Appl. Math. Inf. Sci.12, No. 5, 995-1001 (2018) %N =¥} 995

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120512

A Symbolic Algorithm for Polynomial Interpolation with
Integral Conditions

Srinivasarao Thota

Department of Applied Mathematics, School of Applied Nat@ciences, Adama Science and Technology Universityppidi

Received: 2 Jun. 2018, Revised: 27 Jul. 2018, Accepted: 10 2018
Published online: 1 Sep 2018

Abstract: This paper presents a new symbolic algorithm for polynorinigdrpolation with integral conditions at arbitrary paint
For expressing the integral conditions in the present dtgor we employ the algebra of integro-differential operat We also
present another algorithm for computing the polynomiadiipolation with Stieltjes conditions (combination of geadedifferential and
integral conditions) as a quotient of two determinantsoEdue to the formulation of a given function by the proposgerpolation

is discussed and its symbolic formulation is presenteds Blgorithm helps OR would help to implement the manual datmns

in commercial packages such as Maple, Mathematica, Mafiigular, etc. Certain numerical examples are presentedrify the

proposed algorithms.
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1 Introduction problem. In Sectior8, we discuss various formulation of
the error estimation. Selected examples are discussed to

. . . monstrate the pr Igorithm.
In science and engineering, researchers often come uge onstrate the proposed algo

with data points, obtained by sampling or
experimentation, which represent the values of a functio .
for a limited number of values of the independentrh"l Interpolation problem

variable. It is often required to interpolate the value of \y, give, first, the general form of the interpolation
that function for an intermediate value of the independentpromem as follows 3,5,6,7]: Suppose. is a normed
variable. There exist many interpolation techniques in thgjyear space. For a finite linearly independent@et .
literature for general functional values, see for o+ pounded functionals and associated values

example, 1,2,3]. The purpose of this paper is to develop g _ {ag : 6 € ©} C R, theinterpolation problemis to
an algorithm to construct a polynomial interpolation with find af;(x) ¢ . such that

a finite set of integral conditions alone as well as the

combination of general, differential and integral o(f9)=Q, ie. 6fs=ag, 0cO. (1)
conditions, so-called Stielties conditions [4], via ’ ’
integro-differential operators. Heres is called the order of the interpolating function

The paper is organized as follows: In Sectibd, we fs(x). To describe the polynomial interpolation, let
present the definitions and basic concepts of the” = K[x] be a polynomial ring over a fiel®&, where
polynomial interpolation, in Sectiod.2, we recall the K = Q,R or C. One can observe that the interpolation
algebra of integro-differential operators and the operato problem given in equatiorilf may have many solutions if
representation of integral and Stieltjes there is no restriction on the dimension of the problem.
functionals/conditions in terms of integro-differential But we want a single interpolate polynomial which must
operators. Proposed symbolic algorithm for the satisfies the given conditions. Hence, for the unique
polynomial interpolation is presented in Sectidnand  solution of the problem, we must have finite dimensional
Section 2.1 provides the condition of existence and subspace® of . having the dimension equal to the
uniqueness of the solution of a given interpolation number of conditions.
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Definition 1.We call the pair ©,Q2) a polynomial
interpolation problem where © is a finite linearly

operatorE : . — K is a K-linear map, also called as
character In the above standard exampl¢ = C*(R),

independent set of functionals with associated valuesevaluate f at the initial point of the integral, i.e.

Q cCcK.

Definition 2.A polynomial interpolation problemd, Q)
is called regular with respected to®@ if (©,Q) has a
unigue solution for each choice of values®fcC K such
that®(fs) = Q. Otherwise, it is callegingular

The following proposition gives the regularity test in
terms of linear algebra.

Proposition 1.[8,7] Let M = {my,...,m_1} be a basis
for .#, a finite dimensional subspace of’, and

0 ={6p,...,6s1} C * with 8 linearly independent.
Then the following statements are equivalent:

(i) The polynomial interpolation problem is regular for
A with respected t®.
(i)t = s, and theevaluation matrix

Bo(mo) Bo(m—1)

OM = : . (2)
0s-1(mp) --- Bs-1(M_1)
is nonsingular. Denote the evaluation maté by &
for simplicity.
(il ). =M@ O+,

1.2 Algebra of integro-differential operators

Ef(x) = f(0). It is shown in B, Section 3] that the
evaluationE = 1 — AD is multiplicative linear functional
(character), it means thitf g = (Ef)(Eg). The evaluation
allows to formulate the initial value problems, s&1[1].

