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Abstract: This paper presents a new symbolic algorithm for polynomialinterpolation with integral conditions at arbitrary points.
For expressing the integral conditions in the present algorithm, we employ the algebra of integro-differential operators. We also
present another algorithm for computing the polynomial interpolation with Stieltjes conditions (combination of general, differential and
integral conditions) as a quotient of two determinants. Error due to the formulation of a given function by the proposed interpolation
is discussed and its symbolic formulation is presented. This algorithm helps OR would help to implement the manual calculations
in commercial packages such as Maple, Mathematica, Matlab,Singular, etc. Certain numerical examples are presented toverify the
proposed algorithms.
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1 Introduction

In science and engineering, researchers often come up
with data points, obtained by sampling or
experimentation, which represent the values of a function
for a limited number of values of the independent
variable. It is often required to interpolate the value of
that function for an intermediate value of the independent
variable. There exist many interpolation techniques in the
literature for general functional values, see for
example, [1,2,3]. The purpose of this paper is to develop
an algorithm to construct a polynomial interpolation with
a finite set of integral conditions alone as well as the
combination of general, differential and integral
conditions, so-called Stieltjes conditions [4], via
integro-differential operators.

The paper is organized as follows: In Section1.1, we
present the definitions and basic concepts of the
polynomial interpolation, in Section1.2, we recall the
algebra of integro-differential operators and the operator
representation of integral and Stieltjes
functionals/conditions in terms of integro-differential
operators. Proposed symbolic algorithm for the
polynomial interpolation is presented in Section2, and
Section 2.1 provides the condition of existence and
uniqueness of the solution of a given interpolation

problem. In Section3, we discuss various formulation of
the error estimation. Selected examples are discussed to
demonstrate the proposed algorithm.

1.1 Interpolation problem

We give, first, the general form of the interpolation
problem as follows [3,5,6,7]: SupposeS is a normed
linear space. For a finite linearly independent setΘ ⊂ S

of bounded functionals and associated values
Ω = {αθ : θ ∈ Θ} ⊂ R, the interpolation problemis to
find a f̃s(x) ∈ S such that

Θ( f̃s) = Ω , i.e. θ f̃s = αθ , θ ∈Θ . (1)

Here s is called the order of the interpolating function
f̃s(x). To describe the polynomial interpolation, let
S = K[x] be a polynomial ring over a fieldK, where
K = Q,R or C. One can observe that the interpolation
problem given in equation (1) may have many solutions if
there is no restriction on the dimension of the problem.
But we want a single interpolate polynomial which must
satisfies the given conditions. Hence, for the unique
solution of the problem, we must have finite dimensional
subspaceΘ of S having the dimension equal to the
number of conditions.
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Definition 1.We call the pair (Θ ,Ω ) a polynomial
interpolation problem, where Θ is a finite linearly
independent set of functionals with associated values
Ω ⊂K.

Definition 2.A polynomial interpolation problem (Θ ,Ω )
is called regular with respected toΘ if (Θ ,Ω ) has a
unique solution for each choice of values ofΩ ⊂ K such
thatΘ( f̃s) = Ω . Otherwise, it is calledsingular.

The following proposition gives the regularity test in
terms of linear algebra.

Proposition 1. [8,7] Let M = {m0, . . . ,mt−1} be a basis
for M , a finite dimensional subspace ofS , and
Θ = {θ0, . . . ,θs−1} ⊂ S ∗ with θi linearly independent.
Then the following statements are equivalent:

(i)The polynomial interpolation problem is regular for
M with respected toΘ .

(ii)t = s, and theevaluation matrix,

ΘM =




θ0(m0) · · · θ0(mt−1)
...

. . .
...

θs−1(m0) · · · θs−1(mt−1)


 (2)

is nonsingular. Denote the evaluation matrixΘM byE

for simplicity.
(iii )S = M⊕Θ⊥.

