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Abstract: The classical Transportation Problem (TP) Tableau whittizes continuous variable cost has been used to model dvel so
distribution problems. However, many real distributionlgem decisions which require various combination of fixed @ariable cost
and having several mixed variables of the binary integedsamtinuous types make this approach limited. This chgéerequires
new integrated models that are also NP hard for which exgarihms such as branch and bound, cutting plane algorittay ioe
inefficient to use as the problem size increases in pradbigsiness cases. We present in this paper, an integrated ofdekcility
Location (FL) and Step-Fixed Charge Transportation Prol{8FCTP). This problem is solved using a solution heurisigt utilizes
relaxation and linearization approach to recast it to tlasgital TP as a starting solution. For the improved solutidiow cost and
efficient perturbation heuristic that works in a row-wisermer is developed. We also propose a lower bound based catlite as a
guide in achieving a solution. Lastly, a numerical examglpresented to illustrate the procedures of the solution.

Keywords: Facility location, step-fixed charge, linearization anldxation, row perturbation heuristic

1 Introduction consolidation of load. Such may be due to price break or
. . . ) . volume discounts economies or long distance traffic
Decisions of different time horizons such as facility dis-economy amongst others, and these are becoming
location, route selection and load consolidation are often,qre real on daily basis as supply chains become longer.
encountered in distribution planning. While models existThis means we may be dealing with an integrated
in literature that supports making each of these decisions,;opiem of facility location, load consolidation and
separately, there is a need to plan them in an integrateBehicle routing with fixed charge and price breaks as a
manner if global optimality is intended. The classical typical instance. This type of problem is not unusual in

distribution model or transportation problem is an 5ractice, and so, there is a need to develop a solution for
example of a single decision model which uses variableg;cp, problem.

routing cost and is solved using the transportation tableau

However, this simplistic approximation may not be

realistic in many business cases, and has promptethtegrated models and solutions such as the Fixed Charge
research into the area of transportation planning withTransportation Problem (FCTP) and the Step-Fixed
fixed charges. These fixed charges are often incurre€harge Transportation Problem (SFCTP) are examples of
when siting facilities and during route selection planning variants of the classical TP. These variants relax theentir
for distribution. This means there is the need to plan bothlinearity assumptions of the classical transportatiort cos
the location of the storage facilities like depots and objectives. 1] described the FCTP as one in which there
warehouses in an integrated manner with the selection ofs a variable cost and a fixed cost incurred for opening a
route for the distribution of the materials, in which there transportation route with a shipment greater than zero.
are fixed charges along the route. There does not seem tlso according to 2] in the analysis of another variant of
have been many solutions provided for such problems. the FCTP, known as the SFCTP, there can be more than
The complexity of the problem may be further increasedone fixed cost incurred for opening a transportation route
by considering the fact that in route planning today, therewith the objective function behaving like a step function
may be economy or dis-economy of scale in theor a piece wise linear function.
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The FCTP has attracted a lot of research interests wherproblem can be described as the Step-Fixed Charge
the fixed charges in the problem statement are either atransportation and Location Problem (SFCTLP).

the source or along the routes. Models and solutiong=acility location in itself is known to be NP hard, and so
presented by 1,3,4,5,6] show that the fixed charges is vehicle routing and load consolidation, and so, it is
could occur either at the source or along the routesexpected that the problem considered would be NP hard.
Recently, new models and solutions have emerged witiThe usual approach, therefore, is to either simplify the
various variants of the FCTP such as in the work@&[ problem through the transformation of the original
8,9]. The SFCTP variant of the FCTP is seen in the problem into some more solvable approximation, or
multi-item volume (or weight) transportation cost through the relaxation of some original constraints, or to
discounting models of 1J0] and volume discount on solve the original problem using some heuristic, or in
distribution cost of 11,12]. Research in the field of the certain instances, have some combinations of all these
SFCTP is growing as indicated by,[L3,14] with new  approaches. These approaches are seen in integrated
problem-type models and solution techniques beingfacility location models 0f19,22,23].

continually developed.5 gave practical applications This paper considers a heuristic to solve the SFCTLP, and
such as increasing taxes due to high turnover or somés illustrated with a small hands-on problem size example.
increasing fees paid after attaining some user level. [ This is done in order to show an in-depth understanding
extended the Fixed Charge Solid Transportation Problenof the workings of our solutions for the SFCTLP in a
(FCSTP) by presenting a lagrangian relaxation heuristicsimilar manner to 1,24]. The main objective in this
for the Step-Fixed Charge Solid Transportation Problemarticle is about minimizing the traditional distribution
(SFCSTP) to solve large instances of the problem. problem cost of a source to destination where a minimum

