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Abstract: In this paper we introduce the concept of generalized funftyraappings on families of generalized fuzzy soft sets and
study the properties of generalized fuzzy soft images (rs&@nages) of generalized fuzzy soft sets. Furthermorergézed fuzzy
soft continuous mappings, generalized fuzzy soft opersétipmappings and generalized fuzzy soft homeomorphiseistaoduced.

Keywords: Soft set, fuzzy soft set, generalized fuzzy soft set, geéizedh fuzzy soft topology, generalized fuzzy soft mapping,
generalized fuzzy soft continuity, generalized fuzzy spién (closed) mapping

1 Introduction 2 Preliminaries

First we recall basic definitions and results.

The concept of soft sets was first introduced by Definition 2.1.([9]) Let X be a non-empty set. A fuzzy set
Molodtsov [1] as a general mathematical tool for dealing Ain X is defined by a membership functipg : X — [0, 1]
with uncertain objects. Maji et ap] introduced the —whose valugua(x) represents the ‘grade of membership’
concept of fuzzy soft set and some of its properties. Tanayf xin A for x € X. The set of all fuzzy sets in a sktis
and Kandemir 3] introduced the definition of fuzzy soft denoted byt*, wherel is the closed unit intervd0, 1].
topology over a subset of the initial universe set. Later, X )

Roy and Samantad] gave the definition of fuzzy soft The(olr)eE izé([i):;&)laf lLlB ,(glenv, \;Vz ?(""‘VG-

topology over the initial universe set. Majumdar and (2) A B @HA(X); IJB(X)7 vxex

Samanta §] introduced the notion of generalized fuzzy (3)C=AVB & e (X) = ma)’((uA (X), g (X)),¥x €
soft set as a generalization of fuzzy soft sets and studie ’ ’
some of its basic properties. Chakraborty and Mukherjee
[6] gave the topological structure of generalized fuzzyx
soft sets. Kharal and Ahmad,B] defined the notionofa ~ 5)E = ACe pe(x) =1— pa(X),¥ X € X.

mapping on classes of soft (fuzzy soft) sets. Definition 2.3.([1]) Let X be an initial universe set aril
In this paper, we define the notion of mappings on(g

famili p lized f ft sets. We also defi e a set of parameters. LR{X) denotes the power set of
amilies ot generalized tuzzy Sott Sets. ¥Ve also deline anc anga  E. A pair (f,A) is called a soft set oveX if f
study the properties of generalized fuzzy soft images

. . . s a mapping fromAinto P(X),i.e.,f : A — P(X). In
(inverse images) of generalized fuzzy soft sets, an ther words, a soft set is a parameterized family of

support them with examples and counterexamples. Als%ubsets of the sét. Fore ¢ A, f(e) may be considered as

we introduce generalized fuzzy soft continuity of he set ofe—approximate elements of the soft $6tA).
mappings. Furthermore, we use the notion generalize

soft quasi-coincidence to characterize fundamentaP€finition 2.4.([4]) Let X be an initial universe set artd
concepts of generalized fuzzy soft topological spaced€ @ set of parameters. Let E. A fuzzy soft S)‘?th over
such as generalized fuzzy soft closures and generalizedf iS @ mapping fronE to 1”, i.e., fa: E — 17, where
fuzzy soft continuity. Finally, generalized fuzzy soft ope fa(€) # 0 if ec AC E, andfa(e) = 0 if e ¢ A, whereO
(closed) mappings and generalized fuzzy softdenoted empty fuzzy set X

homeomorphism for generalized fuzzy soft topological Definition 2.5. ([5]) Let X be a universal set of elements
spaces are investigated. andE be a universal set of parametersXotetF : E —

(4)D=A A B & o (x)=min(sa(X). pa(x)).¥xe
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IX andu be a fuzzy subset &, i.e.,u : E — | . Let
Fy be the mapping~, : E — IX x | defined as follows:
Fu(e) = (F(e), u(e), whereF(e) € 1* andp(e) €
ThenF, is called a generalised fuzzy soft s&RSSin
short) over(X,E).
Definition 2.6. ([5]) Let F, andG5 be two GFSSsover
(X,E). Fy is said to be a GFS subset@f or G is said
to be aGF Ssuper set of;, denoted byr, C G, if

(1) p is a fuzzy subset od;

(2) F(e) is also a fuzzy subset &3(e), Ve € E.

Definition 2.7. ([5]) Let F, be aGFSSover (X,E). The
complement of,, denoted byF, is defined byF =Gs,

where d(e) = u®(e) andG(e) = FC¢(e), Ve € E.

Obviously (F§)=

Definition 2.8. ([6]) Let F, andGs be two GFSSsver
(X,E). The union off;, andG;, denoted byF, LI Gg, is

The GFSSH, defined ad, : E — 1X x| such that
Hy (e) = (H(e),v(e)), whereH (e) = F(e) v G(e) and
v(ie)=pu(e)vo(e,VecE.

Let {(Fu)x ,A € A}, whereA is an index set, be a
family of GFSSsThe union of these family, denoted by

Urean(Fu)a, is The GFSS H, defined as
H, :E — 11X x I such thatH, (e) = (H(e),v (e)),
whereH (€) = Ve (F(€)x, andv (€) = Vaea(H(€))a,
vec E.

Definition 2.9. ([6]) Let F, and G be two GFSSsver
(X,E). The Intersection of;, andGg, denoted byF, M
Gs, is theGFSS M, defined advl; : E — X x| such
thatMg (e) = (M (e),o(e)), whereM (e) = F(e) A G(e)
ando (e) = u(e)Ad(e),Vec E

Let {(Fu)» , A € A}, whereA is an index set, be a
family of GFSSs The Intersection of these family,

denoted byr,ca(Fu)y, is the GFSS M, defined as
Mg : E — 1X x1 such thatMs (e) = (M (e),0 (e)),

where M (€) =A,ca (F(€)),, and 0 (€) =Axcn (H(€))5,
VecE.

Definition 2.10. ([5]) AGFSSis said to be a generalized

null fuzzy soft set, denoted Uyg if 09 E — XxI

such thatOg(e) = (0(e), 6( e)) where0O(e) =0 Vec E
and@ (e) = 0Yec E ( Where0(x) =0, ¥x € X).

Definition 2.11.([5]) A GFSSis said to be a generalized

absolute fuzzy soft set, denotedby, if 1, :E — 1Xx

|, wherel, (€) = (1(e), & (e)) is defined byl (€) = 1,Vee
E anda (e) = 1,Ve€ E (Wherel(x) = 1,Vx € X).

