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Abstract: A mathematical formulation suitable for the application afnovel Hermite finite element method, to solve electro-
magnetic field problems in two- and three-dimensional dosés studied. This approach offers the possibility to gateeaccurate
approximations of Maxwell's equations in smooth domainghw rather rough interpolation and without curved eleraektethod’s
degrees of freedom are the normal derivative mean valudsecélectric field across the edges or the faces of a mesh tngsi$
N-simplices, in addition to the mean value in the mesh elemehthe field itself. Second-order convergence of the atefigld in

the mean-square sense and first-order convergence of theetitafield in the same sense are rigorously establisheuk iibmain is a
convex polytope. Numerical results for two-dimensionalgems suggest however that second-order convergencéscaresexpected
of the magnetic field. Both behaviors are shown to apply te¢#se of curved domains as well, provided a simple interpdlabundary
condition technique is employed.

Keywords: Electric field, Finite elements, Hermite, Magnetic field,Meell's equations, Raviart-Thomas.

1 Introduction algorithms allowing for an uncoupled solution of
Maxwell’s equations become difficult to implement.
The classical Lagrange family of finite elements is not | order to cope with the issues pointed out in the
suitable for the numerical solution of Maxwell's introductory considerations above, we present in this
equations governing electro-magnetic field generationyork a finite element method to solve Maxwell's
One of the main reasons for this is the fact that boundar)équations in a bounddd-dimensional domain, foK = 2
conditions applying to the tangential component of theand N = 3. The purpose of this proposal is three-fold.
electric field are not compatible with vertex-based First of all our method takes boundary conditions on the
methods. That is why to date well-established techniquegangential component into account as Neumann boundary
to solve this kind of problems proposed several decadegonditions in a suitable variational framework. In this
ago are widely in use, such as Nédélec edge elements (Ghanner they are implicit in the formulation and by no
[17). Indeed in this kind of method mean values along means strongly enforced. A second method’s interesting
triangle or tetrahedron edges of the tangentialfeature is the fact that thd components of the unknown
components of the electric field are method's degrees ofje|ds are equally represented everywhere, which renders
freedom. This enables enforcement of the abovet well suited to uncoupling solution algorithms. Finally

boundary conditions avoiding inconsistencies at cornemn important point is the use of a special interpolation to
nodes. Moreover Nédélec elements are curl Conform|ngrepresent the unknown discrete electric f|e|d, which

which makes them suitable to approximate the ﬁeldshappens to be the Hermite Counterpart of the

involved in the equations of electromagnetism. SomeRayiart-Thomas mixed finite element method of the
practitioners use dlvergenCe Conformlng methods to SOIV%West order. This allows to recover second-order
the equations under certain circumstances. One of th@pproximations in the sense &f, in contrast to the
methods of the latter type is known in the specializedmixed method, though at practically the same cost. This is
literature as the Rao-Wilton-Glisson triangular elementpecause the total number of degrees of freedom is the
[16]. It is based on an interpolation of the electric field, same for a given mesh. In this respect the authors should
which is nothing but the one of the flux variable in the clarify beforehand, that, as far as the spatial discretinat
lowest-order Raviart-Thomas mixed elemen20[ s concerned, the new method can be viewed as a vector

Whatever the case, this kind of method couples helplesslyersion of the Hermite finite element method introduced
the components of the electric field, in such a way that
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in [23], for the solution of scalar second-order elliptic fields (e;m) depending on the space variableand time
boundary value problems. However we should point outt € (0, T], whereT is a final time, such that,

that the method studied in this paper is mostly aimed at

providing optimal approximations of solutions to

Maxwell’s equations at reasonable cost, in the case of

domains which are at least as regular as convex polytopes.

In short, singular behavior of solutions arising in the case

of boundary re-entrant corners (see eg, [10], [18], Givenp e HY(Q),j € {HY[(0, T);L2(Q)]}V,

[19 and references therein) cannot be dealt with by (e,m) fulfills:

means of our numerical model. Actually our method’s

main goal is to provide second-order numerical solutions dive=p anddivm=0in Q x (0,T],

in sufficiently smooth domains, using a rather rough and om (1)

inexpensive interpolation. ot ycurle=0in Q x (0, T],

An outline of this paper is as follows. In Section 2 we first
recall the equations to solve in the time-dependent case.
Then we recast them in the form of a second-order exn=0onTl x (0,T].

hyperbolic system in terms of the electric-field

components. This system is shown to be equivalent to the

original system in non singular cases. In the same section

we set up the stationary counterpart of the latter system,

to be taken as a model problem in the subsequent The assumption thatthe electric charge densitioes
numerical studies. In Section 3 we describe our numericahot depend om requires that the electric current dengity
formulation of the model problem, together with the be solenoidal, which is the main particularity of equation
underlying Hermite finite-element solution method. Inthe (1) as compared to the general form of Maxwell's
same section method’s numerical analysis is conducte@quations. Notice that this assumption also requires that
and optimal error estimates are derived for the case ofliveg=pin Q

polygonal and polyhedral domains. In Section 4 results ofTaking into account thafcurl m/dt = —y curl curl e,
numerical experiments in the two-dimensional case aresettingA = y?, we can manipulate systert)(to obtain :
reported, for both rectangular and smooth curved
domains. For the latter case we describe an interpolated
boundary condition technique, which prevents the
numerical solution from any order erosion, owing to the
approximation of the curved boundary by a polygon. We
conclude in Section 5 with a few remarks on the extension | Givenp € HY(Q), j € {H*[(0,T);L2(Q)]}N
of our numerical formulation to the case of variable with divj_o. (e,m) fulfills:

coefficients, among other comments on the whole work.