As indicated by 14] and [16] the FCTP has been argued number of facilities with known capacities have to be
to be an NP-hard problem. SimilarliL4] has shown the chosen from amongst other competing ' capacitated

SECTP to be much harder to solve than the ECTP. This isfaC|I|t|es or locations with fixed location costs in order to

. : .~ “Ship an item through routes with step-fixed costs.
quite logical due to the fact that the step function 7 ! . .
introduces more non- linearity into the objective function This SFCTLP emanates also as a variant of the SFCTP in

like fashion as the SFCTP and SFCSTP. We proceed by

gargggégetﬁ (raolgl(ergnn;il:/(;h Crggeucg{'igw;tgfsg)l(\;tl?n%rtﬂgzjgiscussing the formulation of the SFCTP and reviewing
P b nown starting initial solutions for solving it, before

such as the cutting plane algorithm, branch and bound for ; .
mixed integer and integer variable problems which couIdEre:igﬁﬂ?;:ﬁg&ﬁgggtjg dTﬁgﬁI;?:Jrr:;rsifg&apr’golueowed
provide optimal solutions but inefficiently with increase y pie-.
in problem size, heuristics have been developed to solve
the SFCTP. Although heuristics have the possibility of .

Lgn heurst " POSSIDIY 915> SECTP Model Formulation

terminating quickly at a local optimum and giving
The classical TP, and its variants such as FCTP, SFCTP,

suboptimal solutions as indicated by2][ in most
instances their solutions are good and efficieit 18, 5] SECSTP are described assuppliers anch demand point
distribution problems, wheren denotes the number of

in solving the FCTP and SFCTP proceeded with good
sources (factories, warehouses or distribution center) a

initial  solutions through binary integer variables
linearization and relaxation. Moreover, in the case5f [ d
their improved solution to the SFCTP is obtained throughnhrefers o the Pumbde:jof cuztomerg or demar;]q r;])on;tts.
the use of a perturbation logic. There are supply and demand requirements which often
are represented as capacittgsand demand; for each
The cost of facility location is a type of fixed charge that sourcei and demand poin} respectively over a known
FCTP problems and most importantly SFCTP problemstime period. Them suppliers incur a unit transportation
have not been considered extensiveld][presented an costcij per unit distance and a fixed charge whenever
integrated step-fixed charge with facility location costsa transportation route is opened (utilized for shipping)
problem and referred to it as Capacitated Facility under constraints of supply capacity meeting a typical
Location Problem (CFLP) with Piecewise Linear demand of transportation algorithm.
Transportation Cost (PLTC). While the fixed charges for There are more than one set of fixed charges in the route
both the FCTP and SFCTP are incurred as a result of théi, j) when step-fixed charges are considered. In the
use of a route from a supply point, facility location costs SFCSTP, the fixed charges are represented by the vehicle
are incurred due to siting or opening of facilities before cost of conveying different volumes of the load. While, in
any shipping are done through the rout@§][ Facility SFCTP, the fixed charges may be incurred either through
location fixed charge as described [81] is therefore a  duties, taxes or vehicle costs of different volumes
longer horizon decision and different from the route transported. The number of fixed charges depends on the
selection fixed charge. Merging this with FCTP or SFCTP number of break points in the step function desired. In
gives a problem that seeks to optimize both Facility this case, two steps of fixed chargégy and hjj», are
Location Problem (FLP) and Step-Fixed Charge considered without loss of generality. The fixed charge
Transportation Problem (SFCTP) decisions together. Thidyj; is incurred when a route is opened and termed as
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Hij1 in the objective function and the secohg, is

presented a numerical example to support their claim.

incurred when the shipment load (or transported unit)They also noted that for a two tier or two step-fixed

exceeds an amoundj, and termed asHj> in the

charge problem where load distributio) is such that

objective function alsoAjj is referred to as the break xj; <Ajj orxj > Ajj, perturbation moves would result in

point and may be fixed or varying per routg, j)

above or belowAj distribution. This is quite logical as it

depending on the model under consideration. When therexpected that some optimal load values would occur at

is load distribution in any route i.ex; > 0, hjj1 is
incurred. Whileh;j is incurred whenxj > Ajj.