Definition 2.12.([6]) Let T be a collection of generalized

fuzzy soft sets overX,E). Then T is said to be a
generalized fuzzy soft topology GFST, in shor) over
(X, E) if the following conditions are satisfied:

(1) Og and1, areinT.

(2) Arbitrary unions of members af belong toT.

(3) Finite intersections of members dfbelong toT.

The triplet(X,T,E) is called a generalized fuzzy soft

topological spaceGFST- space, in short) ovefX,E).
The members oT are calledGFSopen sets ifX,T,E).

and complements of them are calle@kS closed sets in
(X,T,E). The family of all GFS closed sets ifX,T,E)

is denoted byl .

Definition 2.13.([6]) Let (X, T,E) be aGF ST-space and
F. be aGFSSover (X,E). Then the generalized fuzzy
soft closure of, denoted by, is the intersection of all
GFS closed supper sets &f;. Clearly,F, is the smallest
GFS closed set ovefX, E) which containg=,.

Definition 2.14. ([6]) A GFSS k in a GFST-space
(X,T,E) is called a generalized fuzzy soft neighborhood
[GFSnbd, in short] of the5FSS G if there exists &5FS
open seH, such thaGs C H, C Fy,.

Definition 2.15.([6]) Let (X, T,E) be aGF ST-space and
F. be aGF SSover(X,E). Then the generalized fuzzy soft
interior of Fy,, denoted byF;, is the union of alGF Sopen
subsets oF,. Clearly,F; is the largesGF Sopen set over
(X,E) which is contained irfr,.
Definition 2.16.([10]) The generalized fuzzy soft sEf, €
GFSX,E) is called a generalized fuzzy soft poinGES
point in short) if there exists the element E andx € X
such thatF(e)(x) = a (0 < a < 1) andF(e)(y) = 0 for
allye X —{x} andu(e) = A (0 < A <1). We denote this
generalized fuzzy soft poirfy, = (x,,€) ).
(x,e) and (a,A) are called respectively, the support

and the value ofx,, €y ).
Definition 2.17.([11]) For any twoGF SSs | andG; over
(X,E). Fy is said to be a generalised soft quasi-coincident
with Gg, denoted byF,qGs, if there existe € E andx € X
such thaf (e)(x) + G(e)(x) > 1 andu(e) + do(e) > 1

If F is not generalised soft quasi-coincident wag,
then we writeF,qGs < For everye ¢ E and x € X,
F(e)(x) + G(e)(x) < 1 or for everye € E andx € X,
pEe+oe<1
Definition 2.18.([11]) Let (x,,€) ) be a generalized fuzzy
soft point andF, be aGFSSover (X,E). (x,,€,) is said
to be generalised soft quasi-coincident wif, denoted
by (X4,€x)qFy, if and only if there exists an elemeai E
such thatr +F(e)(x) > 1 andA + u(e) > 1
Definition 2.19. ([11]) Let F, and G5 are GFSSsover
(X,E). Then the followings are hold:

(1) Fu C G5 = Fud(G5)%;

(2) FuaG; = Fu MGy # O%

(3) (Xc{_ve)\)ql:l.l a4 (Xc{ve)\)e(l:l»l)c;

(4) Fua(Fy)°.
Theorem 2.20.([6]) Let (X, T,E) be aGFST-space and
F. be aGFSSover(X,E). Then

(1) (Fw)® = (FD)";

(2) (Fp)° = (FD).
Definition 2.21.([11]) Let (X, T,E) be aGFST-space. Let
F. be aGFSSover(X,E). Then the generalized fuzzy soft
boundray ofFy;, denoted byFp, is defined ag=p = F, 11
FS. clearly, FP is the smsllesGF Sclosed set ove(X E)
which containd,.
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Theorem 2.22.([11]) Let (X, T,E) be aGFST-space. Let
F. be aGFSSover(X,E). Then

(1) (F2)° =FOn (Fg)°.

(2)|:b FuNFE= F“\FO
Definition 2.23.([8]) Let FS(X,E) and FS(Y,K) be the
familes of all fuzzy soft sets oveX andY, respectivly.
Letu: X — Y andp: E — K be two functions. Then a
mapping fup : FS(X,E) — FS(Y,K) is defined as
follows: for a fuzzy soft setfa € FS(X,E),Vk € K and
yeY. Then

vxeu (veep ﬂA) fA( ))(X)a
fup(fa) (K)(y) = - Y )#tp, YkNAZ e,
0, otherwise

fup(fa) is called a fuzzy soft image of a fuzzy soft set
fa.

Definition 2.24.([8]) Letu: X — Y andp: E — K be
mappings.

Let fup: FS(X,E) — FS(Y,K) be mapping andg
FS(Y,K). Thenf5(gs), is a fuzzy soft set iF S(X,E),
defined by

fip(98)(€)(x) = gs(p(€)(u(x)), Vee E,xe X.

fur 1(65) is called a fuzzy soft inverse image Gf;.

If uandp are injective then the fuzzy soft mappirfigh
is said to be injective. 11 and p are surjective then the
fuzzy soft mappingyp is said to be surjective. The fuzzy
soft mappingfyp is constant, iu and p are constant.

3 Generalized fuzzy soft mappings

Definition 3.1. Let GFSX,E) and GFSY,K) be the
familes of all GFSSsver (X,E) and(Y,K), respectivly.
Letu: X — Y and p: E — K be mappings. Then a
mapping fup : GFSX,E) — GFYY,K) is defined as
follows: for a GFSSK € GFSX,E),Vke K andy €Y,
then

fup(Fu) (K)(Y)
(Vxeu1( \/eep F( )( ): Veep-1(k) H(€));
= fu- ()#fp, (k) # @,
(0,0), otherwise

fup is called a generalized fuzzy soft mappinGHS
mapping for short ] andyp(Fy) is called theGF Simage
of aGFSS .

Definition 3.2. Letu: X — Y andp: E — K be
mappings. Letfyp : GFSX,E) — GFYY,K) be a GFS

mapping and Gy € GFYY,K). Then
fip (Gs) € GFS(X, E) is defined as follows:

fip (Gs)(®(x) = (G(p(e)(u(x),5(p(e)),  for
ecE,xeX

fir 1(G(;) is called theGF Sinverse image 06;.

