ∑
T∈Th

[(grad e|grad d)T+

(∆e|d)T +(e|∆d)T ] ∀e,d ∈ Eh;

and

L(d) := −(f|d) ∀d ∈ [L2(Ω)]N,

with f := curl g−grad ρ .

(7)

DefiningΠh : [L2(Ω)]N −→ [L2(Ω)]N as the operator
given by Πh[w]/T :=

∫

T wdx/meas(T) ∀T ∈ Th, and
setting

E := {e/ e∈ [H1(Ω)]N;∆e∈ [L2(Ω)]N},

we extendah to (Eh+E)×(Eh+E), and further introduce
the functional‖ · ‖h: Eh+E −→ ℜ given by:

‖ e‖2
h:= (Πh[e]|Πh[e])+

∑
T∈Th

[(grad e|grad e)T +(∆e|∆e)T ] . (8)

The expression‖ · ‖h obviously defines a norm over
E+Eh.

Using arguments in all similar to those in [23] applying
to the scalar Poisson equation, we can prove existence and
uniqueness results, together with a priori error estimates
for problem (7). The main difference relies on the fact that
we must extend to (5) the theoretical background in [6],
as applied to the discrete mixed formulation of the (scalar)
Poisson equation. Let us work this out.

Remark.In the two-dimensional case we could as well
adapt to the our vector problem the technique employed
in [20], [21] for its scalar analog. Essentially the only tool
that is lacking for such a purpose is a vector counterpart
of the discrete Friedrichs-Poincaré inequality (6.18) of
[21] for the space of weakly continuous piecewise linear
functions used in the primal hybrid finite element method.
Actually we supply in Appendix 1 the proof of such an
inequality.

To begin with we prove

Lemma 1.Let Sh be the space of fields which are constant
in every T∈ Th. Referring to [20] we denote byRh the
subspace of[H(div,Ω)]N consisting of N×N tensors Q=
{qi, j} for 1 ≤ i, j ≤ N such that[qi, j ]|T is a function of
the form ax+b, with a∈ ℜ andb ∈ ℜN. Let alsoQh be
the subspace ofRh consisting of those fields Q such that
(Qn) ·n = 0 on Γ . Then givens∈ Sh there exists Q∈ Qh
satisfying for a constant CS independent of h ands such
that:

{

div Q= sa.e. inΩ ,

{‖ Q ‖2
0 + ‖ div Q ‖2

0}
1/2 ≤CS ‖ s‖0,

(9)

wherediv Q stands for the N-component vector fieldd =

[d1, . . . ,dN]
T given by di =

N

∑
j=1

∂Qi j

∂x j
.

PROOF. The subset ofQh consisting of those
tensorsQ such that(div Q|s) = 0 ∀s∈ Sh is contained in
[H(div,Ω) ∩ Ker(div)]N. Thus we can resort to
Proposition II.2.8 of [6], combined with relations
analogous to IV.1.24 in the same reference that apply to
our vector case, takingk = 1. This is because the
following inf-supcondition [6] holds:

∃β > 0 such that∀s∈ [L2(Ω)]N

sup
Q∈Q\{O}

(div Q|s)
[‖ Q ‖2

0 + ‖ div Q ‖2
0]

1/2
≥ β ‖ s‖0 .

(10)

(10) can be established by takingQ=−gradu, where
u is the solution of the vector Poisson problem.

{

−∆u = s∈ [L2(Ω)]N

u×n = 0 anddiv u = 0 onΓ .
(11)

Indeed since Ω is convex u ∈ [H1(Ω)]N [9].
Moreover the following Friedrichs-Poincaré inequality
holds for a constantCN (cf. [11]):

‖ v ‖0≤CN ‖ grad v ‖0 ∀v ∈ V

where

V := {v| v ∈ [H1(Ω)]N, v×n= 0 onΓ }.

Therefore(−∆u|u) ≤ CN ‖ s ‖0‖ grad u ‖0 and since
∂ [u · n]/∂n = 0 on plane faces ofΓ , a classical density
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argument yields‖ grad u ‖0≤ CN ‖ s ‖0. It follows that
(10) holds withβ = [1+C2

N]
−1/2.

Now we can establish that

Proposition 1Problem (7) has a unique solution.

PROOF. Thanks to Lemma1 the proof of this result is
based on exactly the same arguments as in Proposition 2.1
of [23], in the particular case of the scalar Poisson
equation (i.e. in caseK is the identity tensor).