g—te—ycurl m=—jinQ x(0,T],

dive=pin Q x (0,T],

[Z—T = —ycurlein Q x (0,T],
- 2 - (2)
2 Model equations ngjL)\ curlcurle= —% in Qx (0,T],
de

e(-,0) =ep(-), = (-,0) = ycurl mg—jy—
Henceforth we consider that the method studied in this 0 ©) dt( i ) =0
work applies to the solution of Maxwell's equations in a andm(-,0) = mo(-) in Q,
bounded domain® of ON, for N = 2,3 in a slightly exn=0onl x(0,T]
simplified form. For more details on these equations we
refer to [].

For the purpose of the numerical analysis to be conducted
hereafter it is convenient to restrict the presentatioméo t

case where? is a polygon forN = 2 and a polyhedron Notice that the assumption thdivj = 0 att = 0,
for N = 3. As pointed out above, in order to avoid together with the third equation o2)suffice to guarantee
singular behaviors, we assume th& is convex. thatdivj = 0 for everyt. Otherwise stated the initial
Irrespective of convexity, the case of smoother domainscondition ondivj is equivalent to requiring thativj = 0
will be addressed afterward in the framework of forallt.

numerical experimentation. Now we use the well-knon identity applying to the
Letting I be the boundary of2, we denote by the unit  |aplacian of a vector field, namely,

outer normal vector defined everywherelorxcept at its

vertices. Then given an electric fiedg and a solenoidal

magnetic fieldmg at the initial timet = 0, andy € O™,

we wish to determine the couple of electric and magnetic —Ae = curl curl e—grad dive.
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Plugging this relation into2) and observing thative=p
onl, we rewrite @) as follows:

Givenp € HY(Q), j € {H[(0,T);L3(Q)]}N
with divj = 0Wt, (e m) fulfills:

00_? = —ycurl ein Q x (0, T],

0% Jj .

S~ Me= —;egradp 5 In2x(OT (3
e(-,0) = ("), = (-,0) = yeurlmo—jj—_o

ot
andm(-,0) =mg(-) in Q,

exn=0onl x(0,T]
dive=ponl x(0,T].

Conversely, it is easy to see that if the pégm)
fulfills (3) then it also satisfies2). Indeed, taking the
divergence of both sides of the second equatiorBpafd
denoting byd the divergence og, d is seen to satisfy the
equation

Givenp € H(Q), find d such that:
oxd _
ot
ad .
d(-,0)=p andﬁ(-,O) =0inQ,

d=ponl x(0,T].

AAd=-AApin Q x (0,T],
(4)

Obviously enough hyperbolic equatior) (has a
unique solution given byd = p. It follows that
A(—Ae+gradp) = Acurl curl eand we are done.

An interesting characteristic of syster) (s the fact
that theN components o€ are coupled only due to the
boundary conditions. Hence, as long as we can deal wit

them in an uncoupled manner we can easily solve systen)
(3) component-by-component. This is precisely one of the

main features of the new numerical method to sole-(
i.e. (@) - in the equivalent form3), which we describe in
the next section. Before doing so we introduce a vecto
Poisson problem, which is a sort of stationary counterpal
of (3) forA =1:

Giveng € H(curl,Q)
andp € HY(Q),
find e € [H}(Q)]N such that:

()
—Ae=curlg—gradpin Q,

exn=0onl,
dive=ponrl.

Taking the divergence of the fist equation Bf,(in the
same way as for systen3)( we conclude thatlive = p

a.e. inQ. This implies that any solution ob] solves the
system

Givenj € H(curl, Q) nKer(div)
andp € HY(Q),
findec [H1(Q)]N such that:
(6)

curle=jinQ,
dive=pin Q,
exn=0onrl.

It is possible to prove that = g+ grad n where
n € HY(Q) is any solution of the Neumann problem
—An =divgin Q anddn/on=—g-non'l.

We next introduce and study our finite element
method applied to model problerd)( Its application to
(3) is straightforward, as long as a suitable time-marching
scheme is implemented to complete the underlying space
discretization.

In the sequel we employ the following notations: For
a strictly positive integeM, S being a bounded open set
of ON, (-|-)s denotes the standard inner product of
[L2(S)IM. We denote the standard norm and semi-norm of
Sobolev spacéH™(S)|M (cf. [1]), for any positive integer
mby || - lms and| - |ms respectively, includingL?(S)|M
taking m = 0. We drop the subscri@ in all the above
notations in cas&= Q.