If u and p are injective then the generalized fuzzy soft

mapping fyp is said to be injective. Ifu and p are

surjective then the generalized fuzzy soft mappingis

said to be surjective. The generalized fuzzy soft mapping

fup is called constant, ifi and p are constant.
Example 3.3.
Let X ={a,b,c},Y ={xy,z},E = {e1,e,€3,€4} and
K ={e,,&,€}. Letu: X — Y andp: E — K be tow
mappings defined as
ub) = u(c)

ula =z =Y
p(el) = él p(e2) = éla p(es) = e/e,v p(es) = éz

LetF, € GFSX, E) andGs € GFSY,K) where.
_{(el {05 0.7° 6}03)
50 01 08),(63—{%,%,
_{(é12{0.170.9v05} 0.2),
(e/z:{&vﬁvrze}ao-@ (€= {5509 76):0-8)}-

o5 1,0.1)},

Then theGF Simage off, underfp, : GFSX,E) —
GFSY,K) is obtained as
fup(Fu) (1) (%) =
(vseu*l(x) vegp—l(e/l> F(e)(s), veep 1(e ’) u(e))
= (0,Vec(er.ep H(®) (asuH(x) = @)
= (0, u(e1) V u(e2))
=(0,0.3/0.8) = (0,0.8),
fUP(FIJ)(el)(y) =
\/seufl(y) veep )(3)7 I-'l(e))
(Vse{b c} \/ee{el e} F(e)(s) )
= (Vseqbey (F(€1) VF(e2))(s).0.8)
:(Vse{bc}( o5ao7voC6 )(S) )
= (0.7\/0.6,0.8) = (0.7,0.8)
fup(Fu)(€,)(2) = (0.5,0.8). By similar calculations, we
get  fup(Fu) = {& = {347 %}08).(e =
5:8:61:01).(65 = {505 00):0}. Next, for
pe), i=1234 p(e) e p(E) =K, we calculate
up (Gs)(e1)(@) = (G(p(e))(u(a)),5(p(er)))
= (G(&))(2),3(ey))
= ({31, 99:95}(2,0.2))
=(0.5,0.2),
fip (Gs)(e1)(b) = (G(p(e1))(u(b)),0.2))
= (G(e)(y). &(ey))
= ({3199 95}(¥):0.2)
=(0.9,0.2),
fip(Gs)(er)(c) = (0.9,0.2). By similar calculations
we get
fp(Ge) = {l& = {gk.00.65).02). (e
{05709709} 02),(e3 = {o;aea%vo_cg}aoa)a(%

{0.6’ 0.8’ 0.8} 0'4)}'
Definition 3.4.Let fy,p, : GFSX,E) — GFSY,K) and
Ouyp, : GFSY,K) — GFSZ,D) be GFSmappings and
Fu € GFSX,E).

Then gu,p, 0 fup, : GFSX,E) — GFSZ,D) is
GF S mapping defined as followszd € D,Vz € Z, then
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(Quzpz © fuypy ) (Fu)(d)(2)

\/ee (p2 0 p1)~1(d) F(e)(x),
Vec(p, 1(d)H(e))7
'@ # 9. (p2op)” 1( i)

otherwise

(\/XE U2 (0] Lll
=4 if (U2 [0} Ul)_
(0,0),

If Mg € GFSZ,D). Then(guyp, 0 fup,) 1(Mo) is @
GFSSn GFSX,E), defined as followsve € E,Vx € X.

(Yurp, O fUlPl)_l(MU)(e)(X)

= (U2 0ug,p20 pr) H(Mo)(€)(X)

= (M(p2(p1(€)))(u2(us(x))), o (p2(pa(€)))).
Proposition 3.5.Let fyp: GFSX,E) — GFSY,K) be
a GFS mapping and;,H, € GFSX,E) andGs,Mg €
GFSY,K) . Then

(1) The generalized fuzzy soft union and generalized
fuzzy soft intersection of generalized fuzzy soft imagesforec p~

fou(Fy) and fyp(Hy) in GFSY,K) are defined as
(fup(Fu) U fup(Hy)) (K)(y)
fup(Hv) (K)(y),

= fup(Fu) (K)(Y) V
(fup(Fu) M fup(Hy)) (K)(y)

= fup(Fu) (K)(Y) A fup(Hy) (k) (y). Yk e K,y €Y.

(2) The generalized fuzzy soft union and generalized
fuzzy soft intersection of generalized fuzzy soft inverse
5) and f* (Mg) in GFSX,E) are defined

imagesf,;(G
as
(fip (Gs) U fup (Mo)) (€)(X)
= fod (Gs) (&)%) V fug (Ma) (€)(x),
o)

(fig(Gs) M fup (Mo)) (€) (%)

= fip(Gs)(€) () A Ty (Mo)(e) (x).Ve € E, x € X.

Wherell andr denoted generalized fuzzy soft union
and generalized fuzzy soft intersection of generalized
fuzzy soft images and generalized fuzzy soft inverse

images inGFSX,E) andGF S, K), respectively.
Theorem 3.6 Let fyp: GFSX,E) — GFSY,K) be a
GF S mapping. FOIGFSSs | andH, € GFSX,E), we
have. _

(1) fup(Oey ) = Oey,

(2) fup(Lay) C Lay,

(3) If Fy T Hy, thenfyp(Fyu) T fup(Hv),

(4) fup(Fu UHy) = fup(Fu) U fup(Hy),

(5) fup(FuMHy) & fup(Fu) 1 fup(Hy).

Proof (1) Forke K andy €Y,

fup(Ogy ) (K)(Y)

= (vxeu*l(y) veepfl(k) 6(6) (%), veepfl(k) Bx(e))

= (0,0) = (O(K)(¥), & (K)) = Og, (K)(Y).

(2) Forke Kandye',

) (0

= (\/xeu*l(y) Vee p~1(k) 1(e)(%), Vee p1(k) AX (€)

< (1,2) = (I(K)(¥). 8(K) = Lo, (K)(¥).
(3) Considering only the non-trival case, foe K and
y €Y, and sincd=, C H,, we have

fup(Fu) (K)(y)
= (\/xeu Ly) Veep (k) F(e)(x)vveepfl(k)u(e))
< (Vxeu1(y) Veep-1(k H(€)(X); Vecp1) V

=fup(H )(k)(Y)
This give (3).

(4) Fork € K andy € Y, we show that
fup((Fu) U (Hv)) (K)(y)

, = fup(Fu) (K)(Y) V fup(Hv) (K) (y).
Consider

fup(Fu UHY) (K)(Y) = fup(Ma)(K)(y)  (say)

(Vxeu1(y) Veep-100 M(€) (X ) Veep-11) 9(8)),

= Iful()#w, ()#co,
(0,0),

whwer,

otherwise
M(e)(x) =F(e)(x) V H(e)(x) anda(e) = u(e) V v(e)
Y(k),x € p(y).