For treating boundary value problems, we need another
charactele; : . — K, the evaluation operator at various
pointsc € R, i.e.Ec: f — f(c). Let ® C .* be a set of

all multiplicative linear functionals including.

Definition 4.[8] Let (<,D,A) be an ordinary
integro-differential algebra ovefK and @ C .*. The
integro-differential operators”[D,A] are defined as the
K-algebra generated by the symbol3 and A, the
functions fe . and the characters (functionalg} € @,
modulo the Noetherian and confluent rewrite system
given in Tablel.

Table 1: Rewrite rules for integro-differential operators

fg—f-g | Df — fD+f/ | AfA— (Af)A—A(Af)
X0— @ Dy — 0 AfD— f —Af' — (Ef)E
of — (pf)o DA—1 Afo— (Af)e

The following lemma shows that every

integro-differential operator can be expresses as linear
combination of monomials of the forfpAgyD.

In this section, we recall some basic concepts of integroy emma 1. [8] Every integro-differential operator in

differential algebras and operators see, for examgl®, [
10,11,12,13] for further details. In this sectiofk denotes
the field of characteristic zero.

Definition 3. [8] Let . be a commutative algebra over a
field K. The structure (&,D,A) is called an
integro-differential algebraf (.#,D) is a commutative
differential algebra overK and thedifferential Baxter
axiom

(ADf)(ADg) + AD(fg) = (ADf)g + f(ADg)

holds. Wherd: .7 — . andA: . — . are two maps
such thaDis a derivation andAis aK-linear rightinverse
of D, i.e. DA = 1 (the identity map). The mafis called
anintegralfor D. An integro-differential algebra oveK is
calledordinaryif Ker(D) = K.

For example 8], we have. = C*(R), the set of
smooth functions over the field of real numbers with
D=2 andA=f — [Jf(§) dé. Here A is the right
inverse of D, i.e. DA = 1, but AD = 1 — E. Indeed,
(AD)f(x) = f(x) — f(0) = f(x) — Ef(x) # f(X).

The operatoE = 1 — AD, called theevaluationof .,
evaluates at the initial point of the integral. The evalorati

Z|D,A] can be reduced to a linear combination of
monomials fAgyD, where i> 0 and each of
f,0,A g, may also be absent.

Definition 5. [8] The elements of the right idedp) =
®-.7[D,A are calledStieltjes conditionsver.#, and the
elements of the two-sided ide@b) of .’[D, A| generated
by @ are calledStieltjes operators

Since the rewrite system of Tabhleis Noetherian and
confluent (see, for exampleg][for further details), every
integro-differential operator has a uniqgnermal form
Moreover, every monomial is either a differential operator
or an integral operator or a Stieltjes operator, so the
normal form of integro-differential operators can be
expressed as a sum of differential, integral and Stieltjes
operators. The normal form of differential operators is as
usual, the normal form of integral operators are itself and
linear combinations of terms of the forMAg, and the
normal form of Stielties operators is of the following
form [8, Proposition 25]

ZD (ZN agi D + <pAf¢> @A)
Q< i€
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with ap; € K and f, € . almost all zero. These
operators act on¥ as linear functions in.”*. The
following proposition states the above fact.

Proposition 2. [8] For an ordinary integro-differential
algebra . and characters ® C .*, we have
ZIDA = Z[D0 & A @ (P), where [0 is the
differential operators and .”[A] is the bimodule
generated byA and monomials of the formAf), and(®)

is an ideal of Stieltjes operators.

Definition 6. [3] A set of integro-differential operators
r = {w,...,¥%} is called a Tchebycheff systemor
simply aT-systemfor a finite linearly independent set
M = {mp,...,ms}, if the evaluation matrix'M is
nonsingular for all sets of ¢ 1 evaluation points & R.
The operatoryp,...,y form a complete Tchebycheff
system or simply CT-— system, if{y,...,}i} is a
T-system for each= 0, ...,s.