the break points. They also established that using the
transportation problem would create solutions with

The standard mathematical model for the SFCTP is(m+n—1) or less to which a particular perturbation

represented below:

would be needed to redistribute the load units to take

Min Z = advantage of the fixed charges along the routes.
- oo 2 In Figure 1 and 2 below, the cost objective pattern with
Cnes Ch different fixed-cost values and the expected linearization
i; lec” Xi +i;glglg'1kh”k @) asilustrated by§] are shown.
[2] however showed the limitation of the second relaxed
Subject to cost in the works of§] whenM;; < Aj; with Gjj (relaxed

cost) not giving a positive result. They further proposed
three formulas for calculating relaxed co8t;§ which are
based on firstly whethe; < M;j or Ajj > M;j, secondly
on Ajj being included or not in the formula and thirdly
on the number oM;; — Aj; shipments done. They used
fij1 andfjj> as their route fixed cost in their formulas as

Sy Vi=1-m 2)

n
Xii
A

m
Zixij = Dj Vij=1l-n (3)  represented below.
i= The first one is given as
fii1 .
Gi + Wy A =My
ziSyi = Z D Vi=1l-mVj=1-n (4 i] i j ij
i= =1 The second given as
fij .
Gj + v if A > M
Wheregp={ 2 X >0 o fLoxi> A gi=¢ My T i) 5(b)
9i1= 10 oOtherwise '9i2 0 Otherwise Gj + woa TA] <M
yi— Oor1l The third given as Gij =
| G+ s ITA =M .
Xij =20 fij2 fij1 v(i,j) 5(c)

Cij +A|_‘j+—Mij*Aij if Aij < Mij

[2] noted that the solution methods of the SFCTP dependtrom their analyses they came to the conclusion that the
on the break point position i.e. j < min(S, Dj ) or fjrst formula gave the best approximation when compared
Aij = min(§ , Dj). If Aj > min(S , Dj ), the optimal o [18] and [5] they also made suggestions as to using the
solution to the SFCTP is an optimal solution to FCTP. gther formulas as better starting solutions for the SFCTP.

The SFCTP solution heuristic ob] and the SFCTLP

heuristic presented in this paper work through building a
relaxed cost matrix which are modifications o018]
relaxation for the FCTP. In our model the binary integer
zj associated with the fixed chargag (standard SFCTP
model above) orHjj (in our model below) is replaced by
Xij/Mij whereM;; = min(§ , Dj ). Thus a relaxed cost

3 SFCTLP Problem Structure and
Formulation

Two methods are utilized for the linearization and
matrix is formed. p] followed in similar fashion to obtain relaxation of the initial solution development of SFCLTP.
i SO hij1 + hij2 The first procedure is as described W[, [5] and [2]
a first relaxed cost matricij = Cij + === OF  \hich employs the transportation model variable cost
Cj= cj + Hull\;ﬂ and second relaxed cost matrix Structure to form a relaxed cost matrix. As discussed in
hij2 ) H earlier sections, the position @; i.e. Aj < M;j or
Gj= Cj +m-a; OrGj=Cj tm-a - Aj > My in developing the relaxed or reduced
To improve their initial solution of SFCTP, 5] transportation cost matrix would have an effect on the
demonstrated that the number of basic variables for a neg8FCTP solution found. We also note that the break point
optimal solution of the SFCTP having two steps (or tiers) position i.e.Ajj; < M;j or Ajj > M;j for any problem
can be greater tham+n—1) that is traditionally involving a two tier fixed-charge cost on a route would
expected for a classical TP. They considered aaffect the relaxation and perturbation pattern when
minimization model of the step-fixed charge problem andseeking for a solution heuristic. Therefore, we have

ij2
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Fig. 2 Linearization and relaxation structure whp; < Hjj2

extended the model oflB] , [5] and more importantly the  Our problem is stated as the capacitated facility location
second formula by Altassan, El-Sherbir8} py creating  problem with step-fixed Charges along the transportation

our starting SFCTP part of the problem using routes i.e. Step-Fixed Charge Transportation and Location
hiy ) Problem (SFCTLP).
Cij + Wiy if Aij > M o
CI] = hij1 +hij2 v(lv J) S(d)

Cij + WA AT <M :
_ _ 3.1 Model assumptions

We have used a summation of route fixed cogts + hjj2

or (Hij1 +Hij2) instead offijz (Hij2) alone to account e make the following assumptions in our model:

for incurring the fixed coshij; (Hij1 ) whenever a route

is opened befordyj, is incurred due to the break point  1.Deterministic input.