Considering only the non- trival case, we have

fup(Ful—lH )(K)(y)

= (Vxeu1(y) Vecp-1([F(€)() VH(€)(X)],
Veep-1(k) () ()) 0]

By Proposition (3.5), we have

(fup(Fu) U fup(Hy)) (K)(y)

= fup(Fu) (k)( )Vfup( v)(K)(y)

:(vxeu veep (e)(x)a\/ee 1 )H(e))V
(Vxeu* Veep ( )(X)a\/eep 1(k) v(e))

= (\/xeu*l(y) \/eep F(e)(x)VH(e) (X)]v

Veep—1<k>u(e)VV(e))- (1)
By (I) and (II) we have (4).
(5) Fork e K andy € Y, using Proposition(3.5) we

have

fup(Fu TTHY) (K)(y) = fup(Ma ) (K)(y),  ('say)

= (Vxeu ( \/eepfl(k M(e)(x), Veepfl(k) a(e)),

= (Vxeu* ( Veepfl(k) [F(e)(x) AH(e)(X)],

Vesp 110 HOAV(®):

(\/xeu \/eep 1(k) F(e) (X)a\/eepfl(k) pe) A

(Vxeu Veep (k) H(e)(x), Veep*l(k) v(e))

— T EDOOA Tupl ) KI0)

= (fup(Fu) 11 fup(Hv)) (k) (y)

This give (5)

In Theorem 3.6, inequalities (2),(5) and implication(3)
cannot be reversed in general, as shown in the following.
Example 3.7.Let fyp : GFSX,E) — GFYY,K) be a
GFSmapping where

X={ab,c},Y={xy,z},E={e,e,e3,e} andK =
{e/l,%’,%’}. For (2) we define mappings: X — Y and
p:E—Kas

u(a) =X ub) =y u(c) = x,
ple)=¢, p(e2) =€, p(es)=6, p(es)=

Ly Z{(e,= {54,310, &= {51,510,

(% {0507(_2)}50)}: fPU(lﬁx)'

For (3) and (5), define mapping : X — Yand
p:E—Kas

1
1

y)
y)
p(

I
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u@ =y ub =y uc) = v
ple1) = &, p(ez) = e, p(es) = €, pes) = e.
Choose two generalized fuzzy soft setsGiF S(X,E) as
FN - {(83 = {0é37Tb77TCS}70'2)}7HV = {(e3 =
{05,01,1} 03)} Then the calculations give

fup(Fu) = {(g {é,&é} 0),(e, = {§.%,5}.02),

(& {53,510}
C {e = {é,%aé},m,(elz = {31.§}.03),
(& = {%,%,2},0)} = fup(Hy) but Fy Z H,. Also, we
have fup(Fu) M fup(Hy) = {(&, = {%.5.3},0).(e, =
{3:3.61,02).(&s = {55510} Z {& =
{%.3,81,0), (e, = {5,£,3},0.2), (&5 = {3,§,3},0)} =

fup(FuMHy).
Theorem 3.8.LetF, € GFSX,E), {Fu}ici C GFSX,E)
wherelJ is an index set.
(1) fpu(Uiea(Fu)i) = Uiea fup(Fu)i-
(2) fup(Mica(Fu)i) = Mica fup(Fu)i, if fupis injective.
(2) fup(Lay) = Lay, if fupis surjective.
Proof The straightforward proof is omitted.
Theorem 3.9.Let fyp : GFSX,E) — GFYY,K) be a

GFS mapping. For GFSSs G,J, and (Gg)i
€ GRS, K)NVi € J,~whereJ is an index set, we have.
(1) fip(Og, ) = Ogy s
(2) fag(Lay) = Ly,

3)If (35 C Jo. Thenfy H(Gs) C fi)(Jo),

(4) fi(Gs U o) = fug(Gs) U fig-(Jo)- In general,
fur ('—'leJ(G6)) Uiea fu_pl(Ga)i,
(5) fus

5(Gs MIg) = fi7(Gs) M f}(Jo). In general,
fup (|_||eJG6) ) =Tliey fu_pl(Gé)i-
Proof (1) f;.(0g, ) (€)(X)
= (0(p(e)(u(x), B (p(e))
=(0,0) = ng( )( ), Vee E,xe X.
(@) fop(Lay) = Lax,
= (1,1) = 1,,(e)(x), Ve E,x € X.
(3) SinceGs C Jo, we havef, }(Gs

(G(p(€))(u(x)),5(p(e))
(G(k)(U(X)) o(k),ke K

‘()(

)(€)(X)

A

=
—
N
==
[N
[SF NS
—~
c
—~
X
N

. (4) Fore e E andx € X, we have

X)

—n
S

'Ub—\
A

P o | |

(
G(K)(u(x)) V I(K) (u(x)
ext, using Proposition (3.5),
Gs) U fy; 1(30)](8) X)
fig(Gs)(e)(x) V fup (Jo)
(G(p(E))(U(X))ﬁ(p(e V
(G(k) (u(x)) VI(K) (u(x)),

—h
<
'c,_.
—

From (1) and (Il), we get (4).
(5) Fore e E, x € X and using Proposition (3.5), we
have

Th|s g|ve (5)

The implication in (3) is not reversible, in general, as
can be shown in the following Example.
Example 3.10.Let fyp: GFSX,E) — GFSY,K) be a
GFS mapping where the mappings : X — Yand
u: E — K ard defined by

u(a) =x u(b) = x u(c) =,
Per) =€ p(e)=¢€; p(es)=e;, p(es)=e.
Choose two generalized fuzzy soft setsGR SY,K)

as
G6_{(% {0670705}05)}
Jo = {(% {3% 0159703}
Then calculations give
fu_pl(Gc‘S) = OGX C OQX = fp_ul(Ja)a bUth‘S ,,Z Jo-
Theorem 3.11Let fyp: GFSX,E) — GFYY,K) be a
GFSmapping. FoF, € GFSX,E) andGs € GFSY,K),
the following statements are true.
(1) f5p(Gs)® = (fip(Gs))".
(2) fup(fip(Gs)) € G, if fup is surjective, the
equality holds
B)F. C f* (fup(Fu)), if fupis injective, the equality
holds.
Proof
W ((Gs))(@)(X) = (G(p(e)(u(x)),5%(p(e))), if
ecE,xe X. ()
On other hand, for everye X, e € E, we have
(fip (Gs))%(e)(x) = 1~ (fy5(Gs)(€)(x), if e€ E,x €

if
()

