

Applied Mathematics & Information Sciences *An International Journal*

Generalized Fuzzy Soft Continuity

Fathi Khedr[∗] *, Shaker Abd El-Baki and Mohammed Malfi*

Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.

Received: 9 Jul. 2018, Revised: 11 Aug. 2018, Accepted: 17 Aug. 2018 Published online: 1 Sep. 2018

Abstract: In this paper we introduce the concept of generalized fuzzy soft mappings on families of generalized fuzzy soft sets and study the properties of generalized fuzzy soft images (inverse images) of generalized fuzzy soft sets. Furthermore, generalized fuzzy soft continuous mappings, generalized fuzzy soft open (closed) mappings and generalized fuzzy soft homeomorphisms are introduced.

Keywords: Soft set, fuzzy soft set, generalized fuzzy soft set, generalized fuzzy soft topology, generalized fuzzy soft mapping, generalized fuzzy soft continuity, generalized fuzzy soft open (closed) mapping

1 Introduction

The concept of soft sets was first introduced by Molodtsov [\[1\]](#page-8-0) as a general mathematical tool for dealing with uncertain objects. Maji et al.^{[\[2\]](#page-9-0)} introduced the concept of fuzzy soft set and some of its properties. Tanay and Kandemir [\[3\]](#page-9-1) introduced the definition of fuzzy soft topology over a subset of the initial universe set. Later, Roy and Samanta [\[4\]](#page-9-2) gave the definition of fuzzy soft topology over the initial universe set. Majumdar and Samanta [\[5\]](#page-9-3) introduced the notion of generalized fuzzy soft set as a generalization of fuzzy soft sets and studied some of its basic properties. Chakraborty and Mukherjee [\[6\]](#page-9-4) gave the topological structure of generalized fuzzy soft sets. Kharal and Ahmad [\[7,](#page-9-5)[8\]](#page-9-6) defined the notion of a mapping on classes of soft (fuzzy soft) sets.

In this paper, we define the notion of mappings on families of generalized fuzzy soft sets. We also define and study the properties of generalized fuzzy soft images (inverse images) of generalized fuzzy soft sets, and support them with examples and counterexamples. Also we introduce generalized fuzzy soft continuity of mappings. Furthermore, we use the notion generalized soft quasi-coincidence to characterize fundamental concepts of generalized fuzzy soft topological spaces such as generalized fuzzy soft closures and generalized fuzzy soft continuity. Finally, generalized fuzzy soft open (closed) mappings and generalized fuzzy soft homeomorphism for generalized fuzzy soft topological spaces are investigated.

2 Preliminaries

First we recall basic definitions and results.

Definition 2.1. ([\[9\]](#page-9-7)) Let *X* be a non-empty set. A fuzzy set *A* in *X* is defined by a membership function $\mu_A : X \to [0,1]$ whose value $\mu_A(x)$ represents the 'grade of membership' of *x* in *A* for $x \in X$. The set of all fuzzy sets in a set *X* is denoted by I^X , where *I* is the closed unit interval [0, 1].

Theorem 2.2. ([9]) If
$$
A, B \in I^X
$$
, then, we have:

$$
(1) A \leq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \ \forall x \in X.
$$

$$
(2) A = B \Leftrightarrow \mu_A(x) = \mu_B(x), \ \forall x \in X.
$$

(3) $C = A ∨ B$ ⇔ $\mu_C(x) = \max(\mu_A(x), \mu_B(x)), \forall x \in$ *X*.

(4) *D* = *A* ∧ *B* \Leftrightarrow $\mu_D(x) = \min(\mu_A(x), \mu_B(x)), \forall x \in$ *X*.

(5) $E = A^C \Leftrightarrow \mu_E(x) = 1 - \mu_A(x), \forall x \in X.$ **Definition 2.3.** ([\[1\]](#page-8-0)) Let *X* be an initial universe set and *E* be a set of parameters. Let $P(X)$ denotes the power set of *X* and $A \subseteq E$. A pair (f, A) is called a soft set over *X* if *f* is a mapping from *A* into $P(X)$, i.e., $f : A \longrightarrow P(X)$. In other words, a soft set is a parameterized family of subsets of the set *X*. For $e \in A$, $f(e)$ may be considered as the set of *e*−approximate elements of the soft set (*f*,*A*).

Definition 2.4. ([\[4\]](#page-9-2)) Let *X* be an initial universe set and *E* be a set of parameters. Let $A \subseteq E$. A fuzzy soft set f_A over *X* is a mapping from *E* to I^X , i.e., $f_A : E \longrightarrow I^X$, where $f_A(e) \neq \overline{0}$ if $e \in A \subset E$, and $f_A(e) = \overline{0}$ if $e \notin A$, where $\overline{0}$ denoted empty fuzzy set in *X*

Definition 2.5. ([\[5\]](#page-9-3)) Let *X* be a universal set of elements and *E* be a universal set of parameters for *X*. Let $F : E \longrightarrow$

[∗] Corresponding author e-mail: khedrfathi@gmail.com

I^{*X*} and μ be a fuzzy subset of *E*, i.e., μ : *E* \longrightarrow *I* . Let *F_µ* be the mapping $F_\mu : E \longrightarrow I^X \times I$ defined as follows: $F_{\mu}(e) = (F(e), \mu(e)),$ where $F(e) \in I^X$ and $\mu(e) \in I$. Then F_{μ} is called a generalised fuzzy soft set (*GFSS* in short) over (X, E) .

Definition 2.6. ([\[5\]](#page-9-3)) Let F_{μ} and G_{δ} be two *GFSSs* over (X, E) . F_{μ} is said to be a GFS subset of G_{δ} or G_{δ} is said to be a *GFS* super set of F_μ , denoted by $F_\mu \sqsubseteq G_\delta$, if

(1) μ is a fuzzy subset of δ ;

(2) $F(e)$ is also a fuzzy subset of $G(e)$, $\forall e \in E$.

Definition 2.7. ([\[5\]](#page-9-3)) Let F_{μ} be a *GFSS* over (X, E) . The complement of F_{μ} , denoted by F_{μ}^c , is defined by $F_{\mu}^c = G_{\delta}$, where $\delta(e) = \mu^c(e)$ and $G(e) = F^c(e)$, $\forall e \in E$. Obviously $(F^c_\mu)^c = F^c_\mu$.

Definition 2.8. ([\[6\]](#page-9-4)) Let F_{μ} and G_{δ} be two *GFSSs* over (X, E) . The union of F_{μ} and G_{δ} , denoted by $F_{\mu} \sqcup G_{\delta}$, is The *GFSSH_V*, defined as H_v : $E \longrightarrow I^X \times I$ such that *H*_v (*e*) = (*H*(*e*), *v*(*e*)), where $H(e) = F(e) \vee G(e)$ and $v(e) = \mu(e) \vee \delta(e), \forall e \in E.$

Let $\{(F_\mu)_\lambda, \lambda \in \Lambda\}$, where Λ is an index set, be a family of *GFSSs*. The union of these family, denoted by $\sqcup_{\lambda \in \Lambda} (F_{\mu})_{\lambda}$, is The *GFSS H_v*, defined as $H_v : E \longrightarrow I^X \times I$ such that $H_v(e) = (H(e), v(e)),$ where $H(e) = \bigvee_{\lambda \in \Lambda} (F(e))_{\lambda}$, and $v(e) = \bigvee_{\lambda \in \Lambda} (\mu(e))_{\lambda}$, ∀*e* ∈ *E*.

Definition 2.9. ([\[6\]](#page-9-4)) Let F_{μ} and G_{δ} be two *GFSSs* over (X, E) . The Intersection of F_{μ} and G_{δ} , denoted by $F_{\mu} \Box$ G_{δ} , is the *GFSS* M_{σ} , defined as M_{σ} : $E \longrightarrow I^{X} \times I$ such that $M_{\sigma}(e) = (M(e), \sigma(e))$, where $M(e) = F(e) \wedge G(e)$ and $\sigma(e) = \mu(e) \wedge \delta(e), \forall e \in E$.

Let $\{(F_\mu)_\lambda, \lambda \in \Lambda\}$, where Λ is an index set, be a family of *GFSSs*. The Intersection of these family, denoted by $\Box_{\lambda \in \Lambda}(F_{\mu})_{\lambda}$, is the *GFSS* M_{σ} , defined as M_{σ} : $E \longrightarrow I^X \times I$ such that $M_{\sigma}(e) = (M(e), \sigma(e)),$ where $M(e) = \bigwedge_{\lambda \in \Lambda} (F(e))_{\lambda}$, and $\sigma(e) = \bigwedge_{\lambda \in \Lambda} (\mu(e))_{\lambda}$, ∀*e* ∈ *E*.

Definition 2.10. ([\[5\]](#page-9-3)) A*GFSS* is said to be a generalized null fuzzy soft set, denoted by $\widetilde{0}_{\theta}$, if $\widetilde{0}_{\theta}$: $E \longrightarrow I^X \times I$ such that $\theta_{\theta}(e) = (0(e), \theta(e))$ where $\theta(e) = 0 \quad \forall e \in E$ and $\theta(e) = 0 \,\forall e \in E$ (Where $\overline{0}(x) = 0, \,\forall x \in X$).

Definition 2.11. ([\[5\]](#page-9-3)) A *GFSS* is said to be a generalized absolute fuzzy soft set, denoted by $\widetilde{1}_\triangle$, if $\widetilde{1}_\triangle$: $E \longrightarrow I^X \times I^X$ *I*, where $\tilde{1}_{\triangle}(e) = (\tilde{1}(e), \triangle(e))$ is defined by $\tilde{1}(e) = \overline{1}, \forall e \in$ *E* and \triangle (*e*) = 1, $\forall e \in E$ (Where $\overline{1}(x) = 1, \forall x \in X$).

Definition 2.12. ([\[6\]](#page-9-4)) Let *T* be a collection of generalized fuzzy soft sets over (X, E) . Then *T* is said to be a generalized fuzzy soft topology (*GFST*, in short) over (X, E) if the following conditions are satisfied:

(1) 0_θ and 1_\triangle are in *T*.

(2) Arbitrary unions of members of *T* belong to *T*.

(3) Finite intersections of members of *T* belong to *T*.

The triplet (X, T, E) is called a generalized fuzzy soft topological space (*GFST*- space, in short) over (*X*,*E*)*.* The members of *T* are called *GFS* open sets in (*X*,*T*,*E*). and complements of them are called a *GFS*- closed sets in (X, T, E) . The family of all *GFS*- closed sets in (X, T, E) is denoted by T' .

Definition 2.13. ([\[6\]](#page-9-4)) Let (X, T, E) be a *GFST*-space and F_{μ} be a *GFSS* over (X, E) . Then the generalized fuzzy soft closure of F_{μ} , denoted by $\overline{F_{\mu}}$, is the intersection of all *GFS*- closed supper sets of F_{μ} . Clearly, $\overline{F_{\mu}}$ is the smallest *GFS*- closed set over (X, E) which contains F_μ .

Definition 2.14. ([\[6\]](#page-9-4)) A *GFSS* F_u in a *GFST*-space (X, T, E) is called a generalized fuzzy soft neighborhood [*GFS*-nbd, in short] of the *GFSS* G_{δ} if there exists a *GFS* open set H_v such that $G_\delta \sqsubseteq H_v \sqsubseteq F_\mu$.

Definition 2.15. ([\[6\]](#page-9-4)) Let (X, T, E) be a *GFST*-space and F_{μ} be a *GFSS* over (X, E) . Then the generalized fuzzy soft interior of F_{μ} , denoted by F_{μ}° , is the union of all *GFS* open subsets of F_{μ} . Clearly, F_{μ}° is the largest *GFS* open set over (X, E) which is contained in F_u .