Ajj . Also, we have uselij instead offj; usedintheroute ~ 2.0ne stage or two echelon problem.

fixed costs. 3.Two step-fixed charge cost.

The second procedure develops an average relaxation4's'ng|e period and single item distribution problem.

method, as indicated by equation(14) below. This second

method relaxes the location variabje by creating an

average location variable valyg for all the competing 3.2 Model Parameters

locations. Through some perturbation techniques

developed on the initial solution, better solutions arei : Index for sources (plants, locations or rows).
obtained. m: Number of sources (plants , warehouses etc.).
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n : Number of destinations (or demand point).

j : Index for demands (destinations or columns).
k : Index for levels or (number of steps).

Gij - Unit cost of shipment on routg, j).

S : Capacity for each locatioin

hij1 : First level fixed cost on routg j ).

hij2 : Second level fixed cost on rodigj).

Hij1 : First level step-fixed cost based on load distribution.

to be met. Equation (9) is the aggregate constraint for
supply and demand balance. Equation (10a) refers to the
non-negativity constraint while (10b) refer to the binary
integer constraints.

4 Solution M ethod

Hij2: Second level step-fixed cost based on loadoyr solution method iterates through the steps and rules

distribution.

below in seeking for an improved solution:

%ij: Allocation variable (or load distributions) along route Step 1: We develop an initial solution by linearization and

(i, 1)

yi: Location variable for plant or source (0 or 1).

relaxation of the binary variableg; (and z; ) in the model
problem

gij1: Step-fixed charge variable (determining first or step 2: We calculate a lower bound for SFCTLP.

second level of fixed cost).

z;. Fixed charge variable in the objective function (0 or 1).

Ajj: Break point for the fixed costs along the roitg).

3.3 Mathematical Model (Objective function
and Constraints)

(Objective function) MinimizeZ = 3", 37, cijxj +
SR Y+ Y3 YEoa Hijj (6a)

Where:

n

i;ngijl = | 1gijlhijl

m n

Hij2 = Gijzhij2
i;gl i=1]=1
n

m m n m n m n
|;2 ijl i;'zl ij2 i;jzl ijillij1 i;jzl jj2Nij2

J

3
]

3
]

Where:

1 x>0 1 x> Ay
9i1= 10 Otherwise *%12 =0 Otherwise
m n 2 m n m n
Hijkzj = Hij1 zj + Hij2 zj
222 = 2 2 e Aty 9 My
subject to (constraints):
X < Sy
Vi=1-m (7)
Y% = Dj Vi=1-n (8
Yt Sy > 3D Vi=1l-m V j=1-n(9)
Xij >0 (10&)

yi =0o0rlz; =0orl (10b)

Equation 6(a) is the objective function. The first term is a

Step 3: Improve our initial solution through a structured
perturbation procedure which we refer to as Row
Perturbation Heuristic (RPH)

The RPH works through improving the initial solution
method by iterating through the following well
established procedures of moving to a good low cost
solution in an efficient mannerl®] discussed how the
use of some of the rules below can drive towards a
reduced cost solution.

1.Least costrule.

2.Utilization rule.

3.Fixed-cost elimination rule (Location fixed cost and
route selection fixed cost).

4.Feasibility rule.

The heuristic uses the least cost rule to determine which
sources to open and where to allocate capacities.
Moreover, it allocates load units to reduce the number of
fixed costs incurred i.e. facility location cost and route
fixed costs by pushing load units to already open sources,
closing unneeded locations in the process and also
moving away from the higher tier fixed cost. Feasibility
rule has been used to ensure capacity and demand
constraints are satisfied during the load redistribution.