2 Symbolic formulation of polynomial
interpolation

Consider the interpolation problem@(Q) given in
Section 1.1 where ©® = {6y,...,6s_1} of the form
{EcA : ¢ € R}, the monomials of integral conditions.
From Propositiori, the polynomial interpolation problem
is regular with respect t® if and only if there exists a
finite linearly independent séfl = {my,...,ms 1} of .%
such that the evaluation matrix¥ defined as in
equation ) is regular. Indeed, there exists a unique
fs(x) € .7 satisfying® if and only if there exists a set
M= {1,...,x51} € .7 such that the evaluation matrix
is regular.

The classification of the interpolation problem
depends on the type of the functionél& © that have to
be matched with the polynomial. ® is a finite set of
monomials of the form{E; : ¢ € K} with associated
valuesQ = {ag : 8 € O}, then such type of interpolation
is calledLagrange or Newton interpolatioand the points
c € K are called nodes If © is of the form
{EcD :ce K,i € N} with Q, then it is calledHermite or
Birkhoff interpolationdepending orn consecutive or not.
It is seen that, there is no existing method availabledor
of the form {E:A: ¢ € K} with given Q to find a

polynomial i‘;(x). Hence, we develop an algorithm to

construct ponnomiaiE(x) with a special choice of the
conditions of the forn® = {E,A: x € K,i € N}.

2.1 Existence and uniqueness of the solution

The interpolation problemd, Q), i.e. fs(x) = ap + arx+
-+ as 11 such thato fs = Q, can be expressed as a
linear system

Su=0, 4)

where u = (ag,...,as-1)" and 0 = (ag,,...,06,,)".

Existence of the solution depends upon nature of the
evaluation matrixé. As mentioned at beginning of
Section2, there exists a solution fq©, Q) if and only if

& is regular. For uniqueness of the solution, supplée

and f{(x) are two solutions, the# fs(x) = ag = 6 f(x)
implies thatfs(x) = f{(x) for each6 € O is injective.

The following Exampled and?2 are given to calculate
the evaluation matrix& with integral conditions at
arbitrary point on the intervdll, 2] and a generalization
for {xo,...,Xs-1} C R respectively.

1
Example 1Consider the integral conditiorfsf (x) dx= 2,
0

2,

14 16
dx =1, [f(x) dx=1, [ f(x) dx
0 0

1.85 2
J f(x) dx=2and/ f(x) dx= 3. In symbolic notations,
0 0

we have® = {E1A E125A,E14A E16A E185A E2A} and
its associated value2 = {2,1,1,2,2,3}. Then the
following evaluation matrix is calculated as i#)(

1.00
1.25
1.40
1.60
1.85
2.00

050
078
098
128
171
200

033
065
091
137
211
267

025
061
096
164
293
400

020
061
108
210 280
433 668
640 1067

017
064
125

Since det&) ~ —1.40x 1078 # 0, there exists a unique
interpolating polynomial with respected &.

Example Z2onsider the monomials
O = {ExAEx,...,Ex, ;A}. Then evaluation matrix is
given by

X0
X1
E=1 . N E

NNl
Rdh

_ (5)
Xs 13X 1 D,
and the determinant of the evaluation matéxié

XoX1 -+ Xs—1

det &) = ==

(X =Xi).
0<j<i<(s-1)

det&) £ 0if x # X, foralli, ],i # .

From the generalized evaluation matrixs) (in
Example 2, the problem of constructing a polynomial
i‘;(x) satisfying the given integral conditions at arbitrary
points of the form® = {ExA: X € R,i € N} is reduced
to the construction of a polynomial of the form

fo(X) = B+ ax+ -+ 8 &t (6)
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at given arbitrary node$Ey : x; € R} with associated
values{dg,,...,dq, ,} , whered = & andag = %
for i = 0,1,...,s— 1. Following Newton's divided
difference interpolations formula, we have

F X, X 1] = X [Ersa f(X)] — X+ [Er (X))
no X 1% X1 — %]
_ X%0g ., — X104
Xr 1% X1 — Xr]
_ Ue ag,4
= -
X (X1 —%0) X2 (X —Xr41)

Qg

e

Z Xr (X1 — %)
similarly, we have thé¢s— 1)th divided differences

Uy
2 Xalo—x0)

fIX0,X1,. .., Xs—1] = @)

(X0 —Xs-1)

Theorem 1The (s — 1)th divided differences can be
expressed as the quotient of two determinants of order
each.