1.2 Algebra of integro-differential operators

In this section, we recall some basic concepts of integro-
differential algebras and operators see, for example, [8,9,
10,11,12,13] for further details. In this section,K denotes
the field of characteristic zero.

Definition 3. [8] Let S be a commutative algebra over a
field K. The structure (S ,D,A) is called an
integro-differential algebraif (S ,D) is a commutative
differential algebra overK and thedifferential Baxter
axiom

(AD f )(ADg)+AD( f g) = (AD f )g+ f (ADg)

holds. WhereD : S → S andA : S → S are two maps
such thatD is a derivation andA is aK-linear right inverse
of D, i.e. DA = 1 (the identity map). The mapA is called
an integralfor D. An integro-differential algebra overK is
calledordinaryif Ker(D) =K.

For example [8], we haveS = C∞(R), the set of
smooth functions over the field of real numbers with
D = d

dx and A = f 7→
∫ x

0 f (ξ ) dξ . Here A is the right
inverse of D, i.e. DA = 1, but AD = 1 − E. Indeed,
(AD) f (x) = f (x)− f (0) = f (x)−E f (x) 6= f (x).

The operatorE = 1−AD, called theevaluationof S ,
evaluates at the initial point of the integral. The evaluation

operatorE : S → K is a K-linear map, also called as
character. In the above standard exampleS = C∞(R),
evaluate f at the initial point of the integral, i.e.
E f (x) = f (0). It is shown in [8, Section 3] that the
evaluationE = 1− AD is multiplicative linear functional
(character), it means thatE f g= (E f )(Eg). The evaluation
allows to formulate the initial value problems, see [8,11].
For treating boundary value problems, we need another
characterEc : S → K, the evaluation operator at various
pointsc ∈ R, i.e.Ec : f 7→ f (c). Let Φ ⊆ S ∗ be a set of
all multiplicative linear functionals includingE.

Definition 4.[8] Let (S ,D,A) be an ordinary
integro-differential algebra overK and Φ ⊆ S ∗. The
integro-differential operatorsS [D,A] are defined as the
K-algebra generated by the symbolsD and A, the
functions f∈ S and the characters (functionals)Ec ∈ Φ,
modulo the Noetherian and confluent rewrite system
given in Table1.

Table 1: Rewrite rules for integro-differential operators

f g→ f ·g D f → fD+ f ′ A fA→ (A f )A−A(A f )

χφ → φ Dφ → 0 A fD→ f −A f ′− (E f )E

φ f → (φ f )φ DA→ 1 A f φ → (A f )φ

The following lemma shows that every
integro-differential operator can be expresses as linear
combination of monomials of the formf φAgψDi .

Lemma 1. [8] Every integro-differential operator in
S [D,A] can be reduced to a linear combination of
monomials fφAgψDi , where i ≥ 0 and each of
f ,φ ,A,g,ψ may also be absent.

Definition 5. [8] The elements of the right ideal|Φ) =
Φ ·S [D,A] are calledStieltjes conditionsoverS , and the
elements of the two-sided ideal(Φ) of S [D,A] generated
byΦ are calledStieltjes operators.

Since the rewrite system of Table1 is Noetherian and
confluent (see, for example, [8] for further details), every
integro-differential operator has a uniquenormal form.
Moreover, every monomial is either a differential operator
or an integral operator or a Stieltjes operator, so the
normal form of integro-differential operators can be
expressed as a sum of differential, integral and Stieltjes
operators. The normal form of differential operators is as
usual, the normal form of integral operators are itself and
linear combinations of terms of the formfAg, and the
normal form of Stieltjes operators is of the following
form [8, Proposition 25]

∑
φ∈Φ

(

∑
i∈N

aφ ,iφDi +φA fφ

)
(3)
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with aφ ,i ∈ K and fφ ∈ S almost all zero. These
operators act onS as linear functions inS ∗. The
following proposition states the above fact.

