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1 Introduction different analytical means. Kimet al. [8] studied
A-Daehee polynomials and investigated their properties

In recent years, the Daehee polynomials and Bernoull@iSing from thep-adic integral equations. Kirat al. [9)]
polynomials (known closely related each other) in considered the Witt-type 'formula for Daehge numbers
conjunction with their diverse generalizations have beer@nd polynomials and derived assorted relationships for
studied by many authorsf [1,2,4-22]). For example, th.ese polynomlals and numbers including close relations
Dattoli et al. [4] introduced new forms of Bernoulli With higher-order Bernoulli numbers and those of the
numbers and polynomials, which are exploited to deriveSecond kind. Kimet al. [10] acquired multifarious
further classes of partial sums involving generalizedformulas for expressing any polynomial as linear
several index many variable polynomials. Harcemal. ~ combinations of two kinds of higher order Daehee
[5] performed to classify fully degenerate polynomial basis and then used these formulas in order to
Hermite-Bernoulli polynomials with formulation in terms  Certain polynomials to obtain novel and quirky identities
of p-adic fermionic integrals oi%, and also illustrated ~Nvolving higher-order Daehee polynomials of the first
novel properties with Daehee polynomials in a and the second kinds. Kiret al. [17], by_consdermg
consolidated and generalized form. Kha al. [7] Barnes-type Daehee polynomials of the first kind as well
introduced a new class of Hermite @s poly-Cauchy polynomials of the first kind, introduced
multiple-poly-Bernoulli numbers and polynomials of the Mixed-type polynomials of these polynomials and
second kind and investigate some properties for thes€xamined their some properties arising from umbral
polynomials, and then derived several implicit summationc@/culus. Kimet al. [12] considered the Daehee numbers
formulae and general symmetry identities by usinga”d polynomials of ordek and gave various relationship
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between Daehee polynomials of ordesind some special The Daehee polynomial3,(x) are defined by means
polynomials. Kimet al. [13] studied g-extension of the of the following generating functiorct. [8-14]):
Daehee polynomials and numbers. Kiet al. [14] " log( )
considered the poly-Bernoulli numbers and polynomials < t"  log(1+t X
of the second kind and presented new and explicit nZOD”(X)E_ t (1+1)" ©)
formulas for calculating the poly-Bernoulli numbers of
the second kind and the Stirling numbers of the second  |n case whex = 0, D, := Dy(0) stands for the Daehee
kind. Kwon et al. [15 considered Appell-type Daehee numbers. The first few Daehee numbBrsare as follows.
polynomials and derived many identities and formulas.
Lim et al. [16] defined the poly-Daehee numbers and Do— 1D — 1 D, — 1 Da— 1 D, — 1
attained explicit identities for those numbers and 0= HHL= 75 2= 8T T HA T g
polynomials related to poly-Bernoulli numbers,
polynomials and those of the second kind. Mcemal. The Bernoulli polynomialsBn(x) are defined via the
[17] considered the generalizegDaehee numbers and following exponential generating functioof([5],[7]):
polynomials of higher order and stated diverse interesting " n .
formulas and a representation for them as the sums of v _ t
products of the generalizeg-Daehee polynomials and z B é— 1ex (It} <2m) “)
numbers. Park 18 provided a p-adic integral
representation of the twisted Daehee polynomials with avherex =0, B, = By(0) are called the Bernoulli numbers.
g-parameter and developed some interesting properties. The Bernoulli polynomials of the second Kiriog(x)
Park et al. [19 presented Witt-type formula for the are defined by the following generating function to be (see
twisted Daehee polynomials and investigated their[5],[7]):
various properties. Pathaet al. [20] introduced a new
class of generalized Hermite-Bernoulli polynomials and il b th t
derived many implicit summation formulae and Zo ”(X)ﬁ - log(1+t)
symmetric identities. Seet al. [21] defined generalized "
Daehee numbers of higher order and represented them as The polv-Bernoulli number® and polvnomials
the sums of products of generalized Daehee numbers.<k> poly ) ) n poly
There are various applications of the aforementionedBn” (X) are respectively defined bgf([€], [7], [14], [16]):
polynomials and numbers in many branches of not only in L n -
mathematics and mathematical physics, but also int'k{+—¢€ ) 'k BMWL and Lik(1— ext gk t_
computer and engineering science with real world ZO " Cd-1 20 " '
problems including the combinatorial sums,
combinatorial numbers such as the Bernoulli numbersfrom which if we lettingk = 1 in Eq. ), it then er|dS
and polynomials, the Euler numbers and polynomials, the
Stirling numbers of first and second kinds, the Changhee B := B, and B (x) := Bn(x).
numbers and polynomials, etc. (see [1-22]).