4.1 Initial Solution

This is achieved through the linearization and relaxation
of integer (binary) variables i.e. the facility locatiginand
fixed-charge selection z; variables. A Relaxed
Transportation Problem (RTP) is thus formed as result.
Using the relaxation of integer variables described earlie
Where:zj = xj/M;j andM;j =min(S , Dj )

Using equation (9), the minimum supply requirement
implies that:

m n
Sy > Dj Vi=1-mVj=1-n (11)
3= 20

variable cost, the second term is the facility location cost

and third term is the route step-fixed charge cost.We develop a new location varialg|g, which is the
Equation (7) is the supply capacity constraint of eachaverage ofy";y; to help relax the location variablg.
location or sources. Equation(8) is the demand constrainThus equation (11) is restated as
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m n
Sy =% Dj (12)
25772,
m m n
Y Sy = Xij (13) ..
25022
Sty 3 Xij
yr o= S (14
| SitiS
Substitutingy;? for y; andz; = X;/M;j we transform
equation (6a) as:
Minimize Zg,=
m n m
cijxj + Y FRy*+ H; k (6b)
ST LIED PP

Substituting equation (14) if6b) gives:
Minimize Zg; =

SCEIDSIES PN
Zr =

Therefore

(60)

Iy = iiélcij] %ij

Where;

i1 Hijk
Mii

Z 1':
PR

Gij= aj+ ¥ (i) (15)

However, considering the break point analyses we hav
made in section 3 earlier, equation (15) would be limited.
Therefore using equation 5(d), equation 6(d) can further

be stated as

Zro =
m m
Yiziho | Hij ; i
Gij + +—=|x; ifA; >Mj V(,j)
= ,Zl[ Yit1S M
or
SMusfaog+ HS TR X iTA] <My VGD) (61)

From equation (6f) above, the cost matrix from which the
transportation tableau is constructed is given as:

The linear Equation (6f) above can be solved using any
optimal solution technique for transportation model (e.g.
method of modified u-v distribution). This is present in
optimization transportation software such as Tora.

The load distribution obtained from the relaxed castin
equation (6f) is used in calculatirfyin equation (6a) and
would be termed the current best solutidgh®). After this,
necessary perturbations following our rules are employed
to arrive at another Z which is compared to the initi&fz

. Comparing the values of 2 andZ , If Z°B < Z we keep
(Z©B) as the current best, otherwise i.&82> Z, we term

Z as the current best.

4.2 Lower bound calculations

Using equation 5(a) and our average location variable
yi? in equation(14) we have also extendgdfest starting
solution for SFCTP. Our SFCLTP lower bound is thus
calculated below.

YR Hiil} . .
ZiB= G+ +——1xi ifA; >M; Vi,
LB = ZZ{” ST S M, Xij Aij >Mij V(i)
or
ST 3o [+ Hrg + B | i A <M W) (69

4.3 Solution Improvement (using The RPH
proposed):

The x;; allocations obtained from the optimal solution of
equation 6(f) is further perturbed using structured
combinations of the least cost preference, high utilizatio
of open locations and systematic elimination of fixed cost
either by closing an open location or by preventing use of
high fixed charge along the routes. The perturbation

%echnique aims at getting a better solution while using the

rules stated in section 4 as a guide. The Perturbation
moves are a top-down load re-distribution along a column

of each row to ensure that feasibility in demand is

attained as described in the {44) transportation tableau

in Figure 3 below.

S (location capacity) D; (Demand capacity). The last

column represents relaxed cost summation along a row.

From equation 6(a) above, we observe that there are three

cost terms in the objective function namely;

1.Variable costVc) = Gijxij.
2.Location or source fixed codt€) = ( Ry ).
3.Step-fixed costSFe) = (31 51 T 1 Hijkzj )

The degree of the values obtained for each of the terms

mE  H would determine the solution procedure and perturbation

sMF i1 o Id det th lut d d perturbat

Cij=cij+ 25 5 "M V(i,j) if Aj =Mij (16a) technique to be used. We therefore note the following
=1 scenarios out of several possible ones for our structured

or D e b perturbation logic: . '
Gi= Gj +%{§T§4 Milijq'j’z V(,j) ifAj <Mj (16b) (a)Vc > Lcand SFc (Variable cost having the largest
value).
(@© 2018 NSP
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Fig. 3: Sample perturbation moves

(b)Lc > Vcand SFc(Location cost having the largest
value).

(c) Sfc > Vcand Lc (Step-fixed cost having the largest
value).

(d Ve = Lc =
approximately equal).
The summarized perturbation procedure is given below.

SFc (The three terms being

1.Using the linearization in 6(f) to obtain the starting
solution and initial load distribution. Th2 obtained
is termed the current best{2).

2.(a) Calculate the values of the major terms of the
objective functioni.eVc, Lc and SFc
(b.1) IfLc > Vc and SFcgoto step (3),
(b.2) Else IfSfc > Vc and Lcgo to step (4).
(b.3) Else go to Step 1 and exit Procedure.