<
i
—
0]

(o]
N
=
=
=
o>
=
=<

= @
=
— M

I VAI

=G5 (K)(y).
Therefore

fup(fip(Gs)) (K)(y) < Gs(K)(y), Yke K, vyeY.
(3)pr(fup( 1)) (€)(X) = fup(Fu)(K)(Y)
= fup(Fu)(p(e)(u(y)

Veep-1(p(e))

(\/xeu*l(u(x)) F(e) (X)v\/eepfl(p(e))“(e))

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1008

N SS ¥

F. Khedr et al.: Generalized fuzzy soft continuity

> (F(e)(x),u(e)) = Fu(e)(x), for all e € E,¥x € X.
This completes the proof.
Theorem 3.12LetF, € GFSX,E),G5s € GFSY,K), and
fup: GFSX,E) — GFSY,K) be aGF Smapping. Then
(1) Gofup(Fu) = Tup (Go)TFy-
(2) G5a fup(Fu) = prl(Gé)un-
Proof (1) G50 fup(Fu) = fup(Fu) C (Gs)°
= Fu & fup (fup(F)) E fyp (G§)
= Fu C (fup (Gs))°
= fip (Gs)qFu.
(2) Let fup(Fu)aGs andF,qf, ) (Gs). Then
Fu C (fip(Gs))® = fup(G). It follows that
fup(Fu) £ fup(fyp(G§)) £ G§. This shows that
fou(Fu)9Gs. This is a contradiction.

4 Generalized fuzzy soft continuous
mappings

Defintion 4.1. Let (X,T1,E) and (Y,T,K) be two
GFST-spaces, a generalized fuzzy soft

soft continuous [in short GFScontinuous] if
prl(Ga) €Ty forall G5 € To.

Next, we give an example abo@F Scontinuous.
Example 4.2Let X = {x1,%2,%3},Y = {Y1,¥2,Y3},

E= {ei, e?v} andK = {e;,e,}.

To = {0g, Lny, (Fu)1, (Fu)2}, where(Fy)1 and (Fy)2
are twoGFSSsver (X, E) defined as follows:

(Fu)1 = {(e1 = {g5).0.0). (&= {4},02)}

(Fu)2={(e1={5%.055}:0.7), (&2 ={5%5%}.03)}-

ThenT; is a GFS topology over(X,E) and hence
(X,T1,E) is aGF ST-space ove(X,E).

T2 ={0g,1ay,(Gs)1,(Cs)2}, where(Gs)1 and(Gs)2
are twoGFSSsver(Y,K) defined as follows:

(Gé)l = {(el = 8%1}70'1)7 (ez = {%}70'2)}’

ThenT, is a GFS topology over(Y,K) and hence
(Y, T2,K) is aGF ST-space ove(Y,K).

If fup is @ mapping fromX to Y defined as follows:
u(xe) =Yz u(x2) =y1 u(xs) =y,

p(er) = e p(ez) = €.

Then itis easy to verify thafL‘pl(Ga) eTyforallGs e
T>. Thusfyp is aGF Scontinuous mapping frortX, T1, E)
to (Y, T2, K).
Theorem 4.3F, is GF Sopen if and only if for eaclBFSS
G; contained inFy, F, is aGFSnbd ofGs.

Proof. (=). Obvious.

(<=). SinceF, C Fy, there exists &F SSopen seH,
such thafF, C H, C F,. HenceH, = F, andF is GFSS
open.

mapping
fou: (X, T1,E) — (Y, T2,K) is called a generalized fuzzy

Theorem 4.4.Let (X, T1,E) and(Y, T,,K) be twoGFST-
spaces. For &F Smappingfup: (X, T1,E) — (Y, T2, K),
the following statements are equivalent:

(1) fupis GFScontinuous;

(2) for GFSS K in GFSX,E), the inverse image of
everyGFSnbd of fyp(Fy) is aGF Snbd of Fy;

(3) for eachGFSS g in GFSX,E) and eaclGFS
nbdMg of fyp(Fyu), there is aGFSnbdH, of Fy such that
fup(Hv) C Mg.

Proof (1)=(2). Let fup be GF Scontinuous, itMy is
a GFSnbd of fyp(Fy), thenMg contains an opeFS
nbdKy of fup(Fy). Sincefup(Fy) E Mo, fug(fup(Fu)) E
fip (Ky) E fug (Mo). ButFy T fig (fup(Fu)) andfyg (Ky)
isaGF Sopen. Consequntlygpl(Ma) is aGF Snbd ofF,.

(2) = (1). We use Theorem (4.3). We prove that if
Gs € T2 thenf 5 (Gs) € Ta. LetFy, be anyGF Ssub set of
fip(Gs). ThenGs is an operGF Snbd of fup(Fy), and by
(2) fi5-(Gs) is aGF Snbd ofF,. This shows thaf, 5 (Gs)
is aGF Sopen set.

(2) = (3) Let F, be anyGFSSover (X,E) and let
Mo be anyGFSnbd of fup(Fy). By (2), f;5-(Mg) is a
GFSnbd of F,. Then there exists &FSopen seH, in
(X,T1,E) such that, C Hy C f;'(Mg). Thus, we have
an open GFSnbd H, of F; such that
fup(Fu) E fup(Hy) T Mg.

(3) = (2) Let My be any GFSnbd of fyp(Fy).
There is aGFSnbd Hy of Fy such thatfyp(Hy) C M.
Hence f,5 (fup(Hv)) E f;;(Mg). Furthermore, since
Hy C fug (fup(Hv)), fug (M) is aGFSnbd of F,.
Theorem 4.5. Let (X,T1,E) and (Y,T2,K) be two
GFST-spaces andyp: (X, T1,E) — (Y, T2,K) be aGFS
mapping. Then the followings are equivalent:

(1) fupis GFScontinuous;

(2) fu(Gs) € Ty, VG € Ty;

(3) fu (Gs) = fip (Go), VG5 € GFY.K).

Proof (1) = (2) Let G5 be aGFSclosed set over
(Y,K). Then,G§ € T, and by (1)f;1(G§) € Tu.

Sincef;H(G§) = (fup-(Gs))®,

we haveprl(G(;) is GFSclosed ovelX,E).

(2) = (3) Let G5 € GFSY,K), G5 € T, by (1)
fi(Gs) € T;. Then

fup (Gs) C fup (Gs) = fip(Gs)-

(3) = (1) Let G5 € To. ThenG§ = G§. From the

hypothesis,
fup'(G§) C i (Gf) =
fip (G$) is GFSclosed.