Next we prove

Theorem 2.Provided e ∈ [H2(Ω)]N and f ∈ [H1(Ω)]N

there exists a mesh independent constant C such that,

‖ e−eh ‖h≤Ch [|e|2+ |f|1]. (12)

PROOF. The proof of this error estimate is entirely
analogous to the one of Theorem 2.2 of [23] in the case of
the scalar Poisson equation.

To close this section we derive a second-order error
estimate for our method in the norm ofL2(Ω). This
estimate applies to the case where the solution to (11)
belongs toH2(Ω)]N ∩V for everys∈ [L2(Ω)]N. To the
best of our knowledge, up to now it has not been formally
demonstrated that such a regularity applies to arbitrary
convex polygons or polyhedra. Notice that this is known
to be true for domains of the classC2,1 [2], and eventually
to some domains of theC1,1-class. Let us then simply
consider that our estimate holds for polytopes belonging
to a class of domains denoted byP such that the
H2-regularity does apply, and moreover the following
inequality holds for a constantCP independent ofs:

|u|2 ≤CP ‖ s‖0 . (13)

Among domains of theP-class lie rectangular ones,
according to,

Proposition 3Let Ω be a rectangle if N= 2 or a
rectangular parallelepiped if N= 3. Then for every
s∈ [L2(Ω)]N the solution of (11) belongs toU where

U := {u| u ∈ [H2(Ω)]N ∩V and divu ∈ H1
0(Ω)}.

Moreover|u|2 =‖ s‖0.

PROOF. First we note that for a rectangular domain
Ω = (0,L1)× . . .× (0,LN), problem (11) reduces toN
uncoupled Poisson equations−∆ui = si ∈ L2(Ω) with
mixed Dirichlet-Neumann boundary conditions for the
componentsui andsi of u ands, i = 1, . . . ,N. For example
for u1 we haveu1 = 0 on the edges or faces given by
xi = 0 andxi = Li with i 6= 1, and∂u1/∂n = 0 on the
faces given byx1 = 0 andx1 = L1. Obviously enough, by
symmetry the analogous conditions that hold for the other
components ofu can be written down by simple
permutation of coordinate subscripts. In any case, at least
for N = 2, we can resort to results for the Poisson
equation in [14] among other works. Nevertheless, since

the existence of a solution of the Poisson equation
satisfying these boundary conditions which do not belong
to H2(Ω) is not explicitly ruled out in previous studies,
we give in Appendix 2 a proof of the fact that in this
specific caseui ∈ H2(Ω) for i = 1, . . . ,N, N = 2 or 3. As
a by-product we also prove that (13) holds, forCP = 1,
with an equality instead of an inequality.

Finally we prove,

Theorem 4.Let Ω be a polytope of theP-class. Provided
h is sufficiently small and assuming thate∈ [H2(Ω)]N and
f ∈ [H1(Ω)]N, there exists a mesh independent constant C0
such that,

‖ e−eh ‖0≤C0h2 [|e|2+ |f|1]. (14)

The proof of estimate (14) is quite similar to the one
of Theorem 2.2 of [23], taking the isotropic case, i.e. the
case of the scalar Poisson equation. That is why we
highlight only the differences inherent to problem (5).
Similarly to [23] we apply the usual Aubin-Nitsche
argument (cf. [7]). Recalling the above defined spaceU
we have:

‖ e−eh ‖0= sup
u∈U\{0}

−(e−eh,∆u)
‖ ∆u ‖0

. (15)

Next denoting bynT the unit outer normal vector on∂T
for T ∈ Th, and representing byF a generic edge of∂T
for N = 2 or a generic face of∂T for N = 3, we observe
that∀u ∈ U,

∑
T∈Th

{(grad [eh−e],grad u)T +(∆ [eh−e],u)T

− ∑
F⊂∂T

(grad[eh−e]nT |u)F}= 0.
(16)

Owing to the trace properties ofe and u, together with
the construction ofEh, we can assert that the summation
of all the integrals onF 6⊂ Γ in (16) cancel out. As for
the integrals onF ⊂ Γ they reduce to({grad[eh− e]n} ·
n|u · n). Recalling thate×n = 0 on Γ , we infer that for
a polygon or a polyhedron[grad e n] · n = div e on F ⊂
Γ . On the other hand by construction[grad eh n] · n = 0
on everyF ⊂ Γ . Since we are considering the case where
div e= 0 onΓ , it follows that the whole summations over
F andT in (16) vanish. Thus we readily derive,