Definition 2.16. ([\[10\]](#page-9-8)) The generalized fuzzy soft set $F_\mu \in$ *GFS*(*X*,*E*) is called a generalized fuzzy soft point (*GFS* point in short) if there exists the element $e \in E$ and $x \in X$ such that $F(e)(x) = \alpha$ $(0 < \alpha \le 1)$ and $F(e)(y) = 0$ for all $y \in X - \{x\}$ and $\mu(e) = \lambda$ ($0 < \lambda \le 1$). We denote this generalized fuzzy soft point $F_{\mu} = (x_{\alpha}, e_{\lambda}).$

 (x, e) and (α, λ) are called respectively, the support and the value of $(x_{\alpha}, e_{\lambda})$.

Definition 2.17. ([\[11\]](#page-9-9)) For any two *GFSSs F_µ* and G_{δ} over (X, E) . F_{μ} is said to be a generalised soft quasi-coincident with G_{δ} , denoted by $F_{\mu}qG_{\delta}$, if there exist $e \in E$ and $x \in X$ such that $F(e)(x) + G(e)(x) > 1$ and $\mu(e) + \delta(e) > 1$.

If F_{μ} is not generalised soft quasi-coincident with G_{δ} , then we write $F_{\mu}qG_{\delta} \Leftrightarrow$ For every $e \in E$ and $x \in X$, $F(e)(x) + G(e)(x) \leq 1$ or for every $e \in E$ and $x \in X$, $\mu(e) + \delta(e) \leq 1.$

Definition 2.18. ([\[11\]](#page-9-9)) Let (x_α, e_λ) be a generalized fuzzy soft point and F_{μ} be a *GFSS* over (X, E) . $(x_{\alpha}, e_{\lambda})$ is said to be generalised soft quasi-coincident with F_{μ} , denoted by $(x_{\alpha}, e_{\lambda}) q F_{\mu}$, if and only if there exists an element $e \in E$ such that $\alpha + F(e)(x) > 1$ and $\lambda + \mu(e) > 1$.

Definition 2.19. ([\[11\]](#page-9-9)) Let F_{μ} and G_{δ} are *GFSSs* over (X, E) . Then the followings are hold:

(1)
$$
F_{\mu} \sqsubseteq G_{\delta} \Leftrightarrow F_{\mu} \bar{q} (\bar{G}_{\delta})^c
$$
;
\n(2) $F_{\mu} q G_{\delta} \Rightarrow F_{\mu} \sqcap G_{\delta} \neq \tilde{0}_{\theta}$;
\n(3) $(x_{\alpha}, e_{\lambda}) \bar{q} F_{\mu} \Leftrightarrow (x_{\alpha}, e_{\lambda}) \tilde{\in} (F_{\mu})^c$;
\n(4) $F_{\mu} \bar{q} (F_{\mu})^c$.

Theorem 2.20. ([\[6\]](#page-9-4)) Let (X, T, E) be a *GFST*-space and F_{μ} be a *GFSS* over (X, E) . Then

(1)
$$
(\overline{F_{\mu}})^c = (F_{\mu}^c)^{\circ};
$$

(2)
$$
(F_{\mu}^{\circ})^c = \overline{(F_{\mu}^c)}.
$$

Definition 2.21. ([\[11\]](#page-9-9)) Let (*X*,*T*,*E*) be a *GFST*-space. Let F_{μ} be a *GFSS* over (X, E) . Then the generalized fuzzy soft boundray of F_{μ} , denoted by F_{μ}^{b} , is defined as $F_{\mu}^{b} = \overline{F_{\mu}} \sqcap$ $\overline{F_{\mu}^{c}}$. clearly, F_{μ}^{b} is the smsllest *GFS* closed set over (X, E) which contains F_{μ} .

Theorem 2.22. ([\[11\]](#page-9-9)) Let (X, T, E) be a *GFST*-space. Let F_{μ} be a *GFSS* over (X, E) . Then

(1)
$$
(F^b_\mu)^c = F^0_\mu \sqcap (F^c_\mu)^0
$$
.
(2) $F^b_\mu = \overline{F_\mu} \sqcap \overline{F^c_\mu} = \overline{F_\mu} \setminus F^0_\mu$.

Definition 2.23. ([\[8\]](#page-9-6)) Let $FS(X, E)$ and $FS(Y, K)$ be the familes of all fuzzy soft sets over *X* and *Y*, respectivly. Let $u: X \longrightarrow Y$ and $p: E \longrightarrow K$ be two functions. Then a mapping $f_{up}: FS(X,E) \longrightarrow FS(Y,K)$ is defined as follows: for a fuzzy soft set $f_A \in FS(X, E), \forall k \in K$ and $y \in Y$. Then

$$
f_{up}(f_A)(k)(y) = \begin{cases} \n\bigvee_{x \in u^{-1}(y)} (\bigvee_{e \in p^{-1}(k) \cap A}) f_A(e))(x), \\ \nif u^{-1}(y) \neq \phi, p^{-1}(k) \cap A \neq \phi, \\ \n0, \n\end{cases}
$$
 otherwise.

 $f_{\mu p}(f_A)$ is called a fuzzy soft image of a fuzzy soft set *fA*.

Definition 2.24. ([\[8\]](#page-9-6)) Let $u: X \longrightarrow Y$ and $p: E \longrightarrow K$ be mappings.

Let $f_{up}: FS(X, E) \longrightarrow FS(Y, K)$ be mapping and $g_B \in$ *FS*(*Y*,*K*). Then $f_{up}^{-1}(g_B)$, is a fuzzy soft set in $FS(X, E)$, defined by

 $f_{up}^{-1}(g_B)(e)(x) = g_B(p(e)(u(x)), \ \forall e \in E, x \in X.$

 $f_{up}^{-1}(G_{\delta})$ is called a fuzzy soft inverse image of G_{δ} .

If *u* and *p* are injective then the fuzzy soft mapping f_{up} is said to be injective. If *u* and *p* are surjective then the fuzzy soft mapping *fup* is said to be surjective. The fuzzy soft mapping f_{up} is constant, if *u* and *p* are constant.

3 Generalized fuzzy soft mappings

Definition 3.1. Let $GFS(X, E)$ and $GFS(Y, K)$ be the familes of all *GFSSs* over (X, E) and (Y, K) , respectivly. Let $u : X \longrightarrow Y$ and $p : E \longrightarrow K$ be mappings. Then a mapping $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ is defined as follows: for a $GFSSF_{\mu} \in GFS(X,E), \forall k \in K$ and $y \in Y$, then

$$
f_{up}(F_{\mu})(k)(y)
$$

=
$$
\begin{cases} (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} F(e)(x), \bigvee_{e \in p^{-1}(k)} \mu(e)), \\ \quad \text{if } u^{-1}(y) \neq \phi, p^{-1}(k) \neq \phi, \\ (0,0), \quad \text{otherwise.} \end{cases}
$$

fup is called a generalized fuzzy soft mapping [*GFS* mapping for short] and $f_{\mu p}(F_{\mu})$ is called the *GFS* image of a *GFSS F*µ.

Definition 3.2. Let $u: X \longrightarrow Y$ and $p: E \longrightarrow K$ be mappings. Let $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a GFS mapping and G_{δ} ∈ $GFS(Y, K)$. Then $f_{up}^{-1}(G_{\delta}) \in GFS(X, E)$ is defined as follows:

$$
f_{up}^{-1}(G_{\delta})(e)(x) = (G(p(e)(u(x)), \delta(p(e)),
$$
 for $e \in E, x \in X$.

 $f_{up}^{-1}(G_{\delta})$ is called the *GFS* inverse image of G_{δ} .

If *u* and *p* are injective then the generalized fuzzy soft mapping f_{up} is said to be injective. If *u* and *p* are surjective then the generalized fuzzy soft mapping *fup* is said to be surjective. The generalized fuzzy soft mapping f_{up} is called constant, if *u* and *p* are constant.

Example 3.3.

Let $X = \{a, b, c\}$, $Y = \{x, y, z\}$, $E = \{e_1, e_2, e_3, e_4\}$ and $K = \{e'_1, e'_2, e'_3\}$. Let $u: X \longrightarrow Y$ and $p: E \longrightarrow K$ be tow mappings defined as

$$
u(a) = z \qquad u(b) = y \qquad u(c) = y,
$$

\n
$$
p(e_1) = e'_1 \qquad p(e_2) = e'_1, \qquad p(e_3) = e'_3, \qquad p(e_4) = e'_2.
$$

\nLet $F_\mu \in GFS(X, E)$ and $G_\delta \in GFS(Y, K)$ where.
\n
$$
F_\mu = \{ (e_1 = \{ \frac{a}{0.5}, \frac{b}{0.7}, \frac{c}{0.6} \}, 0.3),
$$

\n
$$
(e_2 = \{ \frac{a}{0.3}, \frac{b}{0.5}, \frac{c}{0.1} \}, 0.8), (e_3 = \{ \frac{a}{0.9}, \frac{b}{0.1}, \frac{c}{0.5} \}, 0.1) \},
$$

\n
$$
G_\delta = \{ (e'_1 = \{ \frac{x}{0.1}, \frac{y}{0.9}, \frac{z}{0.5} \}, 0.2),
$$

\n
$$
(e'_2 = \{ \frac{x}{0.4}, \frac{y}{0.8}, \frac{z}{0.6} \}, 0.4), (e'_3 = \{ \frac{x}{0.5}, \frac{y}{0.9}, \frac{z}{0.6} \}, 0.8) \}.
$$

\nThen the *GFS* image of F_μ under $f_{\rho\mu}$: *GFS(X, E)* \longrightarrow
\n*GFS(Y, K)* is obtained as

 $f_{up}(F_{\mu})(e'_{1})(x)$ = $(\bigvee_{s \in u^{-1}(x)} \bigvee_{e \in p^{-1}(e'_1)} F(e)(s), \bigvee_{e \in p^{-1}(e'_1)} \mu(e))$ $= (0, \forall_{e \in \{e_1, e_2\}} \mu(e))$ (as $u^{-1}(x) = \phi$) $= (0, \mu(e_1) \vee \mu(e_2))$ $= (0, 0.3 \vee 0.8) = (0, 0.8),$ $f_{up}(F_\mu)(e_1)$ $)(y)$ = $(\bigvee_{s \in u^{-1}(y)} \bigvee_{e \in p^{-1}(e_1')} F(e)(s), \bigvee_{e \in p^{-1}(e_1')} \mu(e))$ $= (\bigvee_{s \in \{b,c\}} \bigvee_{e \in \{e_1,e_2\}} F(e)(s),0.8)$ $= (\bigvee_{s \in \{b,c\}} (F(e_1) \bigvee F(e_2))(s), 0.8)$ $= (\bigvee_{s \in \{b,c\}} (\{\frac{a}{0.5}, \frac{b}{0.7}, \frac{c}{0.6}\})(s), 0.8)$ $=$ (0.7 \vee $=$ $(0.7,0.8)$

 $f_{up}(F_{\mu})(e'_{1})(z) = (0.5, 0.8)$. By similar calculations, we get $f_{up}(F_{\mu}) = \{ (e'_1 = \{\frac{x}{0}, \frac{y}{0})$ $\frac{y}{0.7}, \frac{z}{0.5}$ }, 0.8), $(e_2' =$ $\{\frac{x}{0}, \frac{y}{0}\}$ $(\frac{y}{0}, \frac{z}{0}), 0.1), (e'_3) = (\frac{x}{0}, \frac{y}{0})$ $\left\{\frac{y}{0.5}, \frac{z}{0.9}\right\}, 0$ }. Next, for *p*(*e*_{*i*}), *i* = 1,2,3,4, *p*(*e*_{*i*}) \in *p*(*E*) = *K*, we calculate $f_{up}^{-1}(G_{\delta})(e_1)(a) = (G(p(e_1))(u(a)), \delta(p(e_1)))$

$$
= (G(e'_1)(z), \delta(e'_1))
$$

\n
$$
= (\{\frac{x}{0,1}, \frac{y}{0,9}, \frac{z}{0,5}\}(z), 0.2))
$$

\n
$$
= (0.5, 0.2),
$$

\n
$$
f_{up}^{-1}(G_{\delta})(e_1)(b) = (G(p(e_1))(u(b)), 0.2))
$$

\n
$$
= (G(e'_1)(y), \delta(e'_1))
$$

\n
$$
= (\{\frac{x}{0,1}, \frac{y}{0,9}, \frac{z}{0,5}\}(y), 0.2)
$$

\n
$$
= (0.9, 0.2),
$$

\n
$$
f^{-1}(G_{\delta})(e_1)(c) = (0.9, 0.2), \text{ By similar calcul}
$$

 $f_{up}^{-1}(G_{\delta}%)=\frac{1}{2}G_{\delta}\left(\frac{\delta G_{\delta}}{\delta}\right)$ $=(0.9, 0.2)$. By similar calculations, we get

$$
f_{up}^{-1}(G_{\delta}) = \{ (e_1 = \{\frac{a}{0.5}, \frac{b}{0.9}, \frac{c}{0.9} \}, 0.2), (e_2 = \{\frac{a}{0.5}, \frac{b}{0.9}, \frac{c}{0.9} \}, 0.2), (e_3 = \{\frac{a}{0.6}, \frac{b}{0.9}, \frac{c}{0.9} \}, 0.8), (e_4 = \{\frac{a}{0.6}, \frac{b}{0.8}, \frac{c}{0.8} \}, 0.4) \}.
$$