Proposition 2. [8] For an ordinary integro-differential
algebra S and characters Φ ⊆ S ∗, we have
S [D,A] = S [D] ⊕ S [A] ⊕ (Φ), where S [D] is the
differential operators and S [A] is the bimodule
generated byA and monomials of the form fAg, and(Φ)
is an ideal of Stieltjes operators.

Definition 6. [3] A set of integro-differential operators
Γ = {γ0, . . . ,γs} is called a Tchebycheff system, or
simply a T-systemfor a finite linearly independent set
M = {m0, . . . ,ms}, if the evaluation matrixΓ M is
nonsingular for all sets of s+ 1 evaluation points c∈ R.
The operator γ0, . . . ,γi form a complete Tchebycheff
system, or simply CT− system, if {γ0, . . . ,γi} is a
T-system for each i= 0, . . . ,s.

2 Symbolic formulation of polynomial
interpolation

Consider the interpolation problem (Θ ,Ω ) given in
Section 1.1 where Θ = {θ0, . . . ,θs−1} of the form
{EcA : c ∈ R}, the monomials of integral conditions.
From Proposition1, the polynomial interpolation problem
is regular with respect toΘ if and only if there exists a
finite linearly independent setM = {m0, . . . ,ms−1} of S

such that the evaluation matrixE defined as in
equation (2) is regular. Indeed, there exists a unique
f̃s(x) ∈ S satisfyingΘ if and only if there exists a set
M = {1, . . . ,xs−1} ⊂ S such that the evaluation matrixE
is regular.

The classification of the interpolation problem
depends on the type of the functionalsθ ∈ Θ that have to
be matched with the polynomial. IfΘ is a finite set of
monomials of the form{Ec : c ∈ K} with associated
valuesΩ = {αθ : θ ∈ Θ}, then such type of interpolation
is calledLagrange or Newton interpolationand the points
c ∈ K are called nodes. If Θ is of the form
{EcDi : c∈ K, i ∈ N} with Ω , then it is calledHermite or
Birkhoff interpolationdepending oni consecutive or not.
It is seen that, there is no existing method available forΘ
of the form {EcA : c ∈ K} with given Ω to find a
polynomial f̃s(x). Hence, we develop an algorithm to
construct polynomial̃fs(x) with a special choice of the
conditions of the formΘ = {ExiA : xi ∈K, i ∈ N}.

2.1 Existence and uniqueness of the solution

The interpolation problem (Θ ,Ω ), i.e. f̃s(x) = a0+a1x+
· · ·+ as−1xs−1 such thatΘ f̃s = Ω , can be expressed as a
linear system

E u= σ , (4)

where u = (a0, . . . ,as−1)
T and σ = (αθ0, . . . ,αθs−1)

T .
Existence of the solution depends upon nature of the
evaluation matrixE . As mentioned at beginning of
Section2, there exists a solution for(Θ ,Ω) if and only if
E is regular. For uniqueness of the solution, supposef̃s(x)
and f̃ ′s(x) are two solutions, thenθi f̃s(x) = αθi = θi f̃ ′s(x)
implies that f̃s(x) = f̃ ′s(x) for eachθi ∈Θ is injective.

The following Examples1 and2 are given to calculate
the evaluation matrixE with integral conditions at
arbitrary point on the interval[1,2] and a generalization
for {x0, . . . ,xs−1} ⊂ R respectively.

Example 1.Consider the integral conditions
1∫

0
f (x) dx= 2,

1.25∫

0
f (x) dx = 1,

1.4∫

0
f (x) dx = 1,

1.6∫

0
f (x) dx = 2,

1.85∫

0
f (x) dx= 2 and

2∫

0
f (x) dx= 3. In symbolic notations,

we haveΘ = {E1A,E1.25A,E1.4A,E1.6A,E1.85A,E2A} and
its associated valuesΩ = {2,1,1,2,2,3}. Then the
following evaluation matrix is calculated as in (2):

E ≈




1.00 0.50 0.33 0.25 0.20 0.17
1.25 0.78 0.65 0.61 0.61 0.64
1.40 0.98 0.91 0.96 1.08 1.25
1.60 1.28 1.37 1.64 2.10 2.80
1.85 1.71 2.11 2.93 4.33 6.68
2.00 2.00 2.67 4.00 6.40 10.67



.