Since f;;(G§) = (f;5(G5))° by Theorem (3.11), we

havef;'(G5) is GF Sopen overX,E).
Theorem 4.6.Let If fyp, : (X,T1,E) — (Y, T2,K) and
Owp, - (Y,T2,K) — (Z,T3,D) are GFScontinuous
mappings, thergy,p,0fup, : (X,T1,E) — (Z,T3,D) is
alsoGF Scontinuous.

fop(G5).  Then
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Proof. For a GFSS
G5 € GFSZaD)(guzpz 0 fulpl) 1(65) e)(x) =
(U2 0 U, P2 0 p)L(Gs(e)(x) =
e(G(p2(p1(€)))(uz(us(x))), 6(p2(p1(e)))) =
uH(up) (G (pz(pl( e)))(x),0(pz2(p1(e)))) =
(ug, pr) (U2, P2) 7H(Gs)) (€) (%) Hence
(Gup, © fuppy) H(Gs) = (U1, p1)*((U2, p2) H(Gs)),

(U, pz)‘l(G5) € T, sincegy,p, is GFS continuous, and
SO (guzpz 0 fulpl)_l(Gé) - fuljﬁl(gazlpz(c‘é)) € Ty since
fu,p, GFScontinuous.

Defintion 4.7. A GFS mapping
fup : (X,T1,E) — (Y, T2,K) is called GFS constant
mapping ifu: X — Y andu: E — K are constant.

Remark 4.8. In grneral topology spaces the constant F,q(Hy)°

mapping is always continuous, but GFST-spaces it is
not true in general.
Example 4.9.Let X =Y = {x1,X2, X3},
E K = e1,e,6e3} and
fup (X, TO LE) — (Y, TL) ,K) a constant mapping, where
= {Og,,1ay} andT! = GFSY,K).
Consideru(x) = x,Vx € X and p(e)
we take
Gs = {& = {gkoa35h02.( =
0% 6, 0),0.6)} (3= {X&,%,XS} 0)}, then

=g,VeckE,Iif

fup(Gs)(e1) (x) = (Gs(pler))(u(x1)).3(p(er))) =
(G(e1)(x1). 3(ex)) = (05,02

and similary,

fap (Gs)(€1)(x2) = (G(e1)(x1),d(e1)) = (0.5,0.2)

fup (Gs)(€1)(x3) = (G(e1)(x1),d(e1)) = (0.5,0.2)

fuy 1(G5)(ez)(><1) = (Gs(p(e2))(u(x1)), 6(p(e2)))

= (G(el)(xl),é(el)) =(0.5,0.2)

and similary,

fip (Gs)(€2) (x2) = fip (Gs)(€2)(xs) = (0.5,0.2),

f, 1 (x1)),6(p(e3)))

up (Gs)(&3)(x1) = u
= (G(&1)(x1), 8(e1)) = (0.5,0.2),
and similary,
fup (Gs)(e3) (x2) = i (Gs)(€3)(xs) =
Hencef,;(G5) ¢ T°, whichGs € T*.
Definition 4.10.Let (X, T,E) be aGFST-space. AGFSS
Fu in GFSX,E) is called Q—generalized fuzzy soft
neighborhood briefly, Q — GFSneighborhoog of Hy, if
and only if there exists &FS open setJ, such that
Hv0Jy andJs T Fy.
Definition 4.11. A GFSS | in GFSX.E) is called

(0.5,0.2).

Q— GFSneighborhood of a generahzed fuzzy soft point fy5-(Gs) =

(Xa, €, )elAX if and only if there exists &F Sopen sel,
such tha(xq, €y )qJs andJy T Fy.

Remark 4.12.1f F, is GFSopen set, th&, isaQ—- GFS
neighborhood if and only iF;,qJ5.

Theorem 4.13Let F, € GFSX.E) and (Xq€)) € 1ay
Then (Xq,€))€F, if and only if each operQ — GFS
neighborhood of (X4,€y) is generalized soft
quasi-coincident withr,,.

Proof. Let (xa,eA)éF_u. For everyGFSclosed seH,
whichFy, (Xa,€)) € Hy. Suppose thatl, is an operQ —
GF S neighborhood ofxq,€,) andMgqF, . ThenF, C
(Mg)®. SinceMy is Q — GFSneighborhood ofxq,€) ),
by theorem 2.19(3)(x4,€) does not belong t¢dMy)C.
Therefore, we have thdk,,e,) does not belong té,.
This is a contradiction.

Conversely, let each ope@ — GFSneighborhood of
(Xa,€)) be generalized soft quasi-coincident wiHy.
Suppose thatxq, €, ) does not belong t&,,. Then there
exists aGF Sclosed set, which is containg, such that
(Xa,€)) does not belong tél,. By Theorem 2.19(3), we
have (Xq,€,)q(Hy)¢. Then (Hy)¢ is open Q — GFS
neighborhood of (X4,€y) and by Theorem 2.19(1),
, a contradiction.

Theorem 4.14. Let (X,T1,E) and (Y,T2,K) be two
GFST-spaces andyp: (X,T,E) — (Y, T2,K) be aGFS
mapping. Then the followings are equivalent:

(1) fup is GFScontinuous;

(2) fug(Gs) E (f3p(G5))° VG5 € Ta;

(3) fup(Fu) C fup(Fy), VFu € GFS(X,E);

(4) fip (Go) C fug'(Gs), ¥Gs € GFSY,K);

(5) fip (Gs)° C (fu5(G5))°, VFu € GFSIX.E) ;

(6) (fup(Gs))° C fup (G5)°, VG5 € GFS(Y,K);

(7) fpu(Fu)® C (fou(Fu))°, ¥Fy € GFS(X, E).

Proof (1) = (2).

(2) = (3). Let Fy, € GFSX,E) and fyp(Xa,€1) be
not GFS subset offyp(Fy). Then there exists an open
Q — GFS neighborhood 0ofGs of fyp(Xq,€y) such that
Gsqfup(Fy) and hencef;'(Gs)q(F,) which implies
(fip(Gs))°GFu.  Since (xa.&)afis(Gs), by (2),
(Xa»€)d( fup (Gs))°. PutMg = (f1(Gs))°. ThenMg is
an openQ — GFSneighborhood ofx,, €, ) andMgqF,.
This shows thatfxq,e) ) is not GFSsubset ofF, which
implies that fup(Xq,€)) is not GFS subset of fyp(Fy).
Thus fup(Fu) C fup(Fu).