Definition 3.4. Let $f_{u_1p_1}$: $GFS(X, E) \longrightarrow GFS(Y, K)$ and $g_{u_2p_2}$: $GFS(Y,K) \longrightarrow GFS(Z,D)$ be GFS mappings and $F_{\mu} \in GFS(X,E).$

Then $g_{u_2p_2}$ *o* $f_{u_1p_1}$: $GFS(X,E) \longrightarrow GFS(Z,D)$ is *GFS* mapping defined as follows: $\forall d \in D, \forall z \in Z$, then

 $(g_{u_2p_2} \circ f_{u_1p_1})(F_\mu)(d)(z)$

$$
= \begin{cases} (\bigvee_{x \in (u_2 \circ u_1)^{-1}(z)} \bigvee_{e \in (p_2 \circ p_1)^{-1}(d)} F(e)(x), \\ \bigvee_{e \in (p_2 \circ p_1)^{-1}(d)} \mu(e)), \\ \bigvee_{e \in (p_2 \circ p_1)^{-1}(d)} \neq \emptyset, \\ (0,0), \bigvee_{e \in (p_2 \circ p_1)^{-1}(d)} \mu(e), \bigvee_{e \in (p_2 \circ p_1)^{-1}(e)} \mu(e) \bigvee_{e \in (p_2 \circ p_
$$

If $M_{\sigma} \in GFS(Z,D)$. Then $(g_{u_2p_2} \circ f_{u_1p_1})^{-1}(M_{\sigma})$ is a *GFSS* in *GFS*(*X*,*E*), defined as follows: $\forall e \in E, \forall x \in X$. $(g_{u_2p_2} \circ f_{u_1p_1})^{-1}(M_{\sigma})(e)(x)$

 $=(u_2 \circ u_1, p_2 \circ p_1)^{-1}(M_{\sigma})(e)(x)$ $= (M(p_2(p_1(e)))(u_2(u_1(x))), \sigma(p_2(p_1(e))))$.

Proposition 3.5. Let f_{up} : $GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping and F_{μ} , $H_{\nu} \in GFS(X, E)$ and G_{δ} , $M_{\sigma} \in$ $GFS(Y,K)$. Then

(1) The generalized fuzzy soft union and generalized fuzzy soft intersection of generalized fuzzy soft images $f_{pu}(F_{\mu})$ and $f_{up}(H_{\nu})$ in $GFS(Y, K)$ are defined as

$$
(f_{up}(F_{\mu}) \sqcup f_{up}(H_{v}))(k)(y) = f_{up}(F_{\mu})(k)(y) \vee f_{up}(H_{v})(k)(y),
$$

$$
(f_{up}(F_{\mu}) \sqcap f_{up}(H_{v}))(k)(y)
$$

 $=f_{\mu p}(F_{\mu})(k)(y) \wedge f_{\mu p}(H_{\nu})(k)(y).∀k ∈ K, y ∈ Y.$

(2) The generalized fuzzy soft union and generalized fuzzy soft intersection of generalized fuzzy soft inverse images $f_{up}^{-1}(G_{\delta})$ and $f_{up}^{-1}(M_{\sigma})$ in $GFS(X, E)$ are defined as

$$
(f_{up}^{-1}(G_{\delta}) \sqcup f_{up}^{-1}(M_{\sigma}))(e)(x)
$$

= $f_{pu}^{-1}(G_{\delta})(e)(x) \vee f_{up}^{-1}(M_{\sigma})(e)(x),$
 $(f_{up}^{-1}(G_{\delta}) \sqcap f_{up}^{-1}(M_{\sigma}))(e)(x)$

 $=f_{up}^{-1}(G_{\delta})(e)(x) \wedge f_{up}^{-1}(M_{\sigma})(e)(x).\forall e \in E, x \in X.$

Where ⊔ and ⊓ denoted generalized fuzzy soft union and generalized fuzzy soft intersection of generalized fuzzy soft images and generalized fuzzy soft inverse images in $GFS(X, E)$ and $GFS(Y, K)$, respectively.

Theorem 3.6 Let $f_{up}: GFS(X,E) \longrightarrow GFS(Y,K)$ be a *GFS* mapping. For *GFSSs* F_{μ} and $H_{\nu} \in GFS(X, E)$, we have.

(1)
$$
f_{up}(\tilde{\theta}_{\theta_X}) = \tilde{\theta}_{\theta_Y}
$$
,
\n(2) $f_{up}(\tilde{1}_{\triangle_X}) \sqsubseteq \tilde{1}_{\triangle_Y}$,
\n(3) If $F_{\mu} \sqsubseteq H_V$, then $f_{up}(F_{\mu}) \sqsubseteq f_{up}(H_V)$,
\n(4) $f_{up}(F_{\mu} \sqcup H_V) = f_{up}(F_{\mu}) \sqcup f_{up}(H_V)$,
\n(5) $f_{up}(F_{\mu} \sqcap H_V) \sqsubseteq f_{up}(F_{\mu}) \sqcap f_{up}(H_V)$.
\n**Proof** (1) For $k \in K$ and $y \in Y$,
\n $f_{up}(\tilde{\theta}_{\theta_X})(k)(y)$
\n $= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} \tilde{0}(e)(x), \bigvee_{e \in p^{-1}(k)} \theta_X(e))$
\n $= (0,0) = (\tilde{0}(k)(y), \theta_Y(k)) = \tilde{0}_{\theta_Y}(k)(y)$.
\n(2) For $k \in K$ and $y \in Y$,
\n $f_{up}(\tilde{1}_{\triangle_X})(k)(y)$
\n $= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} \tilde{1}(e)(x), \bigvee_{e \in p^{-1}(k)} \triangle_X(e))$
\n $\leq (1,1) = (\tilde{1}(k)(y), \theta(k) = \tilde{1}_{\triangle_Y}(k)(y)$.
\n(3) Considering only the non-trival case, for $k \in K$ and
\n $y \in Y$, and since $F_{\mu} \sqsubseteq H_V$, we have

 $f_{up}(F_\mu)(k)(y)$ $=$ $(\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} F(e)(x), \bigvee_{e \in p^{-1}(k)} \mu(e))$ $\leq (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} H(e)(x), \bigvee_{e \in p^{-1}(k)} v(e))$ $=f_{\mu p}(H_v)(k)(y)$ This give (3). (4) For $k \in K$ and $y \in Y$, we show that *f*^{*up*}((*F*µ)∟(*H*_V))(*k*)(*y*) $= f_{up}(F_{\mu})(k)(y) \vee f_{up}(H_{\nu})(k)(y).$ Consider $f_{\mu p}(F_{\mu} \sqcup H_{\nu})(k)(y) = f_{\mu p}(M_{\sigma})(k)(y)$ (say)

$$
= \begin{cases} (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} M(e)(x), \bigvee_{e \in p^{-1}(k)} \sigma(e)), \\ \text{ if } u^{-1}(y) \neq \phi, p^{-1}(k) \neq \phi, \\ (0,0), \qquad \text{ otherwise}, \end{cases}
$$

whwer,

M(*e*)(*x*) = *F*(*e*)(*x*) \forall *H*(*e*)(*x*) and σ(*e*) = *μ*(*e*) \forall *v*(*e*) for $e \in p^{-1}(k), x \in p^{-1}(y)$.

Considering only the non- trival case, we have $f_{up}(F_\mu \sqcup H_\nu)(k)(y)$ $=$ $(\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} [F(e)(x) \vee H(e)(x)],$ $\bigvee_{e \in p^{-1}(k)} \mu(e) \vee v(e)$). (I) By Proposition (3.5), we have $(f_{up}(F_\mu) \sqcup f_{up}(H_\nu))(k)(y)$ $= f_{up}(F_{\mu})(k)(y) \sqrt{f_{up}(H_{\nu})(k)(y)}$ $= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} F(e)(x), \bigvee_{e \in p^{-1}(k)} \mu(e)) \bigvee$ $(\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} H(e)(x), \bigvee_{e \in p^{-1}(k)} \nu(e))$ $= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} [F(e)(x) \bigvee H(e)(x)],$ $\bigvee_{e \in p^{-1}(k)} \mu(e) \vee \nu(e)$). (II) By (I) and (II) we have (4) .

(5) For $k \in K$ and $y \in Y$, using Proposition(3.5) we have

$$
f_{up}(F_{\mu} \cap H_{\nu})(k)(y) = f_{up}(M_{\sigma})(k)(y), \quad (say)
$$

\n
$$
= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} M(e)(x), \bigvee_{e \in p^{-1}(k)} \sigma(e)),
$$

\n
$$
= (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} [F(e)(x) \wedge H(e)(x)],
$$

\n
$$
\bigvee_{e \in p^{-1}(k)} \mu(e) \wedge \nu(e)).
$$

\n
$$
\leq (\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} F(e)(x), \bigvee_{e \in p^{-1}(k)} \mu(e)) \wedge
$$

\n
$$
(\bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} H(e)(x), \bigvee_{e \in p^{-1}(k)} \nu(e))
$$

\n
$$
= f_{up}(F_{\mu})(k)(y) \wedge f_{up}(H_{\nu})(k)(y).
$$

\nThis give (5)

In Theorem 3.6, inequalities (2) , (5) and implication (3) cannot be reversed in general, as shown in the following.

Example 3.7. Let $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping where

 $X = \{a, b, c\}$, $Y = \{x, y, z\}$, $E = \{e_1, e_2, e_3, e_4\}$ and $K =$ $\{e'_1, e'_2, e'_3\}$. For (2) we define mappings $u : X \longrightarrow Y$ and $p: E \longrightarrow K$ as $u(a) = x$ $u(b) = y$ $u(c) = x$, $p(e_1) = e_2^{\prime}$ $p(e_2) = e_1^{\prime}$, $p(e_3) = e_2^{\prime}$, $p(e_4) = e_1^{\prime}$. $\widetilde{1}_{\Delta_Y} \not\sqsubseteq \{ (e_1' = \{\frac{x}{1}, \frac{y}{1})\}$ $\left(\frac{y}{1},\frac{z}{0}\right),1),\left(e_{2}^{'}=\left\{\frac{x}{1},\frac{y}{1}\right\}\right)$ $\frac{y}{1}, \frac{z}{0}\}, 1),$ $(e_3' = \{\frac{x}{0}, \frac{y}{0}\})$ $\left\{\frac{y}{0}, \frac{z}{0}\right\}, 0)$ } = $f_{pu}(\widetilde{1}_{\Delta_X})$.