−(e−eh,∆u)0 = ah(eh−e,u) ∀u ∈ U. (17)

By a straightforward calculation using the properties of
Eh we deriveah(e,d) = L(d) = ah(eh,d) ∀d ∈ Eh. Hence
combining this with (15), (16) and (17) we obtain:

‖ eh−e‖0≤ sup
u∈U\{0}

ah(eh−e,u−d)
‖ ∆u ‖0

∀d ∈ Eh. (18)

If e = eh (14) trivially holds. Let then e 6= eh and
BU(0,1) := {u/ u ∈ U, ‖ ∆u ‖0= 1}. In this case it is
easy to see that ∃u0 ∈ BU(0,1) such that

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


276 V. Ruas, M. Ramos: A Hermite method for Maxwell’s equations

sup
u∈U\{0}

ah(eh−e,u−d)
‖ ∆u ‖0

= ah(eh − e,u0 − d) ∀d ∈ Eh.

Indeed we may take for instanceu0 such that
∆u0 = [eh − e]/ ‖ eh − e ‖0, since
ah(eh−e,u) = (eh−e,∆u) ∀u ∈ U.
Let now Ihu denote the standardEh-interpolate ofu ∈ U.
According to standard results (cf. [7] and [20]) there
exists a constantCI such that,

‖ [Ihu]|T ‖2,T≤CI ‖ u|T ‖2,T ∀ ∈ H2(Ω) and∀T ∈ Th.
(19)

Since the spaceW := [H3(Ω)]N ∩U is dense inU, setting

ε = 2
√

2N(1+C2
I ), there existsuε ∈ W such that‖ u0−

uε ‖2< ε/2.
Takingd= Ihu0, owing to (12) and the interpolation theory
[7], there existC5 andC6 such that,

ah(eh−e,u0− Ihu0)≤

∑
T∈Th

(eh−e,∆ [u0− Ihu0}])T

+CP(C5|u|2,Ω +C6h| f |1,Ω )h2,

(20)

whereCP is the constant of (13). On the other hand we
have

∑
T∈Th

(eh−e,∆ [u0− Ihu0}])T ≤

‖ eh−e‖0







[

∑
T∈Th

‖ ∆(w1+w3)] ‖
2
0,T

]1/2

+

[

∑
T∈Th

‖ ∆w2] ‖
2
0,T

]1/2






,

where w1 = u0−uε ;

w2 = uε − Ihuε ;

w3 = Ih(uε −u0).

(21)

Owing to (19) and to the basic property ofuε , it is then
clear that

{

∑
T∈Th

‖ ∆ [w1+w3)] ‖
2
0,T

}1/2

≤
√

2N(C2
I +1)ε/2 (22)

Moreover sinceuε is sufficiently smooth, there must
existh0 such that∀h≤ h0 it holds that

{

∑
T∈Th

‖ ∆w2] ‖
2
0,T

}1/2

≤
√

2N(C2
I +1)ε/2 (23)

Finally taking into account the choice ofε together with
(20)-(21)-(22)-(23), it follows that∀h ≤ h0, ‖ e− eh ‖0≤
2CP(C5|e|2+C6h0|f|1)h2, which proves the Theorem.

4 Numerical validation

In this section we assess our method’s accuracy by
solving some academic test-problems. The subscripth
next to a differential operator indicates that it is defined
on an element-by-element basis, whileGT denotes the
centroid of a mesh elementT.

4.1 Test-problems for a square domain

In order to validate the a priori error estimates (12) and
(14) we approximated problem (5) in the square
Ω = (1,0) × (0,1) by (7), using meshes with 2K2

triangles, obtained from a first partition ofΩ into K2

equal squares, each one of them being subdivided into
two triangles by the diagonal parallel to the linex1 = x2.

Test-problem 1:Here ρ vanishes identically inΩ and
f = 2(cos[πx1]sin[πx2],−cos[πx2]sin[πx1]). The exact
solution ise= f/(2π2). In Sub-figures 4.1.1 and 4.1.2 of
Figure 4.1 we display the resulting errors in the indicated
senses, forK = 2m, m= 1,2, . . . ,5.

Sub-figure 4.1.1 confirms the predicted orders of
convergence, while Sub-figure 4.1.2 shows that the errors
of method’s degrees of freedom of both types decrease
roughly at a quadratic rate as the mesh is refined.
Particularly noteworthy is the observation that the error of
curl e is also diminishing at the same rate as the error of
e. The laplacian of the solution is also being
approximated at the same rate in the point-wise sense.