3 A Hermite solution method

We are given a finite element partitiov;, of Q,
consisting of triangles or tetrahedra according to theevalu
of N, and belonging to a regular family of partitions (cf.
[7]). h will denote the maximum diameter of the elements
of 7. We define a finite element spaEg associated with
I as follows. Every functior € E;, is such that in each
heIementT € S it is expressed by x-x/2+b-x+c,
where x represents the space variable,js a constant
ector of ON anda andc are two real constants. Nof
being an edge iN = 2 or a face ifN = 3 belonging to the
boundanyT of an elemenT € %, andng being the unit
normal vector orF oriented in a unique manner for the
'whole mesh, every functiore € E, is such that its

rPestriction to anyT € % is defined by means of the

following N + 1 degrees of freedom:

1.TheN mean valuewg (e) of the the fluxgrad e- ng
overF C 0T;
2.The mean valugy (e) of eoverT.

The degrees of freedomi(+) are required to coincide on
both sides of every facE common to two elements of
T

The canonical basis functions for this space
corresponding to the above degrees of freedom can be
determined as follows. First we note thaé¢ € Ej, the
fluxes ofe/r are constant over every edge or fe€eof

any elemenfl of the mesh. Indeed from the particular
form of e/ we havegrad e = ax+b. Then from a
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well-known property of the lowest order Raviart-Thomas Remarkin the two-dimensional case we could as well

mixed element, whose flux variable is locally defined by adapt to the our vector problem the technique employed
functions of the same form, the result follows. in[20]), [2]] for its scalar analog. Essentially the only tool

Incidentally this allows us to the determimeandb for that is lacking for such a purpose is a vector counterpart
each basis functio corresponding to a given flux, in the of the discrete Friedrichs-Poincaré inequality (6.18) of
same way as for the flux basis fields corresponding to thg21] for the space of weakly continuous piecewise linear
lowest order Raviart-Thomas element. Then the value of functions used in the primal hybrid finite element method.

is adjusted in such a way th#t ¢ rdx= 0, and the flux

Actually we supply in Appendix 1 the proof of such an

canonical basis fields are uniquely defined. Finally theinequality.

basis function corresponding to degrees of freedom
are givenbya=0,b=0andc=1
Now let E, be the space oN-component vector fields
= (ey,...,en) such thatg € E, fori=1,...,N andDy,
be the subspace oEy of those fieldsd that fulfill
Ve(d-ng) = 0 for every edge or facé of %, contained
in . We further define a linear manifol®f of Ej
consisting of fields d such that
Ve (d-ng) = [meagF)] ! [ pdF for every edge or face
F of % contained in".
Next we set up the discrete variational problefhgimed
at approximatingg), namely,

Find e, € D such that

an(en,d) =L(d)  VvdeDp,
where:
ap(ed):= z [(grad elgradd)t+

Te, (7)
(Aeld)T + (e|Ad)T] Ve, d € Ep,;

and

L(d):= —(fld)  vde[L2@)N,

with f := curl g—grad p.

Defining My : [L?(Q)|N — [L2(Q)]N as the operator
given by Iy[w|/r = [rwdx/meagT) VT € %, and
setting

E:= {e/ec [HYQ)N;aec [L2(Q)N},

we extendd, to (En+ E) x (En+E), and further introduce
the functional| - ||n: En+ E — O given by:

I e[f:= (Mh[e]|Mn[e])+

Z] [(grad elgrade)T + (AelAe)T].
TED

(8)

The expression| -
E+ Ep.

| obviously defines a norm over

Using arguments in all similar to those &9 applying

To begin with we prove

Lemma 1Let S, be the space of fields which are constant
in every Te %,. Referring to R0] we denote by#;, the
subspace oH (div, Q)]N consisting of Nx N tensors Q=
{g,j} for 1 <i,j <N such that[qi,j]ﬂ' is a function of
the form & + b, with ac 0 andb € ON. Let also.2}, be
the subspace o#}, consisting of those fields Q such that
(Qn)-n=0o0nT. Then givers € S, there exists & 2,
satisfying for a constant £independent of h and such
that:

{div Q=sa.e.inQ,
{I QI3+ Il div Qi3}*2 < Cs| s]lo,

wherediv Q stands for the N-component vector fidle-

N
ich,...,dn]7 given by d= z dQ'J

9)

PROOF.  The subset of2;, consisting of those
tensorsQ such that(div Q|s) = 0Vs e S, is contained in
[H(div,Q) N Ker(div)]N. Thus we can resort to
Proposition 11.2.8 of §], combined with relations
analogous to 1V.1.24 in the same reference that apply to
our vector case, takindk = 1. This is because the
following inf-supcondition [6] holds:

3B > 0 such thav's € [L2(Q)N
(div Q|s)

s _ (10)
aea\(o} [l QIIE+ | div Q3]

5 > Blisllo-

(10) can be established by takity= —grad u, where
u is the solution of the vector Poisson problem.

{ —Au=se[L2(Q)N

. (11)
uxn=0anddivu=0onrl.