For (3) and (5), define mapping $u : X \longrightarrow Y$ and $p: E \longrightarrow K$ as

 $u(a) = y$ $u(b) = y$ $u(c) = y$, $p(e_1) = e'_2, p(e_2) = e'_1, p(e_3) = e'_2, p(e_4) = e'_1.$ Choose two generalized fuzzy soft sets in $GFS(X, E)$ as F_{μ} = {(*e*₃ = { $\frac{a}{0.3}, \frac{b}{0.7}, \frac{c}{0.5}$ },0.2)}, H_{V} = {(*e*₃ = $\{\frac{a}{0.5}, \frac{b}{0.1}, \frac{c}{1}\}, 0.3)\}.$ Then the calculations give $f_{up}(F_{\mu}) = \{ (e'_1 = \{\frac{x}{0}, \frac{y}{0}\})$ $(\frac{y}{0}, \frac{z}{0}), 0), (\frac{e}{2} = {\frac{x}{0}, \frac{y}{7}}$ $P_{p}(F_{\mu}) = \{ (e_{1}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \frac{z}{0}\}, 0), (e_{2}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \frac{z}{0}\}, 0.2), (e_{3}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \frac{z}{0}\}, 0.2), (e_{4}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \frac{z}{0}\}, 0.2), (e_{5}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \frac{z}{0}\}, 0.2), (e_{6}^{\prime} = \{\frac{x}{0}, \frac{y}{0}, \$ (e_3) $\frac{1}{3}$ = { $\frac{x}{0}$, $\frac{y}{0}$ $\frac{y}{0}, \frac{z}{0}\}, 0)\}$ \iint_{\Box} {(*e'*₁ = { $\frac{x}{0}$, $\frac{y}{0}$ } $(\frac{y}{0}, \frac{z}{0}), 0), (\frac{e}{2}) = {\frac{x}{0}, \frac{y}{1}}$ $\frac{y}{1}, \frac{z}{0}\}, 0.3),$ $(e_3' = \{\frac{x}{0}, \frac{y}{0}\})$ $\left\{\frac{y}{0}, \frac{z}{0}\right\}, 0$) = $f_{up}(H_v)$ but $F_\mu \not\sqsubseteq H_v$. Also, we have $f_{up}(F_\mu) \sqcap f_{up}(H_\nu) = \{ (e_1' = \{\frac{x}{0}, \frac{y}{0}\})$ $(\frac{y}{0}, \frac{z}{0}), 0), (\frac{e}{2}) =$ $\{\frac{x}{0}, \frac{y}{7}\}$ $(\frac{y}{7}, \frac{z}{0}), 0.2), (\frac{e'}{3}) = (\frac{x}{0}, \frac{y}{0})$ $\left\{\frac{y}{0},\frac{z}{0}\right\},0)\right\}$ $\not\sqsubseteq$ $\left\{\left(e_{1}^{'}\right)$ = $\{\frac{x}{0}, \frac{y}{0}\}$ $(\frac{y}{0}, \frac{z}{0}), 0), (\frac{e}{2} = \{\frac{x}{0}, \frac{y}{5}\}$ $(\frac{y}{5}, \frac{z}{0})$, $(0.2), (\frac{e}{3}) = {\frac{x}{0}, \frac{y}{0}}$ $\frac{y}{0}, \frac{z}{0}\}, 0)$ } = $f_{up}(F_\mu \sqcap H_\nu)$.

Theorem 3.8. Let $F_\mu \in GFS(X,E)$, ${F_\mu}_{i \in J} \subset GFS(X,E)$ where *J* is an index set.

 $(1) f_{pu}(\sqcup_{i \in J} (F_{\mu})_i) = \sqcup_{i \in J} f_{up}(F_{\mu})_i.$ (2) $f_{up}(\Box_{i \in J}(F_{\mu})_i) = \Box_{i \in J} f_{up}(F_{\mu})_i$, if f_{up} is injective. (2) $f_{up}(1_{\Delta_X}) = 1_{\Delta_Y}$, if f_{up} is surjective. **Proof** The straightforward proof is omitted.

Theorem 3.9. Let $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping. For *GFSSs* G_{δ}, J_{σ} and $(G_{\delta})_i$ \in *GFS*(*Y*,*K*) $\forall i \in J$, where *J* is an index set, we have.

 $(1) f_{up}^{-1}(\widetilde{0}_{\theta_Y}) = \widetilde{0}_{\theta_X},$ $(2) f_{up}^{-1}(\widetilde{1}_{\Delta_Y}) = \widetilde{1}_{\Delta_X},$ (3) If $G_{\delta} \sqsubseteq J_{\sigma}$. Then $f_{up}^{-1}(G_{\delta}) \sqsubseteq f_{up}^{-1}(J_{\sigma})$, (4) $f_{up}^{-1}(G_{δ} \sqcup J_{σ}) = f_{up}^{-1}(G_{δ}) \sqcup f_{up}^{-1}(J_{σ})$. In general, $f_{up}^{-1}(\sqcup_{i\in J}(G_{\delta})_{i})=\sqcup_{i\in J}f_{up}^{-1}(G_{\delta})_{i},$ (5) $f_{up}^{-1}(G_{\delta} \sqcap J_{\sigma}) = f_{up}^{-1}(G_{\delta}) \sqcap f_{up}^{-1}(J_{\sigma})$. In general, $f_{up}^{-1}(\Box_{i\in J}G_{\delta})_i) = \Box_{i\in J} f_{up}^{-1}(G_{\delta})_i.$ **Proof** (1) $f_{up}^{-1}(\widetilde{0}_{\theta_Y})(e)(x)$ $=$ $(\widetilde{0}(p(e)(u(x)), \theta_Y(p(e)))$ $=(0,0) = 0_{\theta_X}(e)(x), \forall e \in E, x \in X.$ $(2) f_{up}^{-1}(\widetilde{1}_{\Delta Y}) = \widetilde{1}_{\Delta X},$ $=(1,1) = 1_{\Delta_X}(e)(x), \forall e \in E, x \in X.$ (3) Since $G_{\delta} \sqsubseteq J_{\sigma}$, we have $f_{up}^{-1}(G_{\delta})(e)(x)$ $= (G(p(e))(u(x)), \delta(p(e))$ $=(G(k)(u(x)),\delta(k),k\in K)$ $\leq (J(k)(u(x)), \sigma(k))$ $=f_{up}^{-1}(J_{\sigma})(e)(x)$. (4) For $e \in E$ and $x \in X$, we have $f_{up}^{-1}(G_{\delta} \sqcup J_{\sigma})(e)(x)$ $=f_{up}^{-1}(N_{\psi})(e)(x)$ $= (N(p(e))(u(x)), \psi(p(e))$ $= (N(k)(u(x)), \psi(p(e)), p(e) \in K, u(x) \in Y$ $= (N(k)(u(x)), \psi(k))$, where $k = p(e) = ((G(k) \vee J(k))(u(x)),(\delta \vee \sigma)(k))$ $= (G(k)(u(x))) \vee J(k)(u(x)), \delta(k) \vee \sigma(k)$. (*I*) Next, using Proposition (3.5), we get $[f_{up}^{-1}(G_{\delta}) \sqcup f_{up}^{-1}(J_{\sigma})](e)(x)$ $=f_{up}^{-1}(G_{\delta})(e)(x)\vee f_{up}^{-1}(J_{\sigma})(e)(x)$ $= (G(p(e))(u(x)), \delta(p(e)) (f(p(e))(u(x)), \sigma(p(e)))$ $= (G(k)(u(x))\sqrt{J(k)}(u(x)),\delta(k)\sqrt{\sigma(k)}$. (*II*)

From (I) and (II), we get (4).

(5) For $e \in E$, $x \in X$ and using Proposition (3.5), we have

$$
f_{up}^{-1}(G_{\delta} \sqcap J_{\sigma})(e)(x)
$$

= $f_{up}^{-1}(N_{\Psi})(e)(x)$
= $(N(p(e))(u(x)), \Psi(p(e)), p(e) \in K$
 $(N(k)(u(x)), \Psi(k), k = p(e)$
= $((G(k) \land J(k))(u(x)), (\delta \land \sigma)(k)$
= $(G(k)(u(x)) \land J(k)(u(x)), \delta(k) \land \sigma(k)$
= $f_{up}^{-1}(G_{\delta})(e)(x) \land f_{up}^{-1}(J_{\sigma})(e)(x).$
= $(f_{up}^{-1}(G_{\delta}) \sqcap f_{up}^{-1}(J_{\sigma}))(e)(x)$
This give (5).

The implication in (3) is not reversible, in general, as can be shown in the following Example.

Example 3.10. Let $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping where the mappings $u : X \longrightarrow Y$ and $u: E \longrightarrow K$ ard defined by

 $u(a) = x$ $u(b) = x$ $u(c) = y$, $p(e_1) = e'_1$ $p(e_2) = e'_3$, $p(e_3) = e'_3$, $p(e_4) = e'_1$. Choose two generalized fuzzy soft sets in *GFS*(*Y*,*K*)

$$
\quad \text{as} \quad
$$

$$
G_{\delta} = \{ (e_2' = \{\frac{x}{0.6}, \frac{y}{0}, \frac{z}{0.5} \}, 0.5) \},
$$

\n
$$
J_{\sigma} = \{ (e_2' = \{\frac{x}{0.2}, \frac{y}{0.1}, \frac{z}{0.9} \}, 0.3) \}.
$$

\nThen calculations give

 $f_{up}^{-1}(G_{\delta}) = \widetilde{0}_{\theta_X} \sqsubseteq \widetilde{0}_{\theta_X} = f_{pu}^{-1}(J_{\sigma}),$ but $G_{\delta} \not\sqsubseteq J_{\sigma}.$

Theorem 3.11 Let $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping. For $F_{\mu} \in GFS(X, E)$ and $G_{\delta} \in GFS(Y, K)$, the following statements are true.

 $(1) f_{up}^{-1}(G_{\delta})^{c} = (f_{up}^{-1}(G_{\delta}))^{c}.$

(2) $f_{up}(f_{up}^{-1}(G_{\delta})) \subseteq G_{\delta}$, if f_{up} is surjective, the equality holds.

(3) $F_{\mu} \subseteq f_{\mu}^{-1}(f_{\mu}(\mathbf{F}_{\mu}))$, if f_{μ} is injective, the equality holds.

Proof

 $(1) f_{up}^{-1}((G_{\delta})^{c})(e)(x) = (G^{c}(p(e)(u(x)), \delta^{c}(p(e))),$ if $e \in E, x \in X$. (I) On other hand, for every $x \in X, e \in E$, we have $(f_{up}^{-1}(G_{\delta}))^{c}(e)(x) = 1 - (f_{up}^{-1}(G_{\delta})(e)(x))$, if *e* ∈ *E*, *x* ∈ *X* $= (1 – G(p(e)(u(x)), 1 – δ(p(e))),$ if $e ∈ E, x ∈ X$ $=$ $(G^c(p(e)(u(x)), \delta^c(p(e))),$ if $e \in E, x \in X.(II)By(I)and(II)we have(1).$ (2) $f_{up}(f_{up}^{-1}(G_{\delta}))(k)(y)$ $= \bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} f_{up}^{-1}(G_{\delta})(e)(x))$ $\leq \bigvee_{x \in u^{-1}(y)} \bigvee_{e \in p^{-1}(k)} (G(p(e)u(x)), \delta(p(e)))$ $= (G(k)(y), \delta(k))$ $=G_{\delta}(k)(y).$ Therefore $f_{\mu p}(f_{\mu p}^{-1}(G_{\delta}))(k)(y) \leq G_{\delta}(k)(y), \forall k \in K, \forall y \in Y.$ $(f_{\mu p}(F_{\mu}))(e)(x) = f_{\mu p}(F_{\mu})(k)(y)$ $= f_{\mu p}(F_{\mu})(p(e)(u(y)))$ = $(\bigvee_{x \in u^{-1}(u(x))} \bigvee_{e \in p^{-1}(p(e))} F(e)(x), \bigvee_{e \in p^{-1}} (p(e)) \mu(e))$

 \geq (*F*(*e*)(*x*), μ (*e*)) = *F*_μ(*e*)(*x*), for all *e* ∈ *E*, ∀*x* ∈ *X*. This completes the proof.