Test-problem 2:Take f ≡ −grad ρ whereρ is given by
ρ = 2(x2

1+ x2
2− x1− x2). The exact solution ise= ([1−

2x1][x2− x2
2], [1−2x2][x1− x2

1]). Instead of the theoretical
mean value ofρ at boundary edges we prescribe the value
of ρ at those edge mid-points. In Figure 4.2 we display
the resulting errors in the same senses as in the previous
test-problem, for increasing values ofK.

Sub-figures 4.2.1 and 4.2.2 of Figure 4.2 show that in
the presence on inhomogeneous (Dirichlet) flux boundary
conditions prescribed pointwise, practically the same
behavior as in Test-problem 1 is observed. Notice that
here the laplacian of the solution at element centroids is
exact up to machine precision, but probably this is only
because it is a linear field in this test case.

4.2 Test-problems for curved domains

The purpose of the experiments reported in this
sub-section is to show that, provided some simple
modifications are implemented, the method studied in this
work together with its qualitative properties, extend to the
case of sufficiently smooth curved domains.
First of all we denote byΩh the polygon with vertices on
Γ , that approximate the curved domainΩ in the usual
manner, that is, the union of the triangles in the meshTh.
The modifications in view are motivated by the fact that
we cannot, akin to the polygonal case, simply apply the
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Fig. 4.1:Numerical errors in different senses for Test-problem 1

numerical counterpart of the boundary condition
div e= ρ on the (mid-points of the) edges ofΩh. This is
because such an approximation erodes the second-order
error estimate in theL2-norm for the electric field
established in Theorem 4 in the polygonal case. In order
to illustrate this assertion we consider
Test-problem 3:Ω being the unit disk with center at the
origin of the cartesian coordinatesx1 andx2 we takeρ =
4(x2

1+ x2
2) andf ≡ −grad ρ . e= (x1[x2

1+ x2
2],x2[x2

1+ x2
2])

is the exact solution. The meshes used in our computations
to solve this problem consist of 2K2 triangles, whereK > 1
is an integer. They are generated by the transformation of
cartesian into polar coordinates of the nodes of standard
symmetric uniform meshes of the square(−1,1)×(−1,1)
by a procedure described in [22]. Denoting by‖ · ‖0,h the
norm of L2(Ωh), we show in Sub-figures 4.3.1 and 4.3.2
the evolution of the absolute errors in logarithm scale, in
the indicated senses, for increasing values ofK, whereh=
1/K.
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Fig. 4.2:Numerical errors in different senses for Test-problem 2

Observation of both sub-figures shows that errors
‖ e−eh ‖0,h and maxT∈Th |µT(e−eh)| no longer decrease
roughly like anO(h2) ash goes to zero, but rather like an
O(hα) with α = 0.8831 andα = 0.6807, respectively.
In order to remedy this we next describe the modifications
to be carried out in our method in the framework of
two-dimensional problems posed in curved domains. Of
course the main issue to be addressed is the prescription
of the divergence boundary condition. In order to avoid
the erosion of method’s (second-order) convergence in the
L2-norm, in case this boundary condition is applied to
flux degrees of freedom on the edges forming the
boundaryΓh of Ωh, we use a variant of the technique
known as the interpolated boundary condition (cf. [5]).
This variant is similar to the procedure proposed by the
first author in [24] to solve Poisson’s equation in curved
domains with Dirichlet boundary conditions. The idea is
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4.3.1: Mean-square errors for the classical approach

4.3.2: Maximum-value errors for the classical approach

Fig. 4.3: Errors for Test-problem 3 shifting the boundary
conditions fromΓ to Γh

to apply the condition

div e(PF) = ρ(PF) (24)

at the pointsPF ∈ Γ determined as follows for each edge
F contained inΓh. Still denoting bynF the unit outer
normal vector toΓh uponF , and referring to Figure 4.4,
PF is the boundary point at which the outer normal vector
coincides withnF , located at the smallest distance fromF
measured in the direction ofnF .