Since det(E ) ≈ −1.40× 10−8 6= 0, there exists a unique
interpolating polynomial with respected toΘ .

Example 2.Consider the monomials
Θ = {Ex0A,Ex1, . . . ,Exs−1A}. Then evaluation matrix is
given by

E =




x0
1
2x2

0 · · · 1
sxs

0
x1

1
2x2

1 · · · 1
sxs

1
...

...
. . .

...
xs−1

1
2x2

s−1 · · · 1
sxs

s−1


 , (5)

and the determinant of the evaluation matrix (5) is

det(E ) =
x0x1 · · ·xs−1

s! ∏
0≤ j<i≤(s−1)

(x j − xi).

det(E ) 6= 0 if xi 6= x j , for all i, j, i 6= j.

From the generalized evaluation matrix (5) in
Example 2, the problem of constructing a polynomial
f̃s(x) satisfying the given integral conditions at arbitrary
points of the formΘ = {ExiA : xi ∈ R, i ∈ N} is reduced
to the construction of a polynomial of the form

˜̃f s(x) = ã0+ ã1x+ · · ·+ ãs−1x
s−1 (6)
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at given arbitrary nodes{Exi : xi ∈ R} with associated

values{α̃θ0, . . . , α̃θs−1} , whereãi =
ai

i+1 and α̃θi =
αθi
xi

,
for i = 0,1, . . . ,s − 1. Following Newton’s divided
difference interpolations formula, we have

f [xr ,xr+1] =
xr [Er+1 f (x)]− xr+1[Er f (x)]

xr+1xr [xr+1− xr ]

=
xrαθr+1 − xr+1αθr

xr+1xr [xr+1− xr ]

=
αθr

xr(xr+1− xr)
+

αθr+1

xr+1(xr − xr+1)

= ∑ αθr

xr(xr+1− xr)
,

similarly, we have the(s−1)th divided differences

f [x0,x1, . . . ,xs−1] = ∑ αθ0

x0(x0− x1) · · · (x0− xs−1)
. (7)

Theorem 1The (s − 1)th divided differences can be
expressed as the quotient of two determinants of order s
each.

Proof.From equation (7), we can write

f [x0,x1, . . . ,xs−1] =
∑αθ0 ∏1≤ j<i≤s−1(x j − xi)

(x0x1 · · ·xs−1)∏0≤ j<i≤s−1(x j − xi)
,

by Vandermonde determinant,

f [x0,x1, . . . ,xs−1]

=

∑


αθ0

1 x1 · · · xs−1
1

...
...

. . .
...

1 xs−1 · · · xs−1
s−1




(x0x1 · · ·xs−1)

1 x0 · · · xs−1
0

...
...

. . .
...

1 xs−1 · · · xs−1
s−1

=

(
1

∏s−1
i=0 xi

)

αθ0 1 x0 · · · xs−1
0

αθ1 1 x1 · · · xs−1
1

...
...

...
. . .

...
αθs−1 1 xs−1 · · · xs−1

s−1

1 x0 · · · xs−1
0

...
...

. . .
...

1 xs−1 · · · xs−1
s−1

.

The required interpolating polynomial satisfying the
given integral conditions is constructed similar to

Newton’s divided difference formula as follows

˜̃f s(x) =
αθ0

x0
+(x− x0)∑ αθ0

x0(x1− x0)

+ (x− x0)(x− x1)∑ αθ0

x0(x0− x1)(x0− x1)

+ · · ·

+(x− x0)(x− x1) · · · (x− xs−2)

×∑ αθ0

x0(x0− x1)(x0− x1) · · · (x− xs−1)

= ã0+ ã1x+ · · ·+ ãs−1x
s−1

.