Theorem 3.12. Let $F_\mu \in GFS(X,E), G_\delta \in GFS(Y,K)$, and $f_{up}: GFS(X, E) \longrightarrow GFS(Y, K)$ be a *GFS* mapping. Then $(1) G_{\delta} \bar{q} f_{\mu p}(F_{\mu}) \Longrightarrow f_{\mu p}^{-1}(G_{\delta}) \bar{q} F_{\mu}.$

(2)
$$
G_{\delta}qf_{up}(F_{\mu}) \Longrightarrow f_{up}^{-1}(G_{\delta})qF_{\mu}
$$
.
\n**Proof** (1) $G_{\delta}\bar{q}f_{up}(F_{\mu}) \Longrightarrow f_{up}(F_{\mu}) \sqsubseteq (G_{\delta})^c$
\n $\Longrightarrow F_{\mu} \sqsubseteq f_{up}^{-1}(f_{up}(F_{\mu})) \sqsubseteq f_{up}^{-1}(G_{\delta}^c)$
\n $\Longrightarrow F_{\mu} \sqsubseteq (f_{up}^{-1}(G_{\delta}))^c$
\n $\Longrightarrow f_{\mu} \sqsubseteq (f_{up}^{-1}(G_{\delta}))^c$
\n $\Longrightarrow f_{up}^{-1}(G_{\delta})\bar{q}F_{\mu}$.
\n(2) Let $f_{up}(F_{\mu})qG_{\delta}$ and $F_{\mu}\bar{q}f_{up}^{-1}(G_{\delta})$. Then

 $F_{\mu} \equiv (f_{\mu p}^{-1}(G_{\delta}))^{c} = f_{\mu p}^{-1}(G_{\delta}^{c})$. It follows that $f_{up}(F_{\mu}) \subseteq f_{up}(f_{up}^{-1}(G_{\delta}^c)) \subseteq G_{\delta}^c$. This shows that $f_{pu}(F_{\mu})\bar{q}G_{\delta}$. This is a contradiction.

4 Generalized fuzzy soft continuous mappings

Defintion 4.1. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*-spaces, a generalized fuzzy soft mapping f_{pu} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ is called a generalized fuzzy soft continuous [in short *GFS*-continuous] if $f_{up}^{-1}(G_{\delta}) \in T_1$ for all $G_{\delta} \in T_2$.

Next, we give an example about *GFS*-continuous.

Example 4.2 Let
$$
X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3\},
$$

\n $E = \{e_1, e_2\}$ and $K = \{e'_1, e'_2\}.$
\n $T_1 = \{\widetilde{0}_{\theta_X}\widetilde{1}_{\Delta_X}, (F_\mu)_1, (F_\mu)_2\}$, where $(F_\mu)_1$ and $(F_\mu)_2$
\nare two *GFSSs* over (X, E) defined as follows:
\n $(F_\mu)_1 = \{ (e_1 = \{\frac{x_2}{0.4}\}, 0.1), (e_2 = \{\frac{x_1}{0.1}\}, 0.2) \},$
\n $(F_\mu)_2 = \{ (e_1 = \{\frac{x_2}{0.5}, \frac{x_3}{0.6}\}, 0.7), (e_2 = \{\frac{x_1}{0.7}, \frac{x_2}{0.9}\}, 0.3) \}.$
\nThen T_1 is a *GFS* topology over (X, E) and hence
\n (X, T_1, E) is a *GFST*-space over (X, E) .

 $T_2 = \{0_{\theta_Y}1_{\Delta_Y}, (G_{\delta})_1, (G_{\delta})_2\}$, where $(G_{\delta})_1$ and $(G_{\delta})_2$ are two *GFSSs* over (*Y*,*K*) defined as follows:

$$
(G_{\delta})_1 = \{ (e_1' = \{\frac{y_1}{0.4}\}, 0.1), (e_2' = \{\frac{y_2}{0.1}\}, 0.2) \},
$$

 $(G_{\delta})_1 = \{ (e_1^{'} = \{\frac{y_1}{0.5}, \frac{y_3}{0.6}\}, 0.7), (e_2^{'} = \{\frac{y_1}{0.9}, \frac{y_2}{0.7}\}, 0.3) \}.$ Then T_2 is a GFS topology over (Y, K) and hence

 (Y, T_2, K) is a *GFST*-space over (Y, K) .

If f_{up} is a mapping from *X* to *Y* defined as follows: $u(x_1) = y_2$ $u(x_2) = y_1$ $u(x_3) = y_3$, $p(e_1) = e'_1$ $p(e_2) = e'_2.$

Then it is easy to verify that $f_{up}^{-1}(G_\delta) \in T_1$ for all $G_\delta \in$ *T*₂. Thus f_{up} is a *GFS*-continuous mapping from (X, T_1, E) to (Y, T_2, K) .

Theorem 4.3 F_{μ} is *GFS* open if and only if for each *GFSS* G_{δ} contained in F_{μ} , F_{μ} is a *GFS*-nbd of G_{δ} .

Proof. (\Longrightarrow). Obvious.

 (\Leftarrow) . Since $F_{\mu} \sqsubseteq F_{\mu}$, there exists a *GFSS* open set H_{ν} such that $F_{\mu} \sqsubseteq H_{\nu} \sqsubseteq F_{\mu}$. Hence $H_{\nu} = F_{\mu}$ and F_{μ} is *GFSS* open.

Theorem 4.4. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*spaces. For a *GFS* mapping f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$, the following statements are equivalent:

(1) f_{up} is *GFS*-continuous;

(2) for *GFSS* F_{μ} in *GFS*(*X*,*E*), the inverse image of every *GFS*-nbd of $f_{up}(F_\mu)$ is a *GFS*-nbd of F_μ ;

(3) for each *GFSS* F_{μ} in *GFS*(*X*,*E*) and each *GFS*nbd M_{σ} of $f_{\mu p}(F_{\mu})$, there is a *GFS*-nbd H_{ν} of F_{μ} such that $f_{up}(H_v) \sqsubseteq M_{\sigma}$.

Proof (1) \Longrightarrow (2). Let f_{up} be *GFS*-continuous, if M_{σ} is a *GFS*-nbd of $f_{\mu p}(F_{\mu})$, then M_{σ} contains an open *GFS*nbd K_γ of $f_{\mu p}(F_\mu)$. Since $f_{\mu p}(F_\mu) \sqsubseteq M_\sigma$, $f_{\mu p}^{-1}(f_{\mu p}(F_\mu)) \sqsubseteq$ $f_{up}^{-1}(K_{\gamma}) \sqsubseteq f_{up}^{-1}(M_{\sigma})$. But $F_{\mu} \sqsubseteq f_{up}^{-1}(f_{up}(F_{\mu}))$ and $f_{up}^{-1}(K_{\gamma})$ is a *GFS* open. Consequntly, $f_{up}^{-1}(M_{\sigma})$ is a *GFS*-nbd of F_{μ} .

 $(2) \implies (1)$. We use Theorem (4.3). We prove that if $G_{\delta} \in T_2$ then $f_{up}^{-1}(G_{\delta}) \in T_1$. Let F_{μ} be any GFS sub set of $f_{up}^{-1}(G_{\delta})$. Then G_{δ} is an open *GFS*-nbd of $f_{up}(F_{\mu})$, and by (2) $f_{up}^{-1}(G_{\delta})$ is a *GFS*-nbd of F_{μ} . This shows that $f_{up}^{-1}(G_{\delta})$ is a *GFS* open set.

(2) \implies (3) Let *F*_µ be any *GFSS* over (*X, E*) and let M_{σ} be any *GFS*-nbd of $f_{up}(F_{\mu})$. By (2), $f_{up}^{-1}(M_{\sigma})$ is a *GFS*-nbd of F_{μ} . Then there exists a *GFS* open set H_{ν} in (X, T_1, E) such that $F_\mu \sqsubseteq H_\nu \sqsubseteq f_{\mu p}^{-1}(M_\sigma)$. Thus, we have an open *GFS*-nbd H_v of F_μ such that $f_{\mu p}(F_{\mu}) \sqsubseteq f_{\mu p}(H_{\nu}) \sqsubseteq M_{\sigma}$.

 $(3) \implies (2)$ Let M_{σ} be any *GFS*-nbd of $f_{\mu p}(F_{\mu})$. There is a *GFS*-nbd H_v of F_μ such that $f_{up}(H_v) \sqsubseteq M_\sigma$. Hence $f_{\mu p}^{-1}(f_{\mu p}(H_v)) \subseteq f_{\mu p}^{-1}(M_{\sigma})$. Furthermore, since $H_v \sqsubseteq f_{up}^{-1}(f_{up}(H_v)), f_{up}^{-1}(M_{\sigma})$ is a *GFS*-nbd of F_{μ} .

Theorem 4.5. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*-spaces and f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* mapping. Then the followings are equivalent:

(1) f_{up} is *GFS*-continuous;

(2) $f_{up}^{-1}(G_{δ}) \in T'_1$, ∀ $G_δ \in T'_2$;

$$
(3) f_{up}^{-1}(G_{\delta}) \sqsubseteq f_{up}^{-1}(\overline{G_{\delta}}), \forall G_{\delta} \in GFS(Y, K).
$$

Proof $(1) \implies (2)$ Let G_{δ} be a *GFS*-closed set over (Y, K) . Then, $G^c_{\delta} \in T_2$ and by (1) $f_{up}^{-1}(G^c_{\delta}) \in T_1$.

Since $f_{up}^{-1}(G_{\delta}^c) = (f_{up}^{-1}(G_{\delta}))^c$, we have $f_{up}^{-1}(G_{\delta})$ is *GFS* closed over (X, E) .

 $(2) \implies (3)$ Let $G_{\delta} \in GFS(Y,K)$, $\overline{G_{\delta}} \in T'_2$ by (1) $f_{up}^{-1}(\overline{G_{\delta}}) \in T_1^{'}$. Then

$$
\overline{f_{up}^{-1}(G_{\delta})} \sqsubseteq \overline{f_{up}^{-1}(\overline{G_{\delta}})} = f_{up}^{-1}(\overline{G_{\delta}}).
$$

 $(3) \implies (1)$ Let $G_{\delta} \in T_2$. Then $G_{\delta}^c = \overline{G_{\delta}^c}$. From the hypothesis,

 $f_{up}^{-1}(G_{\delta}^c) \subseteq f_{up}^{-1}(\overline{G_{\delta}^c}) = f_{up}^{-1}(G_{\delta}^c)$. Then $f_{up}^{-1}(G^c_{\delta})$ is *GFS* closed.

Since $f_{up}^{-1}(G_{\delta}^c) = (f_{up}^{-1}(G_{\delta}))^c$ by Theorem (3.11), we have $f_{up}^{-1}(G_{\delta})$ is *GFS* open over (X, E) .

Theorem 4.6. Let If $f_{u_1p_1}$: $(X, T_1, E) \longrightarrow (Y, T_2, K)$ and $g_{u_2p_2}$: $(Y, T_2, K) \longrightarrow (Z, T_3, D)$ are *GFS*-continuous mappings, then $g_{u_2p_2} \circ f_{u_1p_1} : (X, T_1, E) \longrightarrow (Z, T_3, D)$ is also *GFS*-continuous.

Proof. For a *GFSS* $G_{\delta} \in GFS(Z,D)(g_{u_2p_2} \quad o$ o $f_{u_1p_1}$ $^{-1}(G_{\delta})(e)(x)$ = $(u_2 \t o \t u_1, p_2 \t o$ $^{-1}(G_{\delta}(e)(x)) =$ $e(G(p_2(p_1(e)))(u_2(u_1(x))), \delta(p_2(p_1(e))))$ = $u_1^{-1}(u_2)^{-1}(G(p_2(p_1(e)))(x),\delta(p_2(p_1(e))))$ =

 $(u_1, p_1)^{-1}((u_2, p_2)^{-1}(G_{\delta}))(e)(x).$ Hence $(g_{u_2p_2} \circ f_{u_1p_1})^{-1}(G_{\delta}) = (u_1,p_1)^{-1}((u_2,p_2)^{-1}(G_{\delta})),$ (u_2, p_2) ⁻¹(*G*^δ) ∈ *T*₂ since $g_{u_2p_2}$ is *GFS* continuous, and so $(g_{u_2p_2} \circ f_{u_1p_1})^{-1}(G_{\delta}) = f_{u_1p_1}^{-1}(g_{u_2p_2}^{-1}(G_{\delta})) \in T_1$ since $f_{u_1p_1}$ *GFS* continuous.