3.(a.1) For location cost reductiohq) if dummy rows
are obtained from step (1)
(a.2) Yes: ignore row and capacity in calculation. Else
go to Step (3b.1)
(b.1) Check ify™1Syi — Yi-1Dj > min(S=1..m) ,
excludingi = dummy row.
(b.2) If true proceed to 3c.1,
(b.3)Elseif 3", Syi — y]_;Dj= 0 Stop and exit
procedure. Return®
(b.4) Else go to Step (3h).

positions of the fully utilized rows as identified in
3(d.1) or ( as per partially utilized row as in step (3g) )
and add into positior(i, j) of the partially utilized
rows in a decreasing order of
Sitmy[-1Gij for i =1,2..mto balance the row
capacity (break ties as step3c).

(e.3) If No: maximum position has no load then move
to next in rank ofCjj, (break ties arbitrarily )

() Repeat step 3(e) until allocations have been
completely removed in the fully or partially utilized
row identified as per step (3e). Go to Step(3h).

(g) Arrange the partially utilized location or row
capacity in an order of decreasing
Stm>" 1Cij fori=12.m, (break ties as in 3c)
and seiect Maximum. Repeat Step (3e) to (3f).

(h.1) Use the current load distribution to calculate
Z(new) . Compare the values of2 andZ(new)

(h.2) If Z(new) < Z°B we termZ as the current best
and go to Step (1).

(h.3) If otherwise i.eZ (new) > Z°B, Stop and exit
procedure.

4.(a.l) For the Step-fixed charge cost reduction, check if

any dummy rows?

(a.2) Delete any dummy rows or un-utilized locations
obtained in step 1.

utilized capacities are available.
(c.2) Arrange in the order of
SitmY|-1Gij fori=12.mwhereCj — relaxed

capacities are available.

decreasing (0:2) .
SitmYj-1Gij fori=12.mwhereCj — relaxed cost

Arrange in the order of increasing

cost matrix (Break ties arbitrarily and select largest.) matrix (Break ties arbitrarily).

(d.1) Identify rows or locations with fully utilized

capacities and arrange in the order of decreasingnd
SitmY|-1Gij fori=1,2.m. (Break ties as in 4b). If

Yiimyj-1Cij for i =1,2..mwhereC; — relaxed

(c) Identify rows and locations with fully utilized capagit

arrange in the order of increasing

cost matrix (Break ties).If yes go to (3e.1). If none go hone go to (3b).

to (39).

(e.1) Is there anX;; with maximum Cj; position
according to the row identified in Step (3d.1) ?
(e.2) If Yes:
maximumG;jj position from open and allocated;

(d.1) Check If there are open and allocatedpositions
greater thamy;j within the largest row as identified by step
(4c) at maximun@;; position?

Remove allocations starting with (d.2) No: If maximum position has no load move to next
in rank ofG;;
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(d.3) Yes: Check if un-allocated positiex ; of the rowas  For (i, j) position(1,1), M1 =10 , andAi1 =5 thus
identified by step (4b.1) can accommodate move. A1 <Mz1g

(d.3.1) No : If current capacity cannot accommodate theFrom equation (16a and 16b) above, equation 16b is
reallocation, move to the next ranked partially utilized selected.

capacity row according to (4b.1) Proceed till the identified Cii— [011+ Fi+F+F+F higgy hnz]
Xij position in step (4d.1) or ( 4g) has been redistributed S+S+S+S Mii—Anin
in a single step ofyj. If no partially utilized row with

availability go to Step (3b). Cii= [1+ 100+ 200+ 250+ 150, 10+20 } =14
(d.3.2) Yes: RedistributeX|) identified at (4.d.1) starting 25+25+25+25 10-5
with thex;; with at maximumC;; position Forall(i, j) position,Aij < M;j

(e) Repeat Step (4b) to (4d) until moves already taken argquation 16b is selected f@%1, Cio...Crm

about to be repeated or till a position; — A; after using  ¢; relaxed cost matrix fo€;1, Ci2...Crn is given Table 3
step (4d or 4g) becomes;; . Use the current load below.

distribution to calculat& . go to Step (3b).