Now let r(P) be the curvature radius ofΓ at a point
P ∈ Γ with normal n. At this point we recall standard
representations of differential operators in general
coordinate systems (see e.g. [15]). From straightforward
calculations the divergence of a fieldu at P, expressed in
terms of a local orthogonal frame(n; t) with associated

T

Γ
Γh

F
PΓ

nF nF

MF

T

T ′

F

r(PΓ )

PΓ ⊂Γ

Fig. 4.4:ElementT ∈Th with an edgeF ⊂Γh and triangle
T

′
(below) with an edge parallel toF tangent toΓ

curvilinear coordinates, wheret is the unit tangent vector
alongΓ , is given by[grad u t] · t +[gradu n] ·n+u ·n/r.
Notice that the first term in the above expression is
nothing but the derivative with respect to the curvilinear
abscissa alongΓ , of the tangential component ofu on Γ ,
i.e. u · t. If u = e thenu · t vanishes onΓ . Hencediv e at
PF (cf. Figure 4.4) is given by,

dive(PF) = [grade(PF) nF ] ·nF +e(PF) ·nF/r(PF). (25)

At the level of our finite element method, the modification
consists of replacing the flux degrees of freedom related
to edgesF onΓh, for every triangleT havingF as an edge
opposite to its vertex, sayMF . More precisely they are
replaced by the corresponding degree of freedom for
triangleT

′
also havingMF as a vertex, an edge parallel to

F passing throughPF , and the other two edges aligned
with the edges ofT intersecting atMF (cf. Figure 4.4). In
doing so the quadratic fieldeh restricted to such a
boundary elementT is extended toT

′
in caseT ⊂ T

′
. On

the other hand the test fieldd is still defined in the same
manner as in the case of a polygonalΩ , and is not
extended to suchT

′
s if applicable. The purpose of

extending onlyeh to theT
′
s is to enable the application of

the natural counterpart of (24)-(25). Now denoting by
νF(v) the mean value of the normal derivative alongF of
a functionv defined inT

′
we prescribe,

[

νF(eh ·nF)+
eh ·nF

r

]

(PF) = ρ(PF) ∀ edgeF ⊂ Γh.

(26)
Results of the computations using the above formula

and the same meshes as in the experiments illustrated in
Figure 4.3 are shown in Figure 4.5
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4.5.1: Mean-square errors using b.c. interpolation

4.5.2: Maximum-value errors using b.c. interpolation

Fig. 4.5:Errors for Test-problem 3 using curved boundary
condition interpolation

These results show that in the presence on
inhomogeneous (Dirichlet) flux boundary conditions,
practically the same behavior as in Test-problem 1 is
observed for the modified method. Notice that in all cases
the laplacian of the solution at element centroids is exact
up to machine precision, but probably this is only because
it is a linear field in this test-problem, as it happens in the
next one as well.

Test-problem 4In order to rule out any particularity of
Test-problem 3 in a disk, hereΩ is the ellipse whose
equation isx2

1 + c2x2
2 = c2, c being taken equal to 1/2.

ρ = (3+ c2)x2
1 + (c2 + 3c4)x2

2 and f ≡ −grad ρ . The
exact solution ise= (x2

1 + c2x2
2)× (x1;c2x2). Here again

the meshes used in the computations consist of 2K2
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Fig. 4.6: Numerical errors in different senses for Test-
problem 4

triangles,K being an integer greater than one, and are
generated by the transformation of cartesian into polar
coordinates of the nodes of standard symmetric uniform
meshes of the square(−1,1)× (−1,1) by the procedure
described in [22]. In Figure 4.6 the errors in the same
senses as in Test-problems 1, 2, 3 are supplied, for
increasing values ofK.

These results confirm that for arbitrary smooth curved
domains, practically the same behavior as in the
polygonal case can be expected, as long as the
modification advocated in this subsection is implemented,
to treat (Dirichlet) flux boundary conditions.

5 Extensions and final comments

To conclude we briefly consider a relevant extension of the
studies carried out so far, and highlight some of the related
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ongoing research aimed at completing the analysis and the
numerical experiments presented in this work.

5.1 The case of variable coefficients

Throughout the previous sections we considered only
equations with constant coefficients. However in several
important applications of Maxwell’s equations of
electromagnetism some variable coefficients must be
handled. Actually in this case, unlike (1), the original
system to solve involves two strictly positive real
coefficientsµ andε assumed to vary only in space, and to
belong toL∞(Ω). Then instead of (1) we have to solve























































Givenσ ∈H1(Ω) andk∈{H1[(0,T);L2(Ω)]}N

with div k = 0∀t, , (e,m) fulfills:

div(εe) = σ anddiv(µm) = 0 in Ω × (0,T],

µ
∂m
∂ t

+ curl e= 0 in Ω × (0,T],

∂e
∂ t

− ε curl m =−k in Ω × (0,T],

e×n = 0 onΓ × (0,T].