ProofFrom equation?), we can write

Y 0g, MNi<j<i<s-1(Xj —Xi)
(XoX1 -+ Xs-1) Mo<j<i<s-1(Xj — %)

f[X(),Xl, e 7XS—1] =

by Vandermonde determinant,

f[X07X17 e aXS—l]
1 X1 X?fl
2| G : :
1 Xs1 Xﬁj
1 X 1
(o Xe1)| © :
1 Xs1 Xﬁj
g, 1 Xo )%71
Og, 1 X1 X?__l
(1 ag, 1 X1 - X
Mo 1 X X5t
1 X1 Xij

The required interpolating polynomial satisfying the
given integral conditions is constructed similar to

Newton’s divided difference formula as follows

fo00 = S0+ (%03 (s
aO
+(X_XO)(X_X1)ZXO(XO_ij(XO_X]_)
+ (X—=X0)(X—X1) -+ (X—Xs—2)
gy
XZ Xo(Xo —X1)(Xo —X1) -+ (X— Xs-1)

=&tax+--+as St

Hence, we havds(x) = ag+ a;x+ - -- +as_1x* %, where
coefficientsa;, fori =0,...,s— 1, are calculated ag =
i+

The following theorem gives generalization of above
formulation.
Theorem 2Let © = {6y,...,6s_1} be a finite set of the
form {EcA : ¢ € R} C & with associated values
Q = {ag : 6 € ©} C R. Then there exists a unique
polynomial fs(x) = ag+ aix+ - -- + ax¢ satisfying@© if
and only if the evaluation matri¥ is regular, andfs(x) is
given by,

o) =

whereg; = |+1

To verify the algorithm in Theorer@, we provide a
test example to construct a polynomial interpolation with
integral conditions.

a0+ (2a0)x+ -+ (SBs-1)X T, 9)

Example onsider the conditions

0 = {E/A E3A E5A EoA} with Q = {2, 2,0 —1}. Now

we constructf4( ) ap + a1x + axx? + agx® such that
f4(x) satisfies the given conditior®. From Theoren®,

we can compute a polynomial

65 37,
fa(x)

%o ol 2 3
6 14+6x X2,
and hence the required interpolating polynomial for
(0,Q)is

65 37
— 28 NG
6 toX

One can easily check thax(f;) = Q
If we chooseQ = {cy,C1,Cp,C3}, then we have

160 243 15
(1500—— ct —?c3)
1053

e+ 112y — =0, 117
Co X 10 Co+ Cs)

— 43,

fa(x)

falx) =

C2

_|_

31 224 729C 25C 2
+ 200 C1+ 10 2 2 3
18
+< 3co+16c; — 5c2+303>x3
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1 X x5 X3
and hence, we have : :
1 X X q =
0 X 2x¢ (s—1)¢
(15 53(+ x —12x3) 0 X1 ¢, (s 1))0?;%
+ 1 204x— 2243 1+ 648 | ¢ Dy =| E zE Esfl
1 0 Xym-1 2X|.2~.m_1 e (s— ];é)ﬁ m—1
L (243 1053 | 2187, 3245\ 1 Xgm Sm .. o
5 10 5 2 1 Xl+én+1 X12+:r;n+1 XIS;erl
S
+< 15 34x——2x +12x3>c3 : : : .
2 2 )@1
1 X1 X1 X1
2 3 S

. a
anddg = xag, 0 =+

Now, we present another algorithm to find a The denominator bis non-zero, for the evaluation matrix

polynomial that satisfies the given Stieltjes conditiores, i is regular.