Indeed since Q is convex u € [HY(Q)N [9].
Moreover the following Friedrichs-Poincaré inequality
holds for a constar@@y (cf. [11]):

v |lo<Cn| gradv (oW eV

to the scalar Poisson equation, we can prove existence anghere
unigueness results, together with a priori error estimates

for problem {7). The main difference relies on the fact that

we must extend to5) the theoretical background ][

V= {v|ve HYQ)N

,vxn=0onrl}.

as applied to the discrete mixed formulation of the (scalar)Therefore (—Aulu) < Cy || s |lo|| grad u |jo and since

Poisson equation. Let us work this out.

d[u-n]/dn =0 on plane faces of, a classical density
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argument yieldg| grad u [|o< Cn || s ||o- It follows that  the existence of a solution of the Poisson equation

(10) holds withp = [1+cﬁ]71/2_ m satisfying these boundary conditions which do not belong
to H?(Q) is not explicitly ruled out in previous studies,
Now we can establish that we give in Appendix 2 a proof of the fact that in this
. ) ) specific case; € H?(Q) fori=1,...,N,N=2or 3. As
Proposition 1Problem {) has a unique solution. a by-product we also prove that3) holds, forCe = 1,

PROOF.  Thanks to Lemmd. the proof of this result is ~With an equality instead of an inequalisy.
based on exactly the same arguments as in Proposition 2.1
of [23], in the particular case of the scalar Poisson  Finally we prove,

equation (i.e. in case/” is the identity tensor Theorem 4Let Q be a polytope of the?-class. Provided
h is sufficiently small and assuming thest [H?(Q)|N and
Next we prove fe [H1(Q)N, there exists a mesh independent constant C

Theorem 2Provided e € [H2(Q)]N and f € [H1(Q)N  suchthat,

there exists a mesh independent constant C such that,
P | e—en [lo< Coh? [lel2+]fl1]. (14)

The proof of estimatel{d) is quite similar to the one
of Theorem 2.2 0f23)], taking the isotropic case, i.e. the
case of the scalar Poisson equation. That is why we
highlight only the differences inherent to probles).(
Similarly to [23] we apply the usual Aubin-Nitsche
Iargument (cf. 7). Recalling the above defined spade

| e—en [[n< Ch{lelz+ [f|a]. (12)
PROOF.  The proof of this error estimate is entirely
analogous to the one of Theorem 2.2 23][in the case of
the scalar Poisson equatiam.

To close this section we derive a second-order erro

estimate for our method in the norm &f(Q). This we have:
estimate applies to the case where the solutionltd ( —(e—ey,Au)
belongs toH?(Q)]N NV for everys e [L2(Q)]N. To the [e—enllo= UESLK?O} “auly (15)

best of our knowledge, up to now it has not been formally

demonstrated that such a regulari_ty applies_tq arbitrar)NeXt denoting bynr the unit outer normal vector ofT
convex polygons or polyhedra. Notice that this is known for T € ., and representing bl a generic edge T
to be true for domains of the cla€$* [2], and eventually o N — 2 or & generic face of T for N = 3, we observe
to some domains of th€!-class. Let us then simply ./ ¢y -

consider that our estimate holds for polytopes belonging '
to a class of domains denoted by such that the
H2-regularity does apply, and moreover the following

dlen— d Alen,—
inequality holds for a consta@ independent o$: {(grad e —e].gradu)r +(Aen — &, u)r

TED (16)
ul2<Ce || s]lo. (13) - 2 (gradien—ejnr|u)e} =0.
FcoT
Among domains of theZ?-class lie rectangular ones

. ' Owing to the trace properties & and u, together with
according to,

the construction oEy,, we can assert that the summation
Proposition 3Let Q be a rectangle if N= 2 or a of a!l the integrals o ¢ I" in (16) cancel out. As for
rectangular parallelepiped if N= 3. Then for every the integrals orfF C I they reduce tq{grad[e, —€ejn} -

s [L2(Q)]N the solution of {1) belongs tdJ where nju-n). Recalling thate x n = 0 on I, we infer that for
a polygon or a polyhedrofgrade nj-n=diveonF C
U:={ulue[H?Q)NNV and divu € H3(Q)}. . On the other hand by constructiggrade, n]-n =0
on everyF C I". Since we are considering the case where
Moreover|u|z =|| s||o. dive=0on[, it follows that the whole summations over

. . FandT in (16) vanish. Thus we readily derive,
PROOF.  First we note that for a rectangular domain

Q = (0,L1) x ... x (0,Ln), problem (1) reduces toN —(e—en,Au)g =an(en—eu)Vu e U. a7
uncoupled Poisson equatiorsAuy; = § € LZ(Q) with

mixed Dirichlet-Neumann boundary conditions for the By a straightforward calculation using the properties of
components; ands of uands,i=1,...,N. Forexample E; we derivea,(e,d) = L(d) = an(en,d) Vd € E;,. Hence
for u; we haveu; = 0 on the edges or faces given by combining this with {5), (16) and (L7) we obtain:

Xi = 0 andx = L with i # 1, anddu;/dn = 0 on the

faces given by; = 0 andx; = L;. Obviously enough, by | en—eljo< sup an(en—eu—d)
symmetry the analogous conditions that hold for the other T ueu\{o} || Aullo
components ofu can be written down by simple

permutation of coordinate subscripts. In any case, at leadf e = &, (14) trivially holds. Let thene # &, and
for N = 2, we can resort to results for the PoissonBy(0,1) := {u/ u € U, || Au |lo= 1}. In this case it is
equation in L4] among other works. Nevertheless, since easy to see that3Jup € By(0,1) such that

vd€En.  (18)
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sup Cn(&n—eu-d) an(en —eup—d) vd € En. 4 Numerical validation
veu\{oy || AUllo
Indeed we may take for instancelp such that |n this section we assess our method’s accuracy by
Aug = [en — €/ || e — e Jo, since solving some academic test-problems. The subsdript
an(en—eu) = (en—eAu) Vu e U. next to a differential operator indicates that it is defined