(27)

Akin to the case of (1), we can combine the three
equations in (27) to derive a second-order hyperbolic
system fore, namely:

∂ 2e
∂ t2 + εgrad µ × curl e

−εµ{∆e+grad[e·grad(logε)]}=

−
∂k
∂ t

− µ [εgrad σ −grad(logε) σ ]

(28)

supplemented with the initial and boundary conditions
derived from (27), together with the condition
div(εe) = σ in Ω . Now restricting the latter condition to
the boundary, like in the constant coefficient case, is more
tricky. However if the coefficients are piecewise constant
this can be accomplished in a similar manner. We skip
details since the justification of this assertion is the same
as the one applying to the stationary counterpart of (28).
Assuming thatΩ is simply connected, the latter is an
equation analogous to (5), namely,



























































Giveng∈ H(curl,Ω) andσ ∈ H1(Ω),

find e∈ [H1(Ω)]N such that:

div(εe) = σ on Ω
εgrad µ × curl e

−εµ{∆e+grad[e·grad(logε)]}=
curl g− µ [gradσ −grad(logε) σ ] in Ω ,

e×n = 0 onΓ .

(29)

The extension to (29) of the Hermite method to solve
(5) described in Section 3, though perfectly possible,

involves several additional technicalities in case the
coefficientsµ and ε vary continuously. That is why we
consider only piecewise constant coefficients, which is a
very important case in practice. For example, in a
coefficient identification problem for Maxwell’s
equations, this is the situation one often has to deal with.
In this respect we refer to [3] for the solution of the
underlying inverse problem.
Application of our discretization method becomes rather
simple in this case, as long as the mesh is such that
discontinuities lines or planes ofλ := µε coincide with
inter-element boundaries. Indeed, in these circumstances
the problem can be viewed as much like the solution of
porous media flow equations with the scalar counterpart
of our Hermite method, as described in [23]: it suffices to
require continuity ofλ ∂eh · nF on every interfaceF
common to two mesh elements, and the rest functions
exactly like in the case of constant coefficients after
straightforward modifications.

5.2 Conclusions and perspectives

To summarize, in this paper we have rewritten the
classical Maxwell’s equations in the form of a
second-order hyperbolic system for the electric field. This
system can be solved in an uncoupled manner for the
components of the electric field. This uncoupling is
immediate if problem’s domain is a rectangle. Otherwise
classical uncoupling algorithms based on the influence
matrix technique can be used (cf. [13]).
Further we have introduced a quasilinear finite element
method to solve these equations in rather smooth
domains, based on Hermite interpolation, to be combined
with a particular non coercive variational form. This
variational form mimics in a vector framework, the
well-known mixed formulation of the (scalar) Poisson
equation. A priori error estimates were derived, showing
that optimal first-order convergence in theL2-norm of
both the gradient and the laplacian of the electric holds,
assuming that the domain is a convex polytope. Moreover
second-order convergence of the electric field in the
L2-norm is to be expected for the same type of domain.
Numerical examples validated these estimates in the
two-dimensional case, and showed that the curl of the
electric field is also approximated to the second order in
the L2-norm. Further numerical experiments were
reported for test-problems posed in curved domains.
Using a modification of the original method in order to
take into account the prescribed divergence of the electric
field at points situated on the true curved boundary, we
observed that the same convergence properties that hold
in the polygonal case are recovered.

In future work the authors intend to prove lacking
error estimates, which would corroborate some of the
observations reported for the numerical experiments.
First of all we will attempt to give a formal justification
for the observed second-order convergence in the
L2-norm of the curl of the electric field. A priori this
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makes sense, since in two dimensions the space spanned
by the curl of fields in the spaceEh contains all piecewise
linear functions in terms of the two space variables.
Notice that this statement is false in three-dimension
space.
We will also turn our attention to the modification of the
numerical scheme advocated in the case of curved
domains. Formal proofs that this leads to the observed
second-order approximations of the electric field in the
L2-norm are underway.
Finally the authors are planning to test their method in
real life problems with variable coefficients.

Appendix 1

A discrete Friedrichs-Poincaŕe inequality

We prove below the natural extension of the
Friedrichs-Poincaré inequality for the space
V := {v| v ∈ [H1(Ω)]2 v× n = 0 onΓ } (cf. [11]), to the
space of weakly continuous piecewise polynomial fields,
whose tangential trace is equal to zero on the boundary of
Ω in a certain weak sense.