not only on the function values and its derivatives, but In the following example, we find a polynomial with

also for arbltrary integral conditions, as a quotient of two Stielties conditions using the algorithm presented in
determinants in the following theorem. This quotient Theorens

represents a particular case of general remamder

theorem 14, p. 75]. Example 4Consider the conditions
o= {EO,E%,ElD, E%A, E,A} with Q = {1,2,0,3,—1}.
By Theorem3, we have

Theorem 3et © = {Bg B, ExD. 136 |, 136 1672 , 1373 29

1T e G + som T T+ 1o + x4
Ex|+1Dv R EXI +m—1D' EXI+mA' EXI +m+1A’ ctt EXs—lA o f5(X) =1- 5645 _ 5645 1215 3324 14580)(3 25
X € RO<I|I <l4+m<s—1lme N} Cc ¥ with ~ 3645

associated valueg = {ag : 6 € O} C R. Then there
exists a unique polynomidk(x) satisfying® if and only
if the evaluation matrix¢’ is regular, andfs(x) is given by, _ 21 2505, 1373, 435

B0 =1+ 3% Togg" " 522" 136

after simplification, we have

i‘;(x) 1 B_; (10) If we chooseQ = {cp,c1,Cp,C3,C4}, then we get
f5(x) = <1—%9 +2i72 2+1—2é -~ ;—Zx“)
where 384 1104 o 928 5 240
: (e ),
1 1 x X x> 62 849 o, 4135 60
ag 1 X x5 X +(7 R YRR )Cz
: : 243 48843 20169 1215
ag , 1  x-1 X 4 X 4 +( 17" 1088X2 544 x4 136X4>
ag 0 X 2x¢ (s—1)¢ 21 687, 4415 45
dg, 0 X 2XIZJrl (s— 1)XI+% +( 4 272 _ﬁixs_Fﬁ )
Tams O Xems 2y (8= 1ms 3 Error estimation
ael i XIJZrm Xi% ﬁ
N 2 7
ag.,, 1 “pd X'*—gj“ ﬁg‘“ The error involved due to the approximation of a function
: f(x) by a polynomial interpolanfs(x) is calculated as
) 1 follows
do,, 1 5 2 % Es(f,0) = f(x) — fs(x). (11)
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3.1 Error term as a quotient of determinants 1andT¢T =1-P; andP € .7[D, A is the projector onto

) . Ker(T) along®+, computed as
The error term in equatioriL() can be represented by a

quotient of determinants as given in equatid®)(for s-1
integral conditions, i.e. P= ij'e., (15)
i=
1 ~ ~ ~
foo 1 x Xig here(Bo, B1,...,05 1)T = & 1(60,61,...,6061)7.
Og, X0 % K Simplifying the equationi4) using the fact that + P
ap, X1 4 4 is projector, we get
; ; ; k Es(f,0) = (1—P)f,
Xs-1 -1
o Xe =2 ce 1
Es(f,0) = b1 71 2 < s as an operator to calculate the error, we haye- 1 —P €
X0 % s Z[D,A], P is a projector computed as in equatidiby,
X1 X_21 1 The following theorem gives the generalization of above
. . observation.
X 1 XS;—I & Theorem 4Given any finite se® of Stieltjes conditions
a S

such that the evaluation matrix is regular, the error
In other words, the quotient is a linear combination of induced due to the approximation of a functiofxf by a

{f(x),1,...,x51} in which the coefficient of (x) is 1. polynomial interpolation is computed as
In the following section, we provide a symbolic

formulation of the erroEs(f,©) over integro-differential Es(f,0) = (1-P)f(x),

algebras.

where P is the projector operator as given in equatibs).

The following two examples5 and 6 show the
3.2 Symbolic formulation of error estimation computation of the error evaluate operaor= 1 — P and
errors at various points on the interyal 2] with integral
To formulate the error terrs(f,©) as in equationX1)  and Stieltjes conditions respectively.
in symbolic form, we first choose a differential operator
T, whose fundamental system {&,x,...,x>1}. Such  Example SConsider the data of integral conditions of the

differential operatof is of the form form © = {E1AE12A E1sA EA} at arbitrary points
gt from the interval .[1, 2]. Then by equation 15) the
T=— e (12) projector operator is given by
The polynomial interpolant satisfies the differential P=(36—144x+ 142¢ — 40"3)E1A
equation + (—52.08+ 22569x — 234.38x* + 69.44x°) E; LA
Tf=0, +(21.33—99.56x+ 112¢ — 3556x%)E1 5A
ofs=0of. +(—2.25+11.25x— 13.88¢ + 5¢°) E2A.