Let nowlnu denote the standaiih-interpolate ofu € U.  on an element-by-element basis, whilg denotes the
According to standard results (cf7][and [20]) there  centroid of a mesh elemefit
exists a constar@; such that,

27<C I ur ||2,T Ve HZ(_Q) andvT € %,.
(19)
- . 3 N - . .
Since the space/ := [H*(Q)]" NU is dense irJ, setting | order to validate the a priori error estimaté)(and

g:2,/2N(1+C|2), there existal; € W such that]| up — (14 we approximated problem5) in the square
Q = (1,0) x (0,1) by (7), using meshes with K?

(| 1]y | 4.1 Test-problems for a square domain

Ue [l2< £/2. triangles, obtained f first partition @ into K2
Takingd = Ipup, owing to (12) and the interpolationtheory {'@ngles, obtained from a first partion @& Into /= -
[7], there exisCs andCs such that equal squares, each one of them being subdivided into

two triangles by the diagonal parallel to the lixe= x,.

Test-problem 1:Here p vanishes identically inQ and

—e,Up— lpup) < P v
an(en 0— Inlio) f = 2(cogmx]sin[mx,], —cogmxy]sin[rxy]). The exact

27 (en —e Afuo— Inuo}])t (20)  solution ise = f/(272). In Sub-figures 4.1.1 and 4.1.2 of
TEh Figure 4.1 we display the resulting errors in the indicated
+Cp(Cs|ul2.q +Csh| f|1.0)h?, senses, foK =2", m=1,2,...,5.

Sub-figure 4.1.1 confirms the predicted orders of
whereCp is the constant of1(3). On the other hand we convergence, while Sub-figure 4.1.2 shows that the errors
have of method’s degrees of freedom of both types decrease

roughly at a quadratic rate as the mesh is refined.
Particularly noteworthy is the observation that the erffor o
27(9”_ e Afug— lhuo}])T < curl e is also diminishing at the same rate as the error of
TEH, e. The laplacian of the solution is also being
{ approximated at the same rate in the point-wise sense.
| en—ello

1/2
S I A(wy +ws)] ||%,T]
Te

Test-problem 2Takef = —grad p wherep is given by

2 p = 2(X2 + X3 —x1 — %2). The exact solution ie = ([1—
+ D> [1Awg] ||%,T1 ; (21)  2x][x2 — X8, [1 — 2x2][x1 — X2]). Instead of the theoretical
Teh mean value op at boundary edges we prescribe the value
of p at those edge mid-points. In Figure 4.2 we display
wherew; = Ug — Ug; the resulting errors in the same senses as in the previous
] test-problem, for increasing valueskf
W2 = Ug — InUe; Sub-figures 4.2.1 and 4.2.2 of Figure 4.2 show that in
w3 = Ip(ug — Up). the presence on inhomogeneous (Dirichlet) flux boundary

conditions prescribed pointwise, practically the same
Owing to (19) and to the basic property af, it is then  behavior as in Test-problem 1 is observed. Notice that
clear that here the laplacian of the solution at element centroids is

exact up to machine precision, but probably this is only
1/2
{ || Afwi+ws)] I%:} <y\/2N(CE+1)e/2 (22)
TeS

because it is a linear field in this test case.
Moreover sinceu; is sufficiently smooth, there must
existhg such thatvh < hg it holds that

4.2 Test-problems for curved domains

The purpose of the experiments reported in this
sub-section is to show that, provided some simple
modifications are implemented, the method studied in this
1/2 work together with its qualitative properties, extend te th
z | Aws] 137 < /ZN(C|2+1)5/2 (23)  case of sufficiently smooth curved domains.
TE7, ' First of all we denote by2;, the polygon with vertices on
I, that approximate the curved domath in the usual
Finally taking into account the choice eftogether with  manner, that is, the union of the triangles in the mégh
(20)-(21)-(22)-(23), it follows thatvh < hy, || e—ep ||o< The maodifications in view are motivated by the fact that
2Cp(Cs|€|2 + Ceho|f|1)h?, which proves the Theorem. we cannot, akin to the polygonal case, simply apply the
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10 10’
lope’ =0.9758
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Fig. 4.1:Numerical errors in different senses for Test-problem 1 Fig. 4.2:Numerical errors in different senses for Test-problem 2

numerical counterpart of the boundary condition

dive= p on the (mid-points of the) edges &f,. This is

because such an approximation erodes the second-order Observation of both sub-figures shows that errors
error estimate in theL?-norm for the electric field | e— ey [lon and maxe s |t (e—€,)| no longer decrease
established in Theorem 4 in the polygonal case. In ordetoughly like anO(h?) ash goes to zero, but rather like an

to illustrate this assertion we consider O(h%) with a = 0.8831 andx = 0.6807, respectively.
Test-problem 32 being the unit disk with center at the In order to remedy this we next describe the modifications
origin of the cartesian coordinates andx, we takep = to be carried out in our method in the framework of