Proposition 5Pk being the space of polynomials of degree
less than or equal to k in a given subset ofℜ2, let
Wh := {v ∈ [L2(Ω)]2,v|T ∈ [Pk(T)]2 ∀T ∈ Th}. Further,
e being an edge of an element T∈ Th, we denote by
Πe,T(vτ) (resp.Πe,T(vn)) the mean value of the tangential
component vτ := v|T · t (resp. outer normal component
vn := v|T · n) of v|T along e, forv ∈ Wh, the pair of unit
vectors (n; t) being oriented in the direct
(counterclockwise) sense, in such a way thatn points
outwards T . Now T1 and T2 being an arbitrary pair of
elements inTh having a common edge e we introduce the
following subspace ofWh:

Vh := {v ∈ Wh| Πe,T1(vτ)+Πe,T2(vτ) = 0 and

Πe,T1(vn)+Πe,T2(vn) = 0 ∀T1,T2 ∈ Th s.t.T1∩T2 = e

andΠe,T(vτ) = 0 if e⊂ Γ ∀T s.t.T∩Γ 6= /0}.

Then, defining the discrete gradient operator gradh over
Wh by [gradhv]|T = gradv|T ∀T ∈Th, there exists a mesh
independent constant CV such that

‖ v ‖0≤CV ‖ gradhv ‖0 ∀v ∈ Vh. (30)

PROOF. In this proof thecurl of a two-dimensional
vector fieldw sufficiently smooth is to be understood as
the function ∂w2/∂x1 − ∂w1/∂x2 and the curl of a
function w ∈ H1(Ω) represents the field
(∂w/∂x2,−∂w/∂x1). Moreover we denote byt the unit
tangential vector defined onΓ except at its vertices,
oriented in the counterclockwise sense.
Let us recall the space

U = {u| u ∈ [L2(Ω)]2, div u ∈ H1
0(Ω), ∆u ∈ [L2(Ω)]2

andu · t = 0 onΓ },

together with

V = {v| v ∈ [L2(Ω)]2, div v ∈ L2(Ω), curl v ∈ L2(Ω)
andv · t = 0 onΓ }.

SinceV is a Hilbert space for the inner product given by
(curl · |curl ·) + (div · |div ·) (cf. [12]), from the
Lax-Milgram Theorem the following problem has a
unique solution for everyf ∈ [L2(Ω)]2:

{

Findu ∈ V such that

(curl u|curl v)+ (div u|div v) = (f|v) ∀v ∈ V.

It can be easily established thatu ∈ U, −∆u = f a.e. inΩ
and grad curl u ∈ [L2(Ω)]2. Moreover, denoting by
< ·|· >1 the duality product betweenH−1(Ω) and
H1

0(Ω), the obvious relation< div curl curl u|ϕ >1= 0
∀ϕ ∈ H1

0(Ω) implies that(curl curl u|grad divu) = 0.
Then we have

√

|curl u|21+ |div u|21 =‖ ∆u ‖0 . (31)

Owing to (31) we may write for everyv ∈ Vh:

‖ v ‖0= sup
f∈[L2(Ω)]2\{0}

(v|f)
‖ f ‖0

= sup
u∈U\{0}

−(v|∆u)
[ |curl u|21+ |div u|21 ]

1/2

(32)

Now denoting by∂T the boundary ofT ∈ Th and bye a
generic edge of a mesh triangle, we observe that

−(v|∆u) = ∑
T∈Th

[

∫

T
(curl v curl u+div v div u)

+ ∑
e⊂∂T

∮

e
(vτ curl u+ vn div u)

]

.

(33)

Owing to the properties ofVh, the Trace Theorem applied
to curl u anddiv u and to the fact thatdiv u = 0 onΓ , we
can write:

∑
T∈Th

∑
e⊂∂T

∮

e
(vτ curl u+ vn div u)

= ∑
T∈Th

∑
e⊂∂T

∮

e
{[vτ −ΠT,e(vτ)]curl u

+[vn−ΠT,e(vn)]div u}

(34)

Now for everyT ∈ Th and∀e⊂ ∂T we define the linear
functional σT,e on Vh equipped with the discrete
H1-(semi)norm‖ gradh· ‖0, where

σT,e(v) =
∮

e{[vτ −ΠT,e(vτ)]curl u
+[vn−ΠT,e(vn)]div u}.