Therefore, we haveemi-inhomogeneous boundary value For simplicity, if f(x) = €, then using the algorithm in
problem (inhomogeneous differential equation and Theoremd, the error involved due to the approximation of

homogeneous boundary conditions) as follows f(x) by the polynomial interpolation is
TE(f,0)=TH, (13) E4(f,0) = (1-P)f(x)
OEs(f,0) =0. =€~ 0.919— 1.46x+ 0.197%— 0.540¢.

Using the symbolic analysis for boundary value
problems developed by Rosenkranz et &|, jve have
following symbolic solution for the boundary value
problem given in equationl@ over integro-differential

Error atx= 1.4 is calculated aB4(f(1.4),0) = —6.152x
104, Similarly E4(f(1.9),0) = 6.209x 103,
If f(x) = sin(0.2x)e>®, then

algebras
f,O0)=(1-P)f
Es(f,0) = (1—-P)TOTH, (14) E(1.9) B (sin(o ;X)(:QM 0.00856
whereT?¢ € 7D, A is the fundamental right inverse &f B ' S
computed from the given fundamental system, T.€° = —0.24%—0.042¢~ 0.0789¢".
@© 2018 NSP
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Example 8Consider a set of Stieltjes conditions of the [9] S. Thota and S. D. Kumar, Symbolic method for polynomial

form © = {E;,E1,D,E;sA Ey} at arbitrary points of interpolation with Stieltjes conditions, Proceedings of
[1,2]. Then error evaluate operator, computed similar to  International Conference on Frontiers in Mathematics, pp.
Example5, is given by 225-228 (2015).
[10] S. Thota and S. D. Kumar, Solving system of higher-
Es=1-(—-3.244+ 8.16X — 4577+ O.65:Ix3)El order linear differential equations on the level of opersito

— (0.489— 3.33%K 4+ 4.153¢ 1.303(3)E1,2D Ilnotgrrll\laél.olnarI)[\)J.():leiriezillo(sz(;tirE;e).and Applied Mathematics, Vol
—(3.058— 6.671X+4.656X2—1.042><3)E1,5A [11] S. Thota, On a new symbolic method for initial value

5 problems for systems of higher-order linear differential
—(—0.342+ 1.837— 2.407%" + 0'91&3) Ea. equations, International Journal of Mathematical Models a

Methods in Applied Sciences, Vol. 12, pp. 194-202 (2018).
[12] S. Thota and S. D. Kumar, Symbolic algorithm for a system

_ - o 2 of differential-algebraic equations, Kyungpook Matheicelt
E4(f,0) = c0g0.4x) — 1.108+ 2.023x — 2.594x +0.706¢. Journal, Vol. 56, No. 4, pp. 1141-1160 (2016).

Using this error evaluate function, we can compute[13]S. Thota and S. D. Kumar, A new method for general

errors at various points of the intenjal 2. solutign of system of higher-order linear diﬁerential
equations, International Conference on Inter Discipnar

Research in Engineering and Technology, Vol. 1, pp. 240-243
(2015).
[14] P. J. Davis, Interpolation and Approximation, Blaibde
Waltham, MA. (1963).

If f(x) =co0g0.4x), then error evaluate function is

4 Conclusion

In this paper, we developed an algorithm to construct a
polynomial interpolation with a finite set of integral
conditions, also discussed an algorithm to compute the
polynomial interpolation with Stielties conditions as a Srinivasarao Thota
quotient of two determinants using integro-differential completed his M.Sc.
operators. The symbolic formation of the error involved in Mathematics from Indian
due to the approximation of a given function by the Institute  of  Technology
proposed interpolation is discussed. Several examples are Madras, India and Ph.D.
presented to illustrate the proposed algorithms. in Mathematics from Motilal
Nehru National Institute of
Technology Allahabad, India.
Srinivasarao Thota’s area of
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