B)= (4. Let Gs € GFYY,K). Since
fup( up(G(;)) Gs , we have

fup(fup(G )) £ Gs. By (3), we obtain
fup(fup'(Gs)) C Gs. Thus we havep (Gs) C fup (Gs).

(4) <= (5). These follow from Theorems 3.11(3) and

2.20.
(1). Let Gs (5).

(5) —
GlGs)° T (f(G s0

c To.

5))°

By
and
fupl(Gg) € T.

(4) = (6). Let G5 be aGFSSover (Y,K). By (4),
Theorem 3.9(5) and Theorem 3.11(1),
(fap(Gs))® = fup(Gs) N fup(Ge)® T
f—l( 5) f‘l(GC) = f 1( 5 MGS) = prl(G(;)b and
hence we havef,; (Ga))b C fup(Gs)P.

(6) = ( 8 Let G5 be aGFS closed set ove(Y,K).
Then(Gs)° C Gy and f;1(Gs)P C fu5(Gs). By (6) we
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have(f5(G5))° C f;5(Gs). This shows thaf,;(Gs) is
GFSclosed set ovefX,E). Thus, by Theorem 4.5, is
GF Scontinuous.

(6) = (7). Let F,be a GFSS over (X,E). Then
fup(Fu) € GFSY,K), by (6),
(fup (fUp(Fu))) C fup(fup(Fu)® and SO
(F)® £ i (fup(Fu))P.  Therefore, we have

)P°
fou(Fu)® C (fpu(Fu))®.
(7) = (6). Let G5 be aGFSSover (Y,K). Then for

fig(Gs) €  GFSXE), by (7
fou(fip(Gs))® £ (fpu(fig(Gs)))®  and  so
fou( i 1(G(5))b C G Therefore, we have

up
(fip(Gs))° E g (Go)".

5 Generalized fuzzy soft open, closed and
homeomorphism mappings

Definition 5.1.Let (X, Ty, E) and(Y, Tz, K) be twoGF ST-
spaces. AGFSmappingfup : (X,T1,E) — (Y, T2,K) is
called a generalized fuzzy soft opedH S-open in short ]
if fup(Fu) € T, for eachFy, € T;.
Theorem 5.2.Let fyp: (X, T1,E) — (Y, T2,K) be aGFS
mapping. Then the following statements are equivalent:
(1) fupis GFSopen;
(2) fup(Fy)® E (fup(Fy))°, VFu € GFSIX,E);

(3) (fup(G5))° C f5(G5)%, VG5 € GFYY,K).

(4) T35 (Gs)" E (fy; 1(G5)) VG5 € GFSY,K);

(5) fup (Gs) C fup 1(Gs), VG5 € GFSY,K).

Proof (1) = L (Fu) be a GFSS over

(2).
GFS(X,E). Then (F,)° C

fup(Fp)o C (fup(Fﬂ)) .
2) = (3). Let G5 be aGFSSover (Y,K). Then

. By using (1), we have

fip(Gs) is a GFSS over (X,E). By (2),

funl i (G5))° C (ful 5'(G5))° C (Gy)°. Therefore,
we have(f, (G ))Og ( 5)°. (3 ) (4). LetGg be

a GFSSover( K). hen By usmg (3) and Theorem
2.22(1), ((135(Gs)")® = (fup (Gs))® U (f5(Gs))° T

fip(Gs)® U fip((Gs))° = fig(G® U (G§)°) =

fug((Gs)P)® = (fug(Gs)°)° and we

havef,, (Gé)blz(f 1(G5)).

(4) = (5). Let G5 be aGFSSover (Y,K). Then By

. and theorem 2.22(2),
fup (Gs) = fip(Gs LU GY) = fi5(Gs) U fig(GR) C
fup (Gs) L (T4 (G5))° = fup (Gs).

(5) = (3).This follows from Theorem 2.20(1) and
Theorem 3.11(1).

(3) = (1). Let (F,) be aGFSSopen set inX. Then
for fup(Fy) € GFSS]Y,K). By (3),
(fup (fup(Fu))) C fop(fup(Fu))°.  Again  since

Fu = F C (fup (fup(Fu))® E fip(fup(Fu))°. This
shows tﬁaifup is GFSopen.

Theorem 5.3.Let fup: (X, T1,E) — (Y,T2,K) be aGFS
bijection. Then f,, is continuous if and only if

(fup(Fu))° C fup(Fy)P, for everyF, € GFSX,E).

Proof (=) Let F;, € GFSSX,E). Then for
fup(F,,) € GFS$Y K) (fup(Fu))® C fup(Fy) and so
f* (fup(Fu))° C f* (fup(Fu)) . Since fyp is bijection
and GFS contmuousf o (fup(Fu))° £ FQ. Again Since
fup is surjictiv, (fup(F“))O C fup(Fy)° as claimed.

(=) Let G5 be aGFSopen set ir¥. Then sincefyp
is surjictiv, G5 = G3 = (fup(f;(Gs)))°. By using
hypothesis,Gs T fup(fy5(Gs))°. Since fup is injectiv,
fip(Gs) C (fi5(Gs))°. This shwo that f)}(Gs) is
GFSSopen set irX.

Definition 5.4.Let (X, Ty, E) and(Y, Tz, K) be twoGFST-
spaces. AGFSmappingfup : (X, Ty, E) — (Y, T2,K) is
called a generalized fuzzy soft clos&aH S-closed in short
1if fup(Fu) € T, for eachF, € T,.

Theorem 5.5. A GFS mapping
fup : (X, Ty,E) — (Y, T2,K) is closed if and only if
fup(Fu) C fup(Fu), VFy € GFSX,E).

Proof. It can be proved directly.
Theorem 5.5.Let fyp: (X, Ty, E) —
bijection. Then fyp closed if
fup (Gs) C fug'(Gs), ¥Gs € GFY,K).

Proof. It is similar to that of theorem 5.3.

The concepts of GFSconinuous, GFSopen,
GFSclosed mappings are all independent of each other.
Example 5.7. Let X = {x,%}, Y = {yi,¥2}
E={e,e}, K= {e'l,éz}, we define theGFS mapping

(Y, T2,K) be aGFS
and only if

fup: (X, T1,E) — (Y, To,K) as
u(x1) =y, ung)=y1, /
pler) =€, p(e)=¢6,.