4(x2 +x3) andf = —grad p. e= (x1[x¢ +X3],%[x¢ +X3])  two-dimensional problems posed in curved domains. Of
is the exact solution. The meshes used in our computationsourse the main issue to be addressed is the prescription
to solve this problem consist okZ triangles, wher& >1  of the divergence boundary condition. In order to avoid
is an integer. They are generated by the transformation ofhe erosion of method’s (second-order) convergence in the
cartesian into polar coordinates of the nodes of standard?-norm, in case this boundary condition is applied to
symmetric uniform meshes of the squéarel, 1) x (—=1,1)  flux degrees of freedom on the edges forming the
by a procedure described i@J). Denoting by|| - [[onhthe  boundaryl}, of Qn, we use a variant of the technique
norm of L2(Qp), we show in Sub-figures 4.3.1 and 4.3.2 known as the interpolated boundary condition (&f).[

the evolution of the absolute errors in logarithm scale, inThis variant is similar to the procedure proposed by the

the indicated senses, for increasing value ofthereh = first author in R4] to solve Poisson’s equation in curved
1/K. domains with Dirichlet boundary conditions. The idea is
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4.3.2: Maximum-value errors for the classical approach

Fig. 4.3: Errors for Test-problem 3 shifting the boundary
conditions from/” to I,

to apply the condition
dive(Pr) = p(Pr)

at the point$x € I’ determined as follows for each edge
F contained inf},. Still denoting byng the unit outer
normal vector tol,, uponF, and referring to Figure 4.4,

(24)

M £—

Fig. 4.4:ElementT € ;, with an edgé- C I, and triangle
T (below) with an edge parallel t6 tangent ta™

curvilinear coordinates, whetds the unit tangent vector
alongl™, is given by[gradu t]-t+[gradun]-n—+u-n/r.
Notice that the first term in the above expression is
nothing but the derivative with respect to the curvilinear
abscissa along, of the tangential component afon I,
i.e.u-t. If u=ethenu-t vanishes o . Hencediv e at

Pe (cf. Figure 4.4) is given by,

dive(P:) = [grade(P:) ng]-ng +e(Pe)-ne /r(PE). (25)

At the level of our finite element method, the modification
consists of replacing the flux degrees of freedom related
to edged= on Ty, for every trianglel havingF as an edge
opposite to its vertex, sallr. More precisely they are
replaced by the corresponding degree of freedom for
triangleT" also havingVIr as a vertex, an edge parallel to
F passing througtP-, and the other two edges aligned
with the edges of intersecting aMg (cf. Figure 4.4). In
doing so the quadratic fieldy, restricted to such a
boundary elemeri is extended ta in caseT c T'. On

the other hand the test fiettlis still defined in the same
manner as in the case of a polygomal and is not
extended to suchl's if applicable. The purpose of
extending onlye, to theT's is to enable the application of

P is the boundary point at which the outer normal vectorthe natural counterpart of24)-(25). Now denoting by

coincides withng, located at the smallest distance frém
measured in the direction of.

Now let r(P) be the curvature radius df at a point
P e I' with normaln. At this point we recall standard
representations of differential operators
coordinate systems (see e.@5]). From straightforward
calculations the divergence of a fialdat P, expressed in
terms of a local orthogonal fram;t) with associated

in general

Vg (V) the mean value of the normal derivative aldh@f
a functionv defined inT’ we prescribe,

(Pr) = p(Pr) V edgeF C Ih.
(26)
Results of the computations using the above formula
and the same meshes as in the experiments illustrated in
Figure 4.3 are shown in Figure 4.5

‘n
VF(er1'nF)+enr F
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4.5.2: Maximum-value errors using b.c. interpolation Fig. 4.6: Numerical errors in different senses for Test-

. _ problem 4
Fig. 4.5: Errors for Test-problem 3 using curved boundary

condition interpolation

triangles,K being an integer greater than one, and are
generated by the transformation of cartesian into polar
coordinates of the nodes of standard symmetric uniform

These results show that in the presence N eshes of the square-1.1) x (~1,1) by the procedure
inhomogeneous (Dirichlet) flux boundary conditions, described in 22]. In Figure 4.6 the errors in the same

practically the same behavior as in Test-problem 1 is . ) ;
observed for the modified method. Notice that in all casesSenses as in Test-problems 1, 2, 3 are supplied, for

the laplacian of the solution at element centroids is exac{ncr.?ﬁzlsnegr\éilﬁlfssgér']ﬁrm that for arbitrary smooth curved
up to machine precision, but probably this is only becaused y

it is a linear field in this test-problem, as it happens in the olmalns,l practically t?)e same bc;ahaV|or| as n thhe
next one as well. polygonal case can be expected, as long as the

modification advocated in this subsection is implemented,

. ] to treat (Dirichlet) flux boundary conditions.
Test-problem 4in order to rule out any particularity of