(8)

Hence, we havẽfs(x) = a0+a1x+ · · ·+as−1xs−1, where
coefficientsai , for i = 0, . . . ,s− 1, are calculated asai =
(i +1)ãi.

The following theorem gives generalization of above
formulation.

Theorem 2Let Θ = {θ0, . . . ,θs−1} be a finite set of the
form {EcA : c ∈ R} ⊂ S ∗ with associated values
Ω = {αθi : θi ∈ Θ} ⊂ R. Then there exists a unique
polynomial f̃s(x) = a0 + a1x+ · · ·+ asxs satisfyingΘ if
and only if the evaluation matrixE is regular, andf̃s(x) is
given by,

f̃s(x) = a0+(2ã1)x+ · · ·+(sãs−1)x
s−1

, (9)

whereãi =
ai

i+1.

To verify the algorithm in Theorem2, we provide a
test example to construct a polynomial interpolation with
integral conditions.

Example 3.Consider the conditions
Θ = {E1A,E 3

2
A,E 5

3
A,E2A} with Ω = {2, 1

2,0,−1}. Now

we construct f̃4(x) = a0 + a1x+ a2x2 + a3x3 such that
f̃4(x) satisfies the given conditionsΘ . From Theorem2,
we can compute a polynomial

˜̃f 4(x) =
65
6

−14x+
37
6

x2− x3
,

and hence the required interpolating polynomial for
(Θ ,Ω) is

f̃4(x) =
65
6
−28x+

37
2

x2−4x3
.

One can easily check thatΘ( f̃4) = Ω .
If we chooseΩ = {c0,c1,c2,c3}, then we have

˜̃f 4(x) =

(
15c0−

160
3

c1+
243
5

c2−
15
2

c3

)

+

(
−

53
2

c0+112c1−
1053
10

c2+17c3

)
x

+

(
31
2

c0−
224
3

c1+
729
10

c2−
25
2

c3

)
x2

+

(
−3c0+16c1−

18
5

c2+3c3

)
x3
,
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and hence, we have

f̃4(x) =

(
15−53x+

93
2

x2−12x3
)

c0

+

(
−

160
3

+224x−224x2+64x3
)

c1

+

(
243
5

−
1053

5
x+

2187
10

x2−
324
5

x3
)

c2

+

(
−

15
2

+34x−
72
2

x2+12x3
)

c3.

Now, we present another algorithm to find a
polynomial that satisfies the given Stieltjes conditions, i.e.
not only on the function values and its derivatives, but
also for arbitrary integral conditions, as a quotient of two
determinants in the following theorem. This quotient
represents a particular case of general remainder
theorem [14, p. 75].

Theorem 3Let Θ = {Ex0, · · · ,Exl−1, ExlD,
Exl+1D, · · · ,Exl+m−1D, Exl+mA, Exl+m+1A, . . . ,Exs−1A :
xi ∈ R;0 < l < l + m < s− 1;l ,m ∈ N} ⊂ S ∗ with
associated valuesΣ = {αθi : θi ∈ Θ} ⊂ R. Then there
exists a unique polynomial̃fs(x) satisfyingΘ if and only
if the evaluation matrixE is regular, andf̃s(x) is given by,

f̃s(x) = 1−
D1

D2
, (10)

where

D1 =
1 1 x x2 · · · xs−1

αθ0 1 x0 x2
0 · · · xs

0
...

...
...

...
. . .

...
αθl−1 1 xl−1 x2

l−1 · · · xs
l−1

αθl 0 xl 2x2
l · · · (s−1)xs−1

l
αθl+1 0 xl+1 2x2

l+1 · · · (s−1)xs−1
l+1

...
...

...
...

. . .
...

αθl+m−1 0 xl+m−1 2x2
l+m−1 · · · (s−1)xs−1

l+m−1

α̃θl+m 1 xl+m
2

x2
l+m
3 · · ·

xs−1
l+m
s

α̃θl+m+1 1 xl+m+1
2

x2
l+m+1

3 · · ·
xs−1
l+m+1

s
...