We now begin with recalling some known numbers and
polynomials as follows. Assuming that denotes the set Recently, Khanet al. [7] introduced the 3-variable
of natural numbers with the associatedSgt=NU{0}. Hermite multi poly-Bernoulli polynomials of the second

Let Hn(x,y) be the 2-variable Kampé de Fériet kind via the following generating function:
generalization of the Hermite polynomials given by

(141t)% (5)

means of the following generating functiocf.( 3], [4]): " il g (1—e™) Xyt 22
Z b ) (xy, b (log(1+ )" (1+t)%et
Z}Hn (x y = gty (1) @)
where
satisfying the following property ) o
Li ki, ke (Z) = Z zm rl
Hn(ZX, _1) = Hn(X)v 0<mp<mp<---<my i=

whereH,(x) are called the ordinary Hermite polynomials
(cf. [1]). For k € N with k > 1, the k-th polylogarithm
function is defined by

is the multiple polylogarithm.
In this paper, we consider the Hermite-based
poly-Daehee numbers and polynomials. We then derive

. =" . explicit identities for those numbers and polynomials

Lik(@ =) K (ze Cwith [7] <1). (2)  which are related to poly-Bernoulli numbers and

m=1 polynomials. We also investigate some implicit

Notice that ifk = 1, thenlLi; (z) = —log (1 — z), cf.[6], [ 7], summation formula for the foregoing numbers and
[11], [14], [16]. polynomials by using the series manipulation methods.
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2 On the properties of Hermite-based poly-Daehee
polynomials

In this part,

poly-Daehee polynomialsDﬁk) (x,,2) as follows.

Definition 1.Let ne Ng. Then,

l th log(1+t
> WD (eyz) b = o9y
n—

n - Lig(l—e)
where if we take x y=z=0, then [ﬂ( = HD >(0 0,0)
stands for the poly-Daehee numbers.

(1+1) M2 (8)

RemarkJpon settindk= 1 in Eq. @), one can easily derive

DR (x,Y:2) := iDn(X,Y. ). 9)

RemarkOn settingy = z= 0 in Eq. @), it reduces to the
poly-Daehee polynomials given by Lim and Kwon 6]
p. 220].

RemarkTakingz= 0 in Eq. @), we hava4D
4D (x,y) that will be used in Theore®

(x,y,0) ==

Theorem 1The following result holds true for @ No:

(:n) D§1k—)m(x)|‘|m(y, 2).

ProofUsing (1) and @), we have

> p t"  log(1+t)
2O YA = e

9 x)%) ( éonw,z)%) .

(2o

Replacingn by n— m in above equation and comparing

- n . . . .
the coefficients ofﬁ in both sides, we arrive at the desired
result.

n

2

m=0

H D§1k) (Xv Y, Z) =

(L+ etz

Theorem 2Let n € Np. Hermite-based poly-Daehee
polynomials have the following relation:

k Kk
H DE]—i)-l(X—’— 1ay7 Z) —H Dg.gl(xa Y, Z)
n+1 '

DY (xy,2) =

Prooflt follows from Eq. @) that

< pk "o pW t
nZOHDn (X+17y7z)m_n;)HDn (vavz)m
_ log(1+t) x+1yt+zt? log(1+t) X yt+2zt?
= Lik(l_eit)(l—i-t) et Lik(l—e*t)(l—H) et
_ log(1+t) X Yt 22
= m(l—i—t) ettt
0 tn+1

_ (k)
nZOH Dn (Xv Y, Z) T

Now comparing the coefficients tf on the both sides, we
complete the proof.

we start by defining Hermite-based

Theorem 3Hermite based poly-Daehee polynomials
satisfy the following addition identity for @ No;

>

m=0

n
Hng)(X_’_\N’)Cz) = (m> HD§-|k_)m(Xay7 Z)(W)m’

where (w)m is well known as falling factorial defined as
w(w—1)---(w—m+1).

ProofBy Definition (8), we have

0
2.+
n=

tn

log(1+t
)(X+vv7y72)ﬁ - o9y

Li k(l— e*t)

log(1+t)
Li k(l— e*t)

(iHDQ‘) (x,y,z)%> ( i)(w)m%> .

Replacingn by n—min above equation and comparing the
.. n . . .
coefficients off; in both sides, we get the required result.

Dﬁk (1+t)x+weyt+zt2

(1+t)xe\ﬁ+ztz(l+t)w

Theorem 4The following correlations holds true for @

No;
s (" Bm HDn-m(X,Y,2) = s (" BX DX (X,,2)
mZo m m HYn-—m(X, Y, _mZO m/-m HYn-—m\A: Y, £/

Proof Combining Eqg. 8) with Eq. ), it becomes

log(1+t)
e—1

Lig(1—e™) log(1+t)
d—1 Lig(l-eb)

- () ()

—%(WO(> BY ,DW xyz>::

By the left-hand side of Eq10), using Eq. 4) and Eq. 7),
we have

(l+t)xey”n2 _ (l+t)xey”n2

(10)

1)

log(1+t)
e—1

(Lt

sty — Iog(%+t)

S (;) Bn HDn7m<x,y.,z>> e (12)
Therefore, by Eqg. 1) and Eqg. 12), we arrive at the
desired result.