Defintion 4.7. A *GFS* mapping $f_{up}: (X, T_1, E) \longrightarrow (Y, T_2, K)$ is called *GFS* constant mapping if $u: X \longrightarrow Y$ and $u: E \longrightarrow K$ are constant.

Remark 4.8. In grneral topology spaces the constant mapping is always continuous, but in *GFST*-spaces it is not true in general.

Example 4.9. Let $X = Y = \{x_1, x_2, x_3\}$,
 $E = \begin{cases} K = \{e_1, e_2\} \end{cases}$ $=$ *K* = {*e*₁*,e*₂*,e*₃} and $f_{\mu p}$: $(X, T^0, E) \longrightarrow (Y, T^1, K)$ a constant mapping, where $T^0 = \{ \widetilde{0}_{\theta_X}, \widetilde{1}_{\Delta_X} \}$ and $T^1 = GFS(Y, K)$.

Consider $u(x) = x_1, \forall x \in X$ and $p(e) = e_1, \forall e \in E$, if we take

$$
G_{\delta} = \{(e_{1} = \{\frac{x_{1}}{0}, \frac{x_{2}}{0}, \frac{x_{3}}{0}\}, 0.2), (e_{2} = \{\frac{x_{1}}{0}, \frac{x_{2}}{0}, \frac{x_{3}}{0}\}, 0.6)\}, (e_{3} = \{\frac{x_{1}}{0}, \frac{x_{2}}{0}, \frac{x_{3}}{0}\}, 0)\}, \text{ then}
$$
\n
$$
f_{up}^{-1}(G_{\delta})(e_{1})(x_{1}) = (G_{\delta}(p(e_{1}))(u(x_{1})), \delta(p(e_{1}))) =
$$
\n
$$
(G(e_{1})(x_{1}), \delta(e_{1})) = (0.5, 0.2)
$$
\nand similarly,\n
$$
f_{up}^{-1}(G_{\delta})(e_{1})(x_{2}) = (G(e_{1})(x_{1}), \delta(e_{1})) = (0.5, 0.2)
$$
\n
$$
f_{up}^{-1}(G_{\delta})(e_{1})(x_{3}) = (G(e_{1})(x_{1}), \delta(e_{1})) = (0.5, 0.2)
$$
\n
$$
f_{up}^{-1}(G_{\delta})(e_{2})(x_{1}) = (G_{\delta}(p(e_{2}))(u(x_{1})), \delta(p(e_{2}))) =
$$
\n
$$
G(e_{1})(x_{1}), \delta(e_{1})) = (0.5, 0.2)
$$
\nand similarly,\n
$$
f_{up}^{-1}(G_{\delta})(e_{2})(x_{2}) = f_{up}^{-1}(G_{\delta})(e_{2})(x_{3}) = (0.5, 0.2),
$$
\n
$$
f_{up}^{-1}(G_{\delta})(e_{3})(x_{1}) = (G(p(e_{3}))(u(x_{1})), \delta(p(e_{3}))) =
$$
\n
$$
(G(e_{1})(x_{1}), \delta(e_{1})) = (0.5, 0.2),
$$
\nand similarly,\n
$$
f_{up}^{-1}(G_{\delta})(e_{3})(x_{2}) = f_{up}^{-1}(G_{\delta})(e_{3})(x_{3}) = (0.5, 0.2).
$$
\nand similarly,\n
$$
f_{up}^{-1}(G_{\delta})(e_{3})(x_{2}) = f_{up}^{-1}(G_{\delta})(e_{3})(x_{3}) = (0.5, 0.2).
$$
\nHence
$$
f_{up}^{-1}(G_{\delta}) \notin T^{0}
$$
, which $G_{\$

Definition 4.10. Let (*X*,*T*,*E*) be a *GFST*-space. A *GFSS F*^µ in *GFS*(*X*,*E*) is called *Q*−generalized fuzzy soft neighborhood (briefly, *Q*−*GFS* neighborhood) of *H*^ν if and only if there exists a *GFS* open set J_{σ} such that $H_{\nu}qJ_{\sigma}$ and $J_{\sigma} \sqsubseteq F_{\mu}$.

Definition 4.11. A *GFSS* F_{μ} in *GFS(X.E)* is called *Q* − *GFS* neighborhood of a generalized fuzzy soft point $(x_{\alpha}, e_{\lambda}) \in 1_{\Delta x}$ if and only if there exists a *GFS* open set J_{σ} such that $(x_{\alpha}, e_{\lambda}) q J_{\sigma}$ and $J_{\sigma} \sqsubseteq F_{\mu}$.

Remark 4.12. If F_μ is *GFS* open set, the F_μ is a $Q - GFS$ neighborhood if and only if $F_\mu q J_\sigma$.

Theorem 4.13 Let $F_{\mu} \in GFS(X.E)$ and $(x_{\alpha}e_{\lambda}) \in 1_{\Delta_X}$ Then $(x_\alpha, e_\lambda) \in \overline{F_\mu}$ if and only if each open $Q - GFS$ neighborhood of $(x_{\alpha}, e_{\lambda})$ is generalized soft quasi-coincident with F_{μ} .

Proof. Let $(x_{\alpha}, e_{\lambda}) \in \overline{F_{\mu}}$. For every *GFS* closed set H_{ν} which F_{μ} , $(x_{\alpha}, e_{\lambda}) \in H_{\nu}$. Suppose that M_{σ} is an open $Q -$ *GFS* neighborhood of $(x_{\alpha}, e_{\lambda})$ and $M_{\sigma} qF_{\mu}$. Then $F_{\mu} \sqsubseteq$ (*M*_σ)^{*c*}. Since *M*_σ is *Q* − *GFS* neighborhood of (*x*_α,*e*_λ), by theorem 2.19(3), $(x_{\alpha}, e_{\lambda})$ does not belong to $(M_{\sigma})^c$. Therefore, we have that $(x_{\alpha}, e_{\lambda})$ does not belong to $\overline{F_{\mu}}$. This is a contradiction.

Conversely, let each open *Q* − *GFS* neighborhood of $(x_{\alpha}, e_{\lambda})$ be generalized soft quasi-coincident with F_{μ} . Suppose that $(x_{\alpha}, e_{\lambda})$ does not belong to $\overline{F_{\mu}}$. Then there exists a *GFS* closed set H_v which is contains F_u such that $(x_{\alpha}, e_{\lambda})$ does not belong to H_{v} . By Theorem 2.19(3), we have $(x_{\alpha}, e_{\lambda})q(H_{\nu})^c$. Then $(H_{\nu})^c$ is open $Q - GFS$ neighborhood of $(x_{\alpha}, e_{\lambda})$ and by Theorem 2.19(1), $F_{\mu}\bar{q}(H_{\nu})^c$, a contradiction.

Theorem 4.14. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*-spaces and f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* mapping. Then the followings are equivalent:

(1) f_{up} is *GFS*-continuous; $(2) f_{up}^{-1}(G_{\delta}) ⊆ (f_{up}^{-1}(G_{\delta}))^0, ∀G_{\delta} ∈ T_2;$ $(3) f_{up}(\overline{F_{\mu}}) \sqsubseteq \overline{f_{up}(F_{\mu})}, \forall F_{\mu} \in GFS(X, E);$ $(4) f_{up}^{-1}(G_{\delta}) \sqsubseteq f_{up}^{-1}(\overline{G_{\delta}}), \forall G_{\delta} \in GFS(Y,K);$ $(5) f_{up}^{-1}(G_{\delta})^0 ⊆ (f_{up}^{-1}(G_{\delta}))^0, ∀F_{\mu} ∈ GFS(X, E);$ (6) $(f_{up}^{-1}(G_{δ}))^{b}$ ⊑ $f_{up}^{-1}(G_{δ})^{b}$, ∀ $G_{δ}$ ∈ *GFS*(*Y*, *K*); (7) $f_{pu}(F_{\mu})^b \subseteq (f_{pu}(F_{\mu}))^b, \forall F_{\mu} \in GFS(X, E).$ **Proof** $(1) \implies (2)$.

 $(2) \implies (3)$. Let $F_{\mu} \in GFS(X, E)$ and $f_{\mu}(\alpha_{\alpha}, e_{\lambda})$ be not *GFS* subset of $\overline{f_{up}(F_{\mu})}$. Then there exists an open $Q - GFS$ neighborhood of G_{δ} of $f_{up}(x_{\alpha}, e_{\lambda})$ such that $G_{\delta} \bar{q} f_{\mu p}(F_{\mu})$ and hence $f_{\mu p}^{-1}(G_{\delta}) \bar{q}(F_{\mu})$ which implies $(f_{up}^{-1}(G_{\delta}))^{0}\bar{q}F_{\mu}$. Since $(x_{\alpha},e_{\lambda})qf_{up}^{-1}(G_{\delta})$, by (2), $(x_{\alpha}, e_{\lambda})q(f_{up}^{-1}(G_{\delta}))^{0}$. Put $M_{\sigma} = (f_{up}^{-1}(G_{\delta}))^{0}$. Then M_{σ} is an open $Q - GFS$ neighborhood of $(x_{\alpha}, e_{\lambda})$ and $M_{\sigma} \bar{q} F_{\mu}$. This shows that $(x_{\alpha}, e_{\lambda})$ is not *GFS* subset of $\overline{F_{\mu}}$ which implies that $f_{up}(x_{\alpha}, e_{\lambda})$ is not *GFS* subset of $f_{up}(\overline{F_{\mu}})$. Thus $f_{up}(\overline{F_{\mu}}) \sqsubseteq f_{up}(F_{\mu}).$
(3) \Longrightarrow (4). Let

 $G_{\delta} \in GFS(Y,K)$. Since $f_{up}(f_{up}^{-1}(G_{\delta})) \sqsubseteq G_{\delta}$, we have

 $f_{\mu p}(f_{\mu p}^{-1}(G_{\delta})) \subseteq \overline{G_{\delta}}$. By (3), we obtain $f_{up}(f_{up}^{-1}(G_{\delta})) \sqsubseteq \overline{G_{\delta}}$. Thus we have $f_{up}^{-1}(G_{\delta}) \sqsubseteq f_{up}^{-1}(\overline{G_{\delta}})$. $(4) \iff (5)$. These follow from Theorems 3.11(3) and 2.20.

(5) \implies (1). Let $G_{\delta} \in T_2$. By (5), $f_{up}^{-1}(G_{\delta}) = f_{up}^{-1}(G_{\delta})^0 \subseteq (f_{up}^{-1}(G_{\delta}))^0$ and so $f_{up}^{-1}(G_{\delta}) \in T_1.$

 $(4) \implies (6)$. Let G_{δ} be a *GFSS* over (Y, K) . By (4), Theorem $3.9(5)$ and Theorem $3.11(1)$, $(f_{up}^{-1}(G_{\delta}))^{b}$ = $f_{up}^{-1}(G_{\delta})$ \Box $f_{up}^{-1}(G_{\delta}))^{c}$ \Box $f_{up}^{-1}(\overline{G_{\delta}}) \sqcap f_{up}^{-1}(\overline{G_{\delta}^c}) = f_{up}^{-1}(\overline{G_{\delta}} \sqcap \overline{G_{\delta}^c}) = f_{up}^{-1}(G_{\delta})^b$ and hence we have $(f_{up}^{-1}(G_{\delta}))^b \sqsubseteq f_{up}^{-1}(G_{\delta})^b$.