...
...

...
. . .

...

α̃θs−1 1 xs−1
2

x2
s−1
3 · · ·

xs−1
s−1
s

,

D2 =

1 x0 x2
0 · · · xs

0
...

...
...

. . .
...

1 xl−1 x2
l−1 · · · xs

l−1
0 xl 2x2

l · · · (s−1)xs−1
l

0 xl+1 2x2
l+1 · · · (s−1)xs−1

l+1
...

...
...

. . .
...

0 xl+m−1 2x2
l+m−1 · · · (s−1)xs−1

l+m−1

1 xl+m
2

x2
l+m
3 · · ·

xs−1
l+m
s

1 xl+m+1
2

x2
l+m+1

3 · · ·
xs−1
l+m+1

s
...

...
...

. . .
...

1 xs−1
2

x2
s−1
3 · · ·

xs−1
s−1
s

andαθi = xiαθi , α̃θ j =
αθ j
xj

.

The denominator D2 is non-zero, for the evaluation matrix
is regular.

In the following example, we find a polynomial with
Stieltjes conditions using the algorithm presented in
Theorem3.

Example 4.Consider the conditions
Θ = {E0,E 1

2
,E1D,E 4

3
A,E2A} with Ω = {1,2,0,3,−1}.

By Theorem3, we have

f̃5(x)= 1−
− 136

3645+
136
3645+

28
1215x+

167
1944x

2+ 1373
14580x

3− 29
243x4

− 136
3645

,

after simplification, we have

f̃5(x) = 1+
21
34

x+
2505
1088

x2+
1373
544

x3−
435
136

x4
.

If we chooseΩ = {c0,c1,c2,c3,c4}, then we get

f̃5(x) =

(
1−

39
17

x+
9

272
x2+

181
136

x3−
15
34

x4
)

c0

+

(
384
17

x−
1104
17

x2+
928
17

x3−
240
17

x4
)

c1

+

(
62
17

x−
849
68

x2+
413
34

x3−
60
17

x4
)

c2

+

(
−

243
17

x+
48843
1088

x2−
20169
544

x3+
1215
136

x4
)

c3

+

(
−

21
34

x+
687
272

x2−
441
136

x3+
45
34

x4
)

c4.

3 Error estimation

The error involved due to the approximation of a function
f (x) by a polynomial interpolant̃fs(x) is calculated as
follows

Es( f ,Θ) = f (x)− f̃s(x). (11)
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3.1 Error term as a quotient of determinants

The error term in equation (11) can be represented by a
quotient of determinants as given in equation (10) for
integral conditions, i.e.

Es( f ,Θ) =

f (x) 1 x · · · xs−1

αθ0 x0
x0
2 · · ·

xs
0
s

αθ1 x1
x1
2 · · ·

xs
1
s

...
...

...
. . .

...

αθs−1 xs−1
xs−1

2 · · ·
xs
s−1
s

x0
x0
2 · · ·

xs
0
s

x1
x1
2 · · ·

xs
1
s

...
...

. . .
...

xs−1
xs−1

2 · · ·
xs
s−1
s

.

In other words, the quotient is a linear combination of
{ f (x),1, . . . ,xs−1} in which the coefficient off (x) is 1.

In the following section, we provide a symbolic
formulation of the errorEs( f ,Θ) over integro-differential
algebras.

3.2 Symbolic formulation of error estimation

To formulate the error termEs( f ,Θ) as in equation (11)
in symbolic form, we first choose a differential operator
T, whose fundamental system is{1,x, . . . ,xs−1}. Such
differential operatorT is of the form

T =
ds+1

dxs+1 . (12)

The polynomial interpolant satisfies the differential
equation

T f̃ = 0,

Θ f̃s =Θ f .