5.1 Initial solution
4.4 RPH Flow Chart description

Tora optimization software which uses the modified u-v
A flow chart showing the perturbation steps describeddistribution method of solving linear transportation
above and how they iterate to improve the startingmodels is used to solve the cost matrix above (as a
solution is presented in Figure 4 below. The flow chartbalanced problem) optimally to give the initial solution of
symbols utilized have the same meaning as standard flokhe SFCLTP Zr,) represented in Table 4 below.
chart symbols. For our lower bound value for SFCLTR ), the cost
RPH iterative procedure as shown in the flow chart usegnatrix below is obtained from the relaxed unit cost in
the initial solution to determine quickly whether location equation (6g) like the relaxed costs of (16a and 16b). The
fixed-cost elimination or upper tier route fixed-cost load distributions after solving optimally with Tora
elimination would be appropriate to achieve an overallsoftware are presented in Table 5 below.
cost reduction. The load redistribution using the order ofUsing equation (6f) above;
decreasingy{",,5"_,Cij from the fully-allocated routes ze =(14 x5+ (14 x5)+ (105 x5)+ (10 x 25)+ (1067 x 20) + (12 x 15) = 8359
during Location fixed-cost elimination, aims to reduce  Using equation (6e) for our lower bound calculation,
cost from high cost arcs or routes. Furthermore, reducingis = (11 x10)+ (102 x 5)+ (9.6 x 25)+ (10 x 5)+ (10 x 15)+ (11 x 15) = 766
cost by valueA;j from maximumcCi; position at Step 4 Using the load distribution for botg, andZ, g and

prevents incurring upper tier route fixed cost. Also, load equatlont(Gda) for calculgtg@zfor Zro a”?.zl-lB which is
redistribution into locations with increasing order of '€Présentedas @re) and Z (Z,s) respectively,

m n 0
Yitm2j—1Gij in step 4 ensures lower cOSt routes arey z.)_ (14 «5) 1 (14 x5) 4 (105 x5) + (10 x 25) + (1067 x 20) + (12 x 15)
utilized before higher ones. The flow chart also has the + (100 200+ 250+ 150) + (10+ 10+ 10+ 40+ 40+ 30) — 935

capacity to quickly arrive at a current best solution
depending on the problem structure encountered while
checking the conditiony™;Sy; — ! ;Dj = 0 and
using the exit procedure of Step (2b.3).

Z(Zig)= (1 x10)+(2 x5)+ (1 x25)+ (1 x 15)+ (1 x5)+ (2 x 15)
+(100+ 200+ 250+ 150) + (10+ 30+ 10+ 40+ 40+30) = 955

Therefore our current best solutiGi®) for the SFCLTP
] Z (Zrp) = 935 with a lower bound, g = 766
5 Numerical Example

Given the supply and demand capacities, unit costs ang 2 |mproved solution (Using RPH)
fixed charges as in the Tablel and 2 below (adapted from

[S]),we illustrate the workings of RPH. o In order to apply our RPH solution heuristic, the initial
The break poinfjj =5 (constant ) through route, j. solutionZg, matrix is labelled row and column wise as in
From equation 6(a) to 10(b) we note that; Table 6 below.
If xj >0and <5,g;;, =1, gjz =0 andz; = From section 4.2 and using our initial solution(Zgy)
1, therefore; obtained in 5.1 we note that optimum objective function
Mt 20+ Hi2 ) = Gjahyay + Gz = (1) xhys x (D+(0) xhyzx (D) = Hig 2 cost and current best (2) = 935.
If xj >0and>5,g,; =1and gj2 =1 2z =  Step (1) Currentbest(Z) = 935.
1, therefore: Step (2a) Variable cogVc) = ¢ijxj = 95
[Hij2 2+ Hij2 2j = Gijahija+ gijzhijz = (1) xhij x (1) + (1) x hijz x (1) = Hija 2 +Hij2 Location or source fixed COS"-‘Q) =(FRy )=700
If if Xj = 0, zj = 0, therefore Step fixed costSFc) = ( z{‘;lszlzﬁleijkzij ) =
Hij1 zj+ Hij2 zj=0 140
(@© 2018 NSP
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%

Z{current best]

No

3h1

Z(new)

Stop & Exit

Z{current best)