 $(6) \implies (1)$. Let G_{δ} be a *GFS* closed set over (Y, K) . Then $(G_{\delta})^b \sqsubseteq G_{\delta}$ and $f_{up}^{-1}(G_{\delta})^b \sqsubseteq f_{up}^{-1}(G_{\delta})$. By (6) we

have $(f_{up}^{-1}(G_{\delta}))^b \sqsubseteq f_{up}^{-1}(G_{\delta})$. This shows that $f_{up}^{-1}(G_{\delta})$ is *GFS* closed set over (X, E) . Thus, by Theorem 4.5, f_{up} is *GFS*-continuous.

(6) \implies (7). Let F_{μ} be a *GFSS* over (X, E) . Then $f_{up}(F_\mu) \in GFS(Y,K),$ by (6), $(f_{up}^{-1}(f_{up}(F_{\mu})))^{b} \subseteq f_{up}^{-1}(f_{up}(F_{\mu}))^{b}$ and so $(F_{\mu})^b \subseteq f_{\mu}^{-1}(f_{\mu}^b)(F_{\mu}))^b$. Therefore, we have $f_{pu}(F_\mu)^b \sqsubseteq (f_{pu}(F_\mu))^b$. $(7) \implies (6)$. Let G_{δ} be a *GFSS* over (Y,K) . Then for $f_{up}^{-1}(G_{\delta}%)=\frac{1}{2}(\delta_{\delta}G_{\delta}^{-1}G_{$ \in *GFS*(*X*,*E*), by (7) $f_{pu}(f_{up}^{-1}(G_{\delta}))^{b} \subseteq (f_{pu}(f_{up}^{-1}(G_{\delta})))^{b}$ and so . Therefore, we have

 $f_{pu}(f_{up}^{-1}(G_{\delta}))^{b} \subseteq G_{\delta}^{b}$ $(f_{up}^{-1}(G_{\delta}))^{b} \sqsubseteq f_{up}^{-1}(G_{\delta})^{b}.$

5 Generalized fuzzy soft open, closed and homeomorphism mappings

Definition 5.1. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*spaces. A *GFS* mapping f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ is called a generalized fuzzy soft open [*GFS*-open in short] if $f_{\mu p}(F_{\mu}) \in T_2$ for each $F_{\mu} \in T_1$.

Theorem 5.2. Let f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* mapping. Then the following statements are equivalent:

 (1) f_{up} is *GFS*-open;

(2) $f_{\mu p}(F_{\mu})^0 \subseteq (f_{\mu p}(F_{\mu}))^0$, ∀ $F_{\mu} \in GFS(X, E)$;

 $(3) (f_{up}^{-1}(G_{\delta}))^{0} \sqsubseteq f_{up}^{-1}(G_{\delta})^{0}, \forall G_{\delta} \in GFS(Y,K).$

 $(4) f_{up}^{-1}(G_{\delta})^{b} \subseteq (f_{up}^{-1}(G_{\delta}))^{b}, \forall G_{\delta} \in GFS(Y,K);$

 $(5) f_{up}^{-1}(\overline{G_{\delta}}) \sqsubseteq f_{up}^{-1}(G_{\delta}), \forall G_{\delta} \in GFS(Y,K).$

Proof (1) \implies (2). Let (F_u) be a *GFSS* over *GFS*(*X*,*E*). Then $(F_{\mu})^0 \subseteq F_{\mu}$. By using (1), we have $f_{up}(F_\mu)^0 \sqsubseteq (f_{up}(F_\mu))^0$.

 $(2) \implies (3)$. Let G_{δ} be a *GFSS* over (Y, K) . Then $f_{up}^{-1}(\hat{G}_{\delta})$ is a *GFSS* over (X,E) . By (2), *f*_{*up*}(*f*_{*up*}</sub>(*G*_δ)⁰)⁰ ⊆ (*G*_δ)⁰. \subseteq (*G*_δ)⁰. Therefore, we have $(f_{up}^{-1}(G_{\delta}))^{0} \sqsubseteq f_{up}^{-1}(G_{\delta})^{0}$. (3) \Longrightarrow (4). Let G_{δ} be a *GFSS* over (*Y*,*K*). Then By using (3), and Theorem 2.22(1), $((f_{up}^{-1}(G_{\delta})^{b})^{c} = (f_{up}^{-1}(G_{\delta}))^{0} \sqcup (f_{up}^{-1}(G_{\delta})^{c})^{0} \sqsubseteq$ $f_{up}^{-1} (G_{\delta})^0 \ \sqcup \ f_{up}^{-1} ((G_{\delta})^c)^0 \ \ = \ \ f_{up}^{-1} (G^0 \ \sqcup \ (G_{\delta}^c)^0) \ \ =$ $f_{up}^{-1}((G_{\delta})^{b})^{c}$ = $(f_{up}^{-1}(G_{\delta})^{b})^{c}$ and we $h \text{ave} f_{up}^{-1} (G_{\delta})^b \sqsubseteq (f_{up}^{-1} (G_{\delta}))^b.$

 $(4) \implies (5)$. Let G_{δ} be a *GFSS* over (Y, K) . Then By (4), and theorem 2.22(2), $f_{up}^{-1}(\overline{G_{\delta}}) = f_{up}^{-1}(G_{\delta} \sqcup G_{\delta}^{b}) = f_{up}^{-1}(G_{\delta}) \sqcup f_{up}^{-1}(G_{\delta}^{b}) \subseteq$ $f_{up}^{-1}(G_{\delta}) \sqcup (f_{up}^{-1}(G_{\delta}))^{b} = f_{up}^{-1}(G_{\delta}).$

 $(5) \implies (3)$. This follows from Theorem 2.20(1) and Theorem 3.11(1).

 $(3) \Longrightarrow (1)$. Let (F_{μ}) be a *GFSS* open set in *X*. Then for $f_{up}(F_{\mu}) \in GFSS(Y,K)$. By (3), $(f_{up}^{-1}(f_{up}(F_{\mu})))^{0} \subseteq f_{up}^{-1}(f_{up}(F_{\mu}))^{0}$. Again since $F_{\mu} = F_{\mu}^{0} \sqsubseteq (f_{\mu p}^{-1}(f_{\mu p}(F_{\mu})))^{0} \sqsubseteq f_{\mu p}^{-1}(f_{\mu p}(F_{\mu}))^{0}$. This shows that *fup* is *GFS*-open.

Theorem 5.3. Let f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* bijection. Then *fup* is continuous if and only if $(f_{\mu p}(F_{\mu}))^0 \sqsubseteq f_{\mu p}(F_{\mu})^0$, for every $F_{\mu} \in GFS(X, E)$.

Proof (\Longrightarrow) Let $F_{\mu} \in GFSS(X,E)$. Then for $f_{up}(F_\mu) \in GFSS(Y,K), (f_{up}(F_\mu))^0 \subseteq f_{up}(F_\mu)$ and so $f_{up}^{-1}(f_{up}(F_{\mu}))^0 \subseteq f_{up}^{-1}(f_{up}(F_{\mu}))$. Since f_{up} is bijection and *GFS*- continuous, $f_{up}^{-1}(f_{up}(F_{\mu}))^0 \subseteq F_{\mu}^0$. Again Since $f_{\mu p}$ is surjictiv, $(f_{\mu p}(F_{\mu}))^0 \sqsubseteq f_{\mu p}(F_{\mu})^0$ as claimed.

 (\implies) Let *G*^δ be a *GFS* open set in *Y*. Then since *f_{up}* is surjictiv, $G_{\delta} = G_{\delta}^0 = (f_{up}(f_{up}^{-1}(G_{\delta})))^0$. By using hypothesis, $G_{\delta} \subseteq f_{up}(f_{up}^{-1}(G_{\delta}))^{0}$. Since f_{up} is injectiv, $f_{up}^{-1}(G_{\delta})$ ⊑ $(f_{up}^{-1}(G_{\delta}))^0$. This shwo that $f_{up}^{-1}(G_{\delta})$ is *GFSS* open set in *X*.

Definition 5.4. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*spaces. A *GFS* mapping f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ is called a generalized fuzzy soft closed [*GFS*-closed in short] if *f_{up}*(F_μ) ∈ T_2' for each F_μ ∈ T_1' .

Theorem 5.5. A *GFS* mapping f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ is closed if and only if $f_{up}(F_{\mu}) \subseteq f_{up}(F_{\mu}), \forall F_{\mu} \in GFS(X, E).$

Proof. It can be proved directly.

Theorem 5.5. Let f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* bijection. Then *fup* closed if and only if $f_{up}^{-1}(\overline{G_{\delta}}) \sqsubseteq f_{up}^{-1}(G_{\delta}), \forall G_{\delta} \in GFS(Y,K).$

Proof. It is similar to that of theorem 5.3.

The concepts of *GFS*-coninuous, *GFS*-open, *GFS*-closed mappings are all independent of each other.

Example 5.7. Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$, $E = \{e_1, e_2\}, K = \{e_1, e_2\},$ we define the *GFS* mapping $f_{up}: (X, T_1, E) \longrightarrow (Y, T_2, K)$ as

$$
u(x_1) = y_1,
$$
 $u(x_2) = y_1,$
\n $p(e_1) = e'_1,$ $p(e_2) = e$
\nThe collection

 $T_1 = \{0_{\theta_X} 1_{\Delta_X}, (F_\mu)_1, (F_\mu)_2, (F_\mu)_3, (F_\mu)_4\}$ is *GFS* topology over (X, E) . Where

′ 2 .

$$
(F_{\mu})_1 = \{ (e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{7}, \frac{x_2}{3}\}, \frac{2}{4}) \},
$$

\n
$$
(F_{\mu})_2 = \{ (e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{1}{3}), (e_2 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{4}{5}) \},
$$

\n
$$
(F_{\mu})_3 = \{ (e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{1}{3}), (e_2 = \{\frac{x_1}{7}, \frac{x_2}{2}\}, \frac{2}{3}) \},
$$

\n
$$
(F_{\mu})_4 = \{ (e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{7}, \frac{x_2}{3}\}, \frac{4}{5}) \}.
$$

\nAlso the collection

Also the collection

$$
T_2 = \{\widetilde{0}_{\theta_Y} 1_{\Delta_Y}, (G_{\delta})_1, (G_{\delta})_2, (G_{\delta})_3, (G_{\delta})_4, (G_{\delta})_5, (G_{\delta})_6, \} \text{ is} GF S topology over (Y, K) . Where
$$

$$
(G_{\delta})_1 = \{ (e_1' = \{\frac{y_1}{5}, \frac{y_2}{0}\}, \frac{2}{5}), (e_2' = \{\frac{y_1}{3}, \frac{y_2}{4}\}, \frac{3}{4}) \},
$$

\n
$$
(G_{\delta})_2 = \{ (e_1' = \{\frac{y_1}{3}, \frac{y_2}{0}\}, \frac{1}{3}), (e_2' = \{\frac{y_1}{\frac{4}{5}}, \frac{y_2}{0}\}, \frac{4}{5}) \},
$$

\n
$$
(G_{\delta})_3 = \{ (e_1' = \{\frac{y_1}{4}, \frac{y_2}{0}\}, \frac{1}{4}), (e_2' = \{\frac{y_1}{\frac{1}{2}}, \frac{y_2}{0}\}, \frac{1}{2}) \},
$$

\n
$$
(G_{\delta})_4 = \{ (e_1' = \{\frac{y_1}{5}, \frac{y_2}{0}\}, \frac{2}{5}), (e_2' = \{\frac{y_1}{\frac{4}{5}}, \frac{y_2}{0}\}, \frac{4}{5}) \},
$$

\n
$$
(G_{\delta})_5 = \{ (e_1' = \{\frac{y_1}{3}, \frac{y_2}{0}\}, \frac{1}{3}), (e_2' = \{\frac{y_1}{\frac{3}{4}}, \frac{y_2}{0}\}, \frac{3}{4}) \},
$$