Therefore, we havesemi-inhomogeneous boundary value
problem (inhomogeneous differential equation and
homogeneous boundary conditions) as follows

TEs( f ,Θ) = T f, (13)

ΘEs( f ,Θ) = 0.

Using the symbolic analysis for boundary value
problems developed by Rosenkranz et al. [8], we have
following symbolic solution for the boundary value
problem given in equation (13) over integro-differential
algebras

Es( f ,Θ) = (1−P)T♦T f, (14)

whereT♦ ∈S [D,A] is the fundamental right inverse ofT,
computed from the given fundamental system, i.e.TT♦ =

1 andT♦T = 1−P; andP∈ S [D,A] is the projector onto
Ker(T) alongΘ⊥, computed as

P=
s−1

∑
i=0

xi θ̃i , (15)

here(θ̃0, θ̃1, . . . , θ̃s−1)
T = E −1(θ0,θ1, . . . ,θs−1)

T .
Simplifying the equation (14) using the fact that 1−P

is projector, we get

Es( f ,Θ) = (1−P) f ,

as an operator to calculate the error, we haveEs = 1−P∈
S [D,A], P is a projector computed as in equation (15).
The following theorem gives the generalization of above
observation.

Theorem 4Given any finite setΘ of Stieltjes conditions
such that the evaluation matrix is regular, the error
induced due to the approximation of a function f(x) by a
polynomial interpolation is computed as

Es( f ,Θ) = (1−P) f (x),

where P is the projector operator as given in equation(15).

The following two examples5 and 6 show the
computation of the error evaluate operatorE = 1−P and
errors at various points on the interval[1,2] with integral
and Stieltjes conditions respectively.

Example 5.Consider the data of integral conditions of the
form Θ = {E1A,E1.2A,E1.5A,E2A} at arbitrary points
from the interval [1,2]. Then by equation (15) the
projector operator is given by

P=(36−144x+141x2−40x3)E1A

+(−52.08+225.69x−234.38x2+69.44x3)E1.2A

+(21.33−99.56x+112x2−35.56x3)E1.5A

+(−2.25+11.25x−13.88x2+5x3)E2A.

For simplicity, if f (x) = ex, then using the algorithm in
Theorem4, the error involved due to the approximation of
f (x) by the polynomial interpolation is

E4( f ,Θ) = (1−P) f (x)

= ex−0.919−1.46x+0.197x2−0.540x3
.

Error atx= 1.4 is calculated asE4( f (1.4),Θ) =−6.152×
10−4. Similarly E4( f (1.9),Θ) = 6.209×10−3.
If f (x) = sin(0.2x)e0.6x, then

E4( f ,Θ) = (1−P) f (x)

= sin(0.2x)e0.6x+0.00856

−0.249x−0.042x2−0.0789x3
.
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Example 6.Consider a set of Stieltjes conditions of the
form Θ = {E1,E1.2D,E1.5A,E2} at arbitrary points of
[1,2]. Then error evaluate operator, computed similar to
Example5, is given by

E4 = 1− (−3.244+8.169x−4.577x2+0.651x3)E1

− (0.489−3.339x+4.153x2−1.303x3)E1.2D

− (3.058−6.671x+4.656x2−1.042x3)E1.5A

− (−0.342+1.837x−2.407x2+0.912x3)E2.

If f (x) = cos(0.4x), then error evaluate function is

E4( f ,Θ) = cos(0.4x)−1.108+2.023x−2.594x2+0.706x3
.

Using this error evaluate function, we can compute
errors at various points of the interval[1,2].

4 Conclusion

In this paper, we developed an algorithm to construct a
polynomial interpolation with a finite set of integral
conditions, also discussed an algorithm to compute the
polynomial interpolation with Stieltjes conditions as a
quotient of two determinants using integro-differential
operators. The symbolic formation of the error involved
due to the approximation of a given function by the
proposed interpolation is discussed. Several examples are
presented to illustrate the proposed algorithms.
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