Owing to the Trace Theorem the functionalσT,e(·) is
bounded with a constant proportional to
√

‖ curl u ‖2
1,T + ‖ div u ‖2

1,T , SinceσT,e(v) vanishes ifv

is constant inT, after a standard transformation ofT into
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the unit master trianglêT, a simple application of the
Bramble-Hilbert Lemma (see e.g. [7]) yields∀e and∀T,

σT,e(v)≤CV

√

‖ curl u ‖2
1,T + ‖ div u ‖2

1,T

‖ grad v ‖0,T ,
(35)

whereCV is a mesh independent constant.
Now sincediv u ∈ H1

0(Ω) and
∫

Ω curl u =
∮

Γ [u · t] = 0,
the following inequality of the Friedrichs-Poincaré holds
with a constantCFP ∀u ∈ U (cf. [4]):
√

‖ curl u ‖2
1 + ‖ div u ‖2

1 ≤CFP

√

|curl u|21+ |div u|21.
(36)

Combining (32), (33), (34), (35) and (36) we readily
derive (30).

Remark.A complete proof of the discrete
Friedrichs-Poincaré inequality (6.18) omitted in [21] can
be easily inferred from Proposition5.

Appendix 2

Proof that (11) implies (13) for rectangular
domains

For the sake of simplicity we consider only the case
N = 2, for the caseN = 3 can be viewed as a mere variant
of the former. Let thenu satisfy in the rectangle
Ω = (0,Lx)× (0,Ly):














−∆u= f ∈ L2(Ω)

u(x,0) = u(x,Ly) = 0 for x∈ (0,Lx)

{∂u/∂x}(0,y) = {∂u/∂x}(Lx,y) = 0 for y∈ (0,Ly).

(37)
Taking in (37) g ∈ H1

0(Ω) instead of f , let v be the
corresponding solution. Thenvy = ∂v/∂y satisfies
−∆vy = ∂g/∂y in L2(Ω) and ∂vy/∂n = 0 almost
everywhere onΓ . While these boundary conditions are
obvious on the edgesx= 0 andx= Lx, on the edgesy= 0
and y = Ly they are a consequence of the fact that
∂ 2v/∂x2 = 0 and∆v = 0. The solution of the resulting
Poisson problem forvy with homogeneous Neumann
boundary conditions in a rectangle with a right hand side
in L2

0(Ω) is known to belong toH2(Ω) (cf. [14]). Since
by symmetry the same conclusion applies tovx we have
v ∈ H3(Ω). It follows that the trace of all second order
derivatives ofv on Γ are well defined inL2(Γ ). Hence,
denoting byH(v) the hessian ofv, we can apply first
Green’s identity twice to derive:

∫

Ω
|∆v|2=

∮

Γ
∆v∂v/∂n−

∮

Γ
grad v·∂ (grad v)/∂n

+

∫

Ω
|H(v)|2 =

∫

Ω
|H(v)|2.

(38)
It follows that theH2-seminorm ofv (in fact a norm in

this case) equals‖ g ‖0. Let now { fn}n ⊂ H1
0(Ω) be a

sequence converging tof in L2(Ω) by density (cf. [11]),
and un be the corresponding solution of (37). Since
un−um is the solution of the same problem for the right
hand side fn − fm ∀m,n, from (38) {un}n is a Cauchy
sequence ofH2(Ω). Indeed, the seminorm| · |2 is a norm
on the subspaceV := {v| v ∈ H2(Ω),u = 0 for y =
0 andy= Ly,∂u/∂x= 0 for x= 0 andx= Lx} equivalent
to ‖ · ‖2 by Peetre’s Lemma (cf. [11]), as one can easily
check. Therefore by continuity∃u ∈ V solution of (37)
such that |u|2 =‖ f ‖0, and hence a solution
u ∈ V ∩ [H2(Ω)]2 to (11) satisfying (13) with CP = 1.
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Niterói in greater Rio de
Janeiro. Besides his teaching
and research activities
in Numerical Analysis,
he is particularly interested in

topics related to environmental models and the simulation
of traffic fluxes in metropolis. He has accumulated great
experience in very large software development, of both
the academic and the corporate type. He obtained his
diploma of Mechanical Engineer, together with his
doctor’s degree in the same field, at the Catholic
University of Rio de Janeiro. The subject of his doctoral
thesis was the finite-element simulation of viscoelastic
flow.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Model equations
	A Hermite solution method
	Numerical validation
	Extensions and final comments