Upon settingr = 1 andy = z= 0 in Eq. (), we then
obtain poly-Bernoulli polynomials of the second kind
given below:

o0 tn
b(k) (X)
L

We here give a correlation including classical Hermite
polynomials, Hermite-based poly-Daehee polynomials
and poly-Bernoulli polynomials of the second kind.

 Ligl—e™)

= Togiitp Y

n!
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Theorem 5The following relation is valid for rE Np;

n
X

n
oy = 5 ( ) WD n(xy 28 ().

ProofFrom Eq. 8) and Eqg. 1), we have the following
applications:

3

> Hla g = e
= L;gé? ))(l+t) nZDHDQQ(X,y,z)%
- (zbm—m%) (ZjHD (xyz)tn>

_nzb<mo( ) WDy x))%.

Comparing the coefficients cﬁ of both sides above, we
get the required result.

3 Implicit summation formulae for Hermite-based
poly-Daehee polynomials

In this section, we investigate various implicit summation

formulae of Hermite-based poly-Daehee polynomials.

Theorem 6The following implicit summation formula for
Hermite-based poly-Daehee polynomialﬁDﬁ]k> (X,,2)

holds true;
g a1 ®)
2 <n) (D>(W Y)"P HDgi1p-n(%:2).

n,p=0

oM

it (W 2) =

ProofWe first need the following series manipulation

formula:

[ee]

AZof(N)

which can be found ing2, p.52 (2)]. We now consider the
following generating function which is obtained by
changing tot + uand from (L3) in (8):

log(1+t+u)
Li(1— e*”“)

(x+y)N y’“

NI z f( n+m)

n,m=0

(13)

(1+(t+ u))XeZ<‘+“>2 -

u
y(t+u) cu
Z D (X,Y,2) IR

After replacingy by w in Eq. (14), we equate obtained
result with Eq. (14). It then becomes

|
(xw,2) .

(14)
On expanding exponential function in EG4j gives

D%

eVt 5 DY (x Y2 H &

q,l=0

I; q+|(xwz)a|—,

(15)

Z M 2 'fﬂ.(x7y72)$%=

From (13) and (L5), we see
(w— ):WI”;pt”up ; D
Now replacingg by g—n, | by | —
(16), we get

0 q.l

|
1 (%Y,2) qI]T* ; HDq£|(XWZ)gq|1UT

(16)
p in the left hand side of Eq.

n, p:O

td u
(q—n)! (I—p)!

Finally, on equating the coefficients of the like powerg®band
u' in the above equation, we get the claimed result.

By substitutingl = 0 in Theorem6, we immediately
obtain the following corollary.

Corollary 1.The following formula is valid;

q
H ng (X,V\I,Z) = Z{) <q) (W_ y)n H Dék,)n(X,y, Z)'
[

n

Corollary 2.0n replacing w by w+y and setting x=0in
Theoren®, we get the following result involving Hermite-
based poly-Daehee polynomials of one variable;

n;zio (2) (p)wnﬂo Dq+| p-n(2)-

Theorem 7Hermite-based poly-Daehee polynomials
satisfy the following implicit summation formula;

2 /n
D Gey-ruzew = 5 (7) WDy H(uw.
S=

HngL (W+y7 Z) =

ProofReplacingy by y+ u andz by z+w in Eq. @) and
using Eg. 8), we then have

ad tn log(1+t)
(k) _
nz 1D (X, Y+ U, z4+w) o el_e )

(nzb DY (x.y.2) )(sz (u,w) )

Now changingn by n—sin left-hand side and comparing
the coefficients of", we acquire the required identity.

(1+ t)xe(y+u)t+(z+w)12

Theorem 8The following correlations holds true;

" /n
H Dr(1k) (Xv Y, Z) = (S) ngzs(xv y— W) HS(Wa Z) .
s=;)

ProofBy Eg. 8), we have

log(1+t - b K n © n
%(IH)@W wtgwt+ze _ (ngng)(x}y—w)%!) (nZOHn(W,Z)trT!>.

7
By applying Cauchy product to right-hand side o), we
get

00 n [+ n n
s uDPxy2th = 5 (z ® Dékls(x,y—wms(w,z)) e,
n=0 n=0 \s=0

Equating the coefficients of on the both sides above, we
complete the proof of theorem.
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) N /n ) Korean Math. Soc.
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