The collection

T = {69XIAX’(Fu)la(FH)Za(FH)3a(FH)4} is GFS
topology over(X,E). Where

(Fr={(ea={1.%}.8). (@={F%1LD}
(Fule= (o= . %), 3. (= (321.9)
(Fu)s={(e1= {Xf,xf 3@ ={#%hDh
(Fu)a={(er={}.%}.8). (2= {$%).8)}

Also the collectlon
_ T =
{0g,14,.(G5)1.(Gs)2.(Gs)3.(Gs)a, (Gs)s, (Gs)e, } s
GF Stopology over(Y K). Where

(Gs)1={(e, = 2.% ,%),(éf{ygl%z},%)},
(Gs)2={(e, = %g% 3) (&= {4618
(G5)3={(e/1:{yf%layﬁz a%)a(ézz{);%yﬁz}a%)},
(Gs)a={(e,={%.%}.8). (&= {45}
(Go)s = {(e,= 1. %).9). (&= (43519},
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(Gs)s = {(g {y—l%%2 3); (%#%%},%)},
fip (Gs)s(er)(x1) = (Gs(p(el))(U(xl)%5(p(el))) =
(Gs(e)) (1), 8(e) = (3.3 T (Go)sler)(xe) =
(Gs(p(e1))(u(x2)),d(p(er))) =
(3,3)fup(Gs)s(e2) (x1) = (Gs(p(e2))(u(x1))
3(p(e2))) — (Gs(€)(y1),6(€,)) =
EHEGsE)e) = (.3 Then
fit(Gs)s = {(e = {X;Xg},%)v(eﬁ{%xtg}a%)} and
(F)§ = {(& = {%7%},%),(ez={%x—§},%)}- Put
H, = (F)§. Then, by calculation we have

fup(Hy ) (€1) (va)
scu=1(yy) Veep 1( ’) H(e)(s), veep—l(e’l) v(e))
(Vo) X%} (8),3) = (£,5), fup(Hv)(€1)(y2)
(0,%)(asu4(y2) = ). By similar calculation
consequntly, we havef,p(Hy) = fup(F“)3 = {(e, =
il,y& 3). (& {y”2 ,7)}. Here f}(Gs)s ¢ Ty and
fup(F“) is notGFScIosed set. Thus theF Smapping is
not GFScontinuous and notGFSclosed. But it is
GFSopen [ as fuyp(Fu)1 = (Gs)1, fup(Fu)2 =
(Gs)2: fup(Fu)3 = (Gs)e, fup(Fiu)a = (Gs)al-
Example 58. Let X = {x,x}, Y = {y1,¥2}.
= {e, &}, K = {e},&,}, we define theGF S mapping
fup (X, T1,E) — (Y, Tp,K) as

u(x1) = u(xp) =y andp(er) = &, p(ez) = &,.
Here theGF SSsre defined as follows:

(Foi={(e={%.%}1.3). (= (1%}
(Fu)2={(e1= {Xff—ZZ 8. ={3%ha)}
(Fu)s={(er=1{%.%}.8). (2= (3¢}, 1)},
(Fu)4={(61={xt§,§§ B (@ ={3%h D)
(Fus = {(er={%%}.2). (2= ($%}.)},
(Fu)s={(er={3.%}.8). (2= (¢}, 1)},
(Fu)r={(e={3}%}8) (= {3 %}
(Fus={(er=1{% %}.8). (2= (4%}, 3)},
(Go)1={(& = {4 F}.8). (&= {$}%}.2)},
(Golo={(e,={}.%}.8). (&= (4%} D)}
(Go)a={(er = {4 %}.§).(&= (%} )}
(Go)a={(er = {4 %} 2). (&= (1%} D}
(Go)s = {(er= {*,%}.2). (&= (£}, 9)},
(Golo=1{(e,= {4}, %1.8). (&= (4%} )}
¥hen

{09xT1Ax7(Fu)lv (Fu)2, (Fu)s, (Fu)a, (Fu)s, (Fu)e} and

{Ba 1oy, (Go)1, (Gs)z. (Go)a. (Go)ar (Go)s. (oo}

are GFS topologies over (X,E) and (Y,K)
respectively. The mappindyp is GFSclosed, but not
GFSopen and noGF S-continuous.

Here )
fUP(FIJ)lz{( }gay?z 3)7(32:{}/_01}/_12}7%)}5 nota
GFSopen set and

fip(Ga)1 = {(e1 = %fz},%),(ez: {2%2}.3)) ¢
T1.

Note:

fup(Fu)i = (G, fup(Fu)5 = (Gs)3, fup(Fu)3
(G5)3a qu(Fu)4 = (G6)47 fUp( )‘é = (Gé)gv fUp(Fu)g
(G5)1, fup(Fu)? = (Gs)s3; fUP(FN)g = (Gs)g-
Defintion 5.9.Let (X, T3, E) and(Y, T2,K) be twoGFST-
spaces. AGFSmappingf,p from (X, Ty, E) to (Y, T2,K)
is called a generalized fuzzy soft homeomorphsgi &
homeomorphsim in short] ifyp is GF S bijective, GFS
continuous, an@F S-open.

When somésF Shomeomorphsim exists, we say that
X is generalized fuzzy soft homeomorphictoTheorem

5.10. Let (X, T1,E) and (Y, T, K) be two GFST-spaces
and fyp : (X,T1,E) — (Y,T2,K) be a GFS bijective
mapping. Then the following conditions are equivalent:
(1) fup is GFShomeomorphsim;

(2) fup is GFScontinuous an@F Sclosed mapping;

(3) fup is GFScontinuous an@F S-open mapping.

Proof. It is easily obtained.

By Theorem 4.14, 5.2 ,5.3 and 5.5 we can formulate
the following theorem:

Theorem5.11Let fyp: (X, T1,E) — (Y, To,K) be aGF S
mapping. Then the following statements are equivalent:

(1) fup is GFShomeomorphsim;

(2) fup(Fu)® = (fup(Fu))°, VFy € GFS(X,E);

(3) (fup(G5))° = f35(G5)°, VG5 € GF Y, K).

(4) fip (Gs)° = (fu5(G5))P, VG5 € GFSY,K);

(5) f,, (G5) = fip(Gs), VGg € GFSY,K).

(6) fUP(Fu) = fup(Fu), VR, € GFS(X,E).

6 Perspective

In this paper, we have defined the notion of mappings on
the families of GFSSs. We have studied the properties of
GFS images and GFS inverse images which have been
supported by examples and counterexamples. The notions
GFScontinuous, Q — GFS neighborhood, GFSopen
(closed) mappings andGFShomeomorphism for
generalized fuzzy soft topological spaces are introduced,
and some interesting results that may be of value for
further research are obtained.
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