 $(G_{\delta})_6 = \{ (e_1' = \{\frac{y_1}{3}, \frac{y_2}{0}\}, \frac{1}{3}), (e_2' = \{\frac{y_1}{\frac{1}{2}}\})$ $\frac{y_2}{0}, \frac{1}{2}$ }, $f_{up}^{-1}(G_{\delta})_5(e_1)(x_1) = (G_5(p(e_1))(u(x_1)),\delta(p(e_1))) =$ $(G_5(e_1')(y_1), \quad \delta(e_1')) = (\frac{1}{3}, \frac{1}{3})f_{up}^{-1}(G_\delta)_{5}(e_1)(x_2) =$ $(G_5(p(e_1))(u(x_2)),\delta(p(e_1)))$ $(\frac{1}{3}, \frac{1}{3}) f_{up}^{-1}(G_{\delta})$ $(G_5(p(e_2))(u(x_1)),$ $\delta(p(e_2)))$ = $(G_5(e_2')(y_1), \delta(e_2'))$ = $(\frac{3}{4}, \frac{3}{4}) f_{up}^{-1} (G_8)_{5} (e_2) (x_2) = (\frac{3}{4}, \frac{3}{4}).$ Then $f_{up}^{-1}(G_{\delta})_5 = \{(e_1 = \{\frac{x_1}{4}, \frac{x_2}{4}\}, \frac{1}{3}), (e_2 = \{\frac{x_1}{2}, \frac{x_2}{4}\}, \frac{3}{4})\}$ and $(F_{\mu})_3^c = \{ (e_1 = \{\frac{x_1}{3}, \frac{x_2}{3}\}, \frac{2}{3}), (e_2 = \{\frac{x_1}{5}, \frac{x_2}{2}\})$ $\frac{x_2}{\frac{1}{2}}\}, \frac{1}{4})\}.$ Put $H_v = (F)^c_3$. Then, by calculation we have $f_{up}(H_v)(e_1)$ $)(y_1) =$ $(\bigvee_{s \in u^{-1}(y_1)} \bigvee_{e \in p^{-1}(e'_1)} H(e)(s), \bigvee_{e \in p^{-1}(e'_1)} \nu(e))$ = $(\sqrt{x} \in \{x_1, x_2\} \{x_1, x_2\} (s), \frac{2}{3}) = (\frac{4}{5}, \frac{2}{3}), f_{up}(H_v)(e'_1)(y_2) =$ $(0, \frac{2}{3})(asu^{-1}(y_2)) = \phi$). By similar calculation consequntly, we have $f_{up}(H_v) = f_{up}(F_\mu)^c_3 = \{ (e'_1 =$ $\{\frac{y_1}{4}, \frac{y_2}{0}\}, \frac{1}{3}\}, (e_2' = \{\frac{y_1}{4}, \frac{y_2}{0}\}, \frac{1}{4})\}.$ Here $f_{up}^{-1}(G_\delta)$ $\notin T_1$ and $\int_{\mu_p}^{\frac{5}{5}} (F_\mu)_3^c$ is not *GFS* closed set. Thus the *GFS* mapping is not *GFS*-continuous and not *GFS*-closed. But it is *GFS*-open [as $f_{up}(F_{\mu})_1 = (G_{\delta})_1, f_{up}(F_{\mu})_2 =$ $(G_{\delta})_2, f_{up}(F_{\mu})_3 = (G_{\delta})_6, f_{up}(F_{\mu})_4 = (G_{\delta})_4.$

Example 5.8. Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$, $E = \{e_1, e_2\}, K = \{e_1, e_2\},$ we define the *GFS* mapping $f_{up}: (X, T_1, E) \longrightarrow (Y, T_2, K)$ as

$$
u(x_1) = u(x_2) = y_2 \text{ and } p(e_1) = e'_1, p(e_2) = e'_2.
$$

\nHere the *GFSSs* are defined as follows:
\n
$$
(F_\mu)_1 = \{(e_1 = \{\frac{x_1}{5}, \frac{x_2}{5}\}, \frac{3}{5}), (e_2 = \{\frac{x_1}{1}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_2 = \{(e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{1}, \frac{x_2}{4}\}, \frac{1}{4})\},
$$
\n
$$
(F_\mu)_3 = \{(e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{0}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_4 = \{(e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{0}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_5 = \{(e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{3}{5}), (e_2 = \{\frac{x_1}{1}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_6 = \{(e_1 = \{\frac{x_1}{3}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{1}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_7 = \{(e_1 = \{\frac{x_1}{2}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{0}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(F_\mu)_8 = \{(e_1 = \{\frac{x_1}{2}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{1}, \frac{x_2}{2}\}, \frac{1}{2})\},
$$
\n
$$
(G_\delta)_1 = \{(e_1' = \{\frac{x_1}{1}, \frac{x_2}{2}\}, \frac{2}{5}), (e_2' = \{\frac{x_1}{1}, \frac{x_
$$

 $\{0_{\theta_Y}1_{\Delta_Y}, (G_\delta)_1, (G_\delta)_2, (G_\delta)_3, (G_\delta)_4, (G_\delta)_5, (G_\delta)_6\}$

are *GFS* topologies over (X, E) and (Y, K) respectively. The mapping *fup* is *GFS*-closed, but not *GFS*-open and not *GFS*-continuous. Here

$$
f_{up}(F_{\mu})_1 = \{ (e_1' = \{\frac{y_1}{0}, \frac{y_2}{\frac{2}{5}}\}, \frac{3}{5}), (e_2' = \{\frac{y_1}{0}, \frac{y_2}{1}\}, \frac{1}{2}) \} \text{ is not a}
$$

GFS open set and

$$
f_{up}^{-1}(G_{\delta})_1 = \{ (e_1 = \{\frac{x_1}{5}, \frac{x_2}{5}\}, \frac{2}{5}), (e_2 = \{\frac{x_1}{4}, \frac{x_2}{4}\}, \frac{1}{2}) \} \notin
$$

*T*1.

Note: $f_{up}(F_\mu)^c_1$ \int_{1}^{c} = $(G_{\delta})_{6}^{c}, f_{up}(F_{\mu})_{2}^{c}$ = $(G_{\delta})_{2}^{c}, f_{up}(F_{\mu})_{3}^{c}$ = $(G_{\delta})^c_3, \hat{f}_{up}(F_{\mu})^c_4 = (G_{\delta})^c_4, \hat{f}_{up}(F_{\mu})^c_5 = (G_{\delta})^c_5, \hat{f}_{up}(F_{\mu})^c_6 =$ $(G_{\delta})^c_1, f_{up}(F_{\mu})^c_7 = (G_{\delta})^c_3, f_{up}(F_{\mu})^c_8 = (G_{\delta})^c_6.$

Defintion 5.9. Let (X, T_1, E) and (Y, T_2, K) be two *GFST*spaces. A *GFS* mapping f_{up} from (X, T_1, E) to (Y, T_2, K) is called a generalized fuzzy soft homeomorphsim [*GFS*homeomorphsim in short] if *fup* is *GFS* bijective, *GFS*continuous, and *GFS*-open.

When some *GFS*-homeomorphsim exists, we say that *X* is generalized fuzzy soft homeomorphic to *Y*. **Theorem 5.10.** Let (X, T_1, E) and (Y, T_2, K) be two *GFST*-spaces and f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* bijective mapping. Then the following conditions are equivalent: (1) f_{up} is *GFS*-homeomorphsim;

(2) *fup* is *GFS*-continuous and *GFS*-closed mapping; (3) *fup* is *GFS*-continuous and *GFS*-open mapping. **Proof.** It is easily obtained.

By Theorem 4.14, 5.2 ,5.3 and 5.5 we can formulate the following theorem:

Theorem 5.11. Let f_{up} : $(X, T_1, E) \longrightarrow (Y, T_2, K)$ be a *GFS* mapping. Then the following statements are equivalent: (1) *fup* is *GFS*-homeomorphsim;

(2)
$$
f_{up}(F_{\mu})^0 = (f_{up}(F_{\mu}))^0
$$
, $\forall F_{\mu} \in GFS(X, E)$;
\n(3) $(f_{up}^{-1}(G_{\delta}))^0 = f_{up}^{-1}(G_{\delta})^0$, $\forall G_{\delta} \in GFS(Y, K)$.
\n(4) $f_{up}^{-1}(G_{\delta})^b = (f_{up}^{-1}(G_{\delta}))^b$, $\forall G_{\delta} \in GFS(Y, K)$;
\n(5) $f_{up}^{-1}(\overline{G_{\delta}}) = \overline{f_{up}^{-1}(G_{\delta})}$, $\forall G_{\delta} \in GFS(Y, K)$.
\n(6) $f_{up}(\overline{F_{\mu}}) = \overline{f_{up}(F_{\mu})}$, $\forall F_{\mu} \in GFS(X, E)$.

6 Perspective

In this paper, we have defined the notion of mappings on the families of GFSSs. We have studied the properties of GFS images and GFS inverse images which have been supported by examples and counterexamples. The notions *GFS*-continuous, *Q* − *GFS* neighborhood, *GFS*-open (closed) mappings and *GFS*-homeomorphism for generalized fuzzy soft topological spaces are introduced, and some interesting results that may be of value for further research are obtained.

References

[1] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl, Vol. 37, pp. 19-31 (1999).

- [2] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy Math, Vol. 9, pp. 589-602 (2001).
- [3] B. Tanay and M. Burc Kandemir, Topological structure of fuzzy soft sets, Comput. Math. Appl, Vol. 61, pp. 2952-2957 (2011).
- [4] S. Roy and T. K. Samanta, A note on fuzzy soft topological spaces, Ann. Fuzzy Math. Inform, Vol. 3, No. 2, pp. 305-311 (2011).
- [5] P. Majumdar and S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl, Vol. 59, pp. 1425-1432 (2010).
- [6] R. P. Chakraborty and P. Mukherjee, On generalised fuzzy soft topological spaces, Afr. J. Math. Comput. Sci. Res, Vol. 8, pp. 1-11 (2015).
- [7] B. Ahmad and A. Kharal, Mappings of soft classes, New Math. Nat. Comput, Vol.7, pp. 471-481 (2011).
- [8] B. Ahmad and A. Kharal, Mappings on fuzzy soft classes, Fuzzy Syst, Art. ID 407890, 6 pp (2009).
- [9] L. A. Zadeh, Fuzzy sets, Inform and control, Vol. 8, pp. 338- 353 (1965).
- [10] F. H. Khedr, S. A. Abd El-Baki and M. S. Malfi, Results on generalized fuzzy soft topological spaces, Afr. J. Math. Comput. Sci. Res, Vol. 11, No.3, pp. 35-45 (2018) .
- [11] P. Mukherjee, Some operators on generalised fuzzy soft topological spaces, Journal of New Results in Science, Vol. 9, pp. 57-65 (2015).

Fathi Hesham Khedr is a Professor of Mathematics at Assiut University. He born in 1952. He received the Ph.D. degree in Topology from the University of Assiut in 1983. His primary research areas are General Topology, Fuzzy Topology, double sets and theory of sets. Dr. Fathi has

published over 50 papers in refereed journals. He is a Fellow of the Egyptian Mathematical Society. He was the Supervisor of 10 PHD and about 15 MSC students

Shaker Ahmed Abd El-Baki is a Lecturer of Pure Mathematics at Assiut University He born in 1958. He received the Ph.D. degree in Topology from the University of Assiut in 1990. His primary research areas are General Topology, Fuzzy Topology and Theory of sets.

Dr. Shaker has published over 15 papers in refereed journals. He is a Fellow of the Egyptian Mathematical Society. He was the Supervisor of 3 PHD and about 5 MS.C students.

Mohamed Saleh Malfi is a lecturer of pure Mathematics (Topology) at Amran University, Faculty of Sciences, Mathematic Department, Amran, Yemen. He was born in 1975. He received the MSC degree in Topology from King Faisal University, Saudi Arabia in

2012. He Ph.D student Topology in Assiut University, Faculty of Science. His primary research areas are General Topology, Fuzzy Topology, Set theory, Soft set theory and Soft topology. Dr. Mohamed has published many papers in refereed journals.