Test-problem 3 in a disk, her® is the ellipse whose

equation isx§ + ¢°x5 = ¢, ¢ being taken equal to/2. 5§ Extensions and final comments

p = (3+ %)X+ (c2+3cHx3 and f = —grad p. The

exact solution i = (x4 4+ ¢?X3) x (X1;¢?Xp). Here again  To conclude we briefly consider a relevant extension of the
the meshes used in the computations consist Kf 2 studies carried out so far, and highlight some of the related
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ongoing research aimed at completing the analysis and thimvolves several additional technicalities in case the
numerical experiments presented in this work. coefficientsy and € vary continuously. That is why we
consider only piecewise constant coefficients, which is a
very important case in practice. For example, in a
5.1 The case of variable coefficients coefficient identification problem for Maxwell's
equations, this is the situation one often has to deal with.
Throughout the previous sections we considered onlyin this respect we refer to3] for the solution of the
equations with constant coefficients. However in severaunderlying inverse problem.
important applications of Maxwell's equations of Application of our discretization method becomes rather
electromagnetism some variable coefficients must besimple in this case, as long as the mesh is such that
handled. Actually in this case, unlikd)( the original  discontinuities lines or planes df := pé& coincide with
system to solve involves two strictly positive real inter-element boundaries. Indeed, in these circumstances
coefficientsu ande assumed to vary only in space, and to the problem can be viewed as much like the solution of
belong toL*(Q). Then instead ofl) we have to solve porous media flow equations with the scalar counterpart
of our Hermite method, as described #8]; it suffices to
require continuity ofAde, - ng on every interfaceF
Giveno e HY(Q) andk € {H[(0,T); L2(Q)]}N common to two mesh elements, and the rest functions
with divk = 0Vt,, (e,m) fulfills: exactly like in the case of constant coefficients after
straightforward modifications.
div(ee) = o anddiv(um) =0in Q x (0,T],
om . (27)
H—r +oule=0inQ x(0,T], 5.2 Conclusions and perspectives
d—e—scurlm:—kian(O,T], ) ) ] )
ot To summarize, in this paper we have rewritten the
exn=0onl x(0,T]. classical Maxwell's equations in the form of a
second-order hyperbolic system for the electric field. This
Akin to the case of ), we can combine the three system can be solved in an uncoupled manner for the
equations in 27) to derive a second-order hyperbolic components of the electric field. This uncoupling is

system fore, namely: immediate if problem’s domain is a rectangle. Otherwise
) classical uncoupling algorithms based on the influence
d%e +egrad 1 x curl e matrix technique can be used (cJ).
ot? Further we have introduced a quasilinear finite element
—ep{Ae+gradfe-grad(loge)]} = (28)  method to solve these equations in rather smooth
ok domains, based on Hermite interpolation, to be combined
—E—u[sgrada—grad(logs) a] with a particular non coercive variational form. This

variational form mimics in a vector framework, the
well-known mixed formulation of the (scalar) Poisson
equation. A priori error estimates were derived, showing
hat optimal first-order convergence in thé-norm of

supplemented with the initial and boundary conditions
derived from @7), together with the condition
div(ee) = o in Q. Now restricting the latter condition to
the boundary, like in the constant coefficient case, is mor ; X .
tricky. However if the coefficients are piecewise constant?Cth the gradient and the laplacian of the electric holds,
this can be accomplished in a similar manner. We skip@SSuming that the domain is a convex polytope. Moreover
details since the justification of this assertion is the Samesgzcond-qrder convergence of the electric field in the
as the one applying to the stationary counterparg@j.( L norm is to be expected for the same type of domain.
Assuming thatQ is simply connected, the latter is an Numencal _examples validated these estimates in the
equation analogous t&), namely, two-dimensional case, and showed that the curl of the
electric field is also approximated to the second order in
the L2-norm. Further numerical experiments were
Giveng € H(curl, Q) ando € H1(Q), reported for test-problems posed in curved domains.

, 1 N ] Using a modification of the original method in order to
finde e [H7(2)]" such that: take into account the prescribed divergence of the electric
field at points situated on the true curved boundary, we
observed that the same convergence properties that hold
egrad u x curl e (29 inthe polygonal case are recovered.

—eu{Ae+gradle-grad(loge)]} =

div(ee)=oonQ

) In future work the authors intend to prove lacking
curl g— p[grad o —grad(loge) o] in Q, error estimates, which would corroborate some of the
exn=0onrl. observations reported for the numerical experiments.
First of all we will attempt to give a formal justification
The extension to29) of the Hermite method to solve for the observed second-order convergence in the
(5) described in Section 3, though perfectly possible,L2-norm of the curl of the electric field. A priori this
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makes sense, since in two dimensions the space spannéagether with

by the curl of fields in the spads, contains all piecewise

linear functions in terms of the two space variables. V = {v|ve [L2(Q)]?, divv e L?(Q), curlv e L%(Q)
Notice that this statement is false in three-dimension andv-t=0onl}.

space. . . . . .

We will also turn our attention to the modification of the SinceV is a Hilbert space for the inner product given by
numerical scheme advocated in the case of curvedcurl -fcurl ) + (div -[div ) (cf. [12), from the
domains. Formal proofs that this leads to the observed-ax-Milgram Theorem the following problem has a
second-order approximations of the electric field in theUunique solution for everfe [L*(Q)]*:

L?-norm are underway.

Finally the authors are planning to test their method in Findu € V such that

real life problems with variable coefficients. (curl ulcurl v) + (divuldivv) = (flv) Y € V.

It can be easily established that U, —Au=fa.e. inQ

Appendix 1 and grad curl u € [L?(Q)]2. Moreover, denoting by
) L . o i < +|- >1 the duality product betweerH 1(Q) and
A discrete Friedrichs-Poincaré inequality H3(Q), the obvious relation< div curl curl uj¢p >1=0

. V¢ € H3(Q) implies that(curl curl u|grad diw) = 0.
We prove below the natural extension of the Thenwe have
Friedrichs-Poincaré  inequality for the space
V.= {V|V€ [Hl(Q)]ZVXHZOOI’]I—} (Cf [11]),t0 the \/|CUI’|U|%+|dIVU|%:||AU ||O (31)
space of weakly continuous piecewise polynomial fields,
whose tangential trace is equal to zero on the boundary
Q in a certain weak sense.

0{)wing to (31) we may write for every € Vy:

v|f

tion 5P, bei . Ivio=  sup i

Proposition 55 being the space of polynomials of degree fe[L2(Q)]2\{0} IIfllo
less than or equal to k in a given subset GF, let ~(v]Au) (32)

Wi = {v € [L3(Q)]?,vr € [R(T)]* VT € F}. Further, =
e being an edge of an elemente %, we denote by
Mgt (vr) (resp.MeT (Vn)) the mean value of the tangential
component ¥ := vt -t (resp. outer normal component
vn = V7 -n) of vi1 along e, forv € Wy, the pair of unit
vectors (n;t) being oriented in the direct ) )
(counterclockwise) sense, in such a way thapoints —(v|Au) = % [/ (curlveurlu+divvdivu)
outwards T. Now ffand b being an arbitrary pair of TE

elements inZ}, having a common edge e we introduce the
following subspace oV ,:

ueu\foy | eurl ul? + |divulf]2/2

Now denoting bydT the boundary off € 7, and byea
generic edge of a mesh triangle, we observe that

(33)
+eczﬂ7£(vr curl u+ vy div u)] )

Vi = {V & Wh| MeT, (Vr) + e, (vr) = 0 and Owing to the properties of,, the Trace Theorem applied

to curl u anddiv u and to the fact thadivu =0 onl", we
MeT, (Vo) + e, (Vn) =0VTy, o € FhsthnT,=e

can write:
andlTet(vr) =0ifecC I VT s.t.TNI # 0}. z ]{(Vr curl u-+va divu)
Then, defining the discrete gradient operator graxver TEPhecaT ¢ 34
Wj, by [gradhv] i = grad vt VT € %, there exists a mesh = Z f{[vr — It e(ve)Jcurl u (34)
independent constantGuch that TEFheloT Ve

+[Vn — Mre(Vn)]divu}
|V [lo<Cy | gradhv [lo YV € V. (30)
) ) ) Now for everyT € %, andve C dT we define the linear
PROOF.  In this proof thecurl of a two-dimensional fynctional Ore on Vy equipped with the discrete
vector fieldw sufficiently smooth is to be understood as H1_(semi)norm| grad,- ||o, where

the function dw,/dx; — dwy /0% and the curl of a

functon w € H(Q) represents the field ore(V) = ${[vr — Mre(vr)Jcurl u
(0w/0dx%2,—0wW/3d%;). Moreover we denote by the unit +[Vn— nT.,e(Vn)]diV u}.
tangential vector defined of except at its vertices, '
oriented in the counterclockwise sense. Owing to the Trace Theorem the functionate(-) is
Let us recall the space bounded with a constant proportional to
2 i 2 ; i i
andu-t=0onrl}, is constant inT, after a standard transformationBfinto
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the unit master triangld’, a simple application of the
Bramble-Hilbert Lemma (see e.g]] yields Ve andvT,

ore(v) <Gy, /Il curlu 37 + | divu [

(35)
| gradv |joT,

whereCy is a mesh independent constant.

Now sincedivu € H}(Q) and [, curl u = §-[u-t] =0,
the following inequality of the Friedrichs-Poincaré held
with a constanCep Yu € U (cf. [4]):

VIl eurlu |2 + [ divu 3 < Gepy/Jourl uf2 + [divul2.

(36)
Combining B82), (33), (34), (35 and (36) we readily
derive 30). m

RemarkA  complete  proof of the discrete
Friedrichs-Poincaré inequality (6.18) omitted @] can
be easily inferred from Propositidhm

Appendix 2

Proof that (11) implies (13) for rectangular
domains

For the sake of simplicity we consider only the case

sequence converging tbin L2(Q) by density (cf. L1]),
and u, be the corresponding solution oB%). Since
Un — Um is the solution of the same problem for the right
hand sidef, — f, Ym,n, from (38) {un}n is a Cauchy
sequence oH?(Q). Indeed, the seminorin |, is a norm
on the subspace/ := {v| v € H?(Q),u = Ofory =
0 andy = Ly, du/dx = 0 forx = 0 andx = Ly} equivalent
to || - || by Peetre’s Lemma (cf1fl]), as one can easily
check. Therefore by continuitdu € V solution of @7)
such that |ul2 =| f |lo, and hence a solution
ueVN[H?(Q)J?to (11) satisfying (3) withCp = 1.m
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