Fig. 4: Flow chart on row perturbation heuristic improving initsdlution

Table 1. Supply, demand, location (set up) costs and unit cost pdease

E Fi =1 |2 (3 (4
Ci i

1 25 100 1 3 1 3

2 25 200 2 2 3 2

3 25 250 2 1 2 1

4 25 150 1 3 1 3

D; 10 30 20 15
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Table 2: Two tier fixed charges on routej

i hija, hij2 | hiji hij2 | hijs hijp hiji, hij2

1 10; 20 10; 10 10; 30 10; 10

2 10; 30 10; 20 10; 20 10; 20

3 10; 20 10; 30 10;10 10; 30

4 10; 20 10; 10 10; 30 10; 10

j=1 2 3 4
Table 3: Cjj Relaxed cost matrix

14 11 10.67 12

17 10.5 12 12

15 10 10.33 12

14 11 10.67 12

Table 4: Optimal load distribution using the relaxed cost matrix
14 11 10.67 12 0 25
20
5
17 10.5 12 12 0 25
5 15 5
15 10 10.33 12 0 25
25

14 11 10.67 12 0 25
5 20
10 30 20 15 25

Step(2b.1) Therefore sind& > Vcand SFc— Step 3
Step(3a.1) No dummy rows Step (3b.1)

Step(3b.1) Check
SM.Syi — ZT:le > min(S-1..m) i.e 100— 75= 25
— Step (3c.1)

Step(3c.1) Row 1 and Row 2 are partially utilizedStep
(3c.2).

Step(3c.2) Arranging in

Ein;m 2?:1Cii
Step(3d.1) Row 3 and Row 4 are fully utilized.
In order of decreasing

YitmY-1Gij fori=12.m(Row4, Row3).
Row 4 is selected>Step (3e.1).
The Row selection is shown in Table 7.

Step (3e.1) Row 4, haXs; =5 at largesCij = C43 and
also load ak43 = 20 —Step (3e.2).

Step (3e.2) Remove allocation %i; = 5 and add to
positionXz;. Remove allocation aX43 = 20 also, but no
capacity to accommodate move at positikin. Row 1 is

selected next in the decreasing order to rec&ige—= 20

—Step (3f).

Step (3f) Allocations have been fully removed go to
—Step (3h).

decreasing ; cB
smI SN Gy for i = 1.2..m In decreasing order we Step (3h.1) While current best®? = 935 New load

have(Row 2, Rowl). Row 2 selected as having larges

tolistribution is given in Table 8 below.

Z (new) = (1 x5)+(2 x5)+(2 x5)+(1 x25)+ (1 x 20)

+(2 x 15) + (100+ 200+ 250) + (10+ 10+ 10+ 40+ 40+ 30) = 790

Step (3h.2¢(new) < Z°B we termZ(new) as the current
best and go to Step(1).
Step (1) Current best (&) = 790.
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Table 5: Optimal load distribution for lower bound determination

11 10.8 10 11.33 0 25
15 20
10
13 10.2 115 11 0 25
5 15 5
12 9.6 10 10.67 0 25
25
11 10.8 10 11.33 0 25
5
10 30 20 15 25

Table 6: Row and column labelling of initial solution to apply RPH

Columnl Column 2 Column 3 Column 4 Dummy A

14 11.33 10.67 12 0 25 47.67 Rowl

5 20

17 10.5 12 12 0 25 51.5 Row2
5 15 5

15 10 10.33 12 0 25 47.33 Row3
25 0

14 11 10.67 12 0 25 47.67 Row4

5 20 0

10 30 20 15 25

Table 7: Row selection for perturbation

14 11.33 10.67 12 47.67 25 Partially
5 utilized
17 10.5 12 12 51.5 25 Partially
5 15 utilized &
selected
15 10 10.33 12 47.33 25 Fully
25 utilized
14 11 10.67 12 47.67 25 Fully
5 20 utilized &
selected
10 30 20 15

Table 8: Load distribution after Applying RPH

14 11.33 10.67 12 25
20

5

17 10.5 12 12 25
5 5 15

15 10 10.33 12 25

25

14 11 10.67 12 25
10 30 20 15

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1044

N SS ¥

G. J. Oyewole, O. Adetunji: On The capacitated step-fixedgshand facility ...

Step (2a) Variable cogVc) = ¢ijxij = 100
Location or source fixed cost¢ ) = (Fy; ) =550
Step fixed costSFe) = (357157 1 Hijkzi ) =
140
Step(2b.1) Therefore sinde > Vcand SFc — Step
(3).
Step(3a.1) Dummy row at Row-4. Step(3a.2).
Step(3a.2) Ignore row in calculation of capacity
Step(3b.1).
Step(3b.1) Check
Yin Sy — yj-1Dj >min(S-1.m)i.e 75-75=0
—Step (3b.2).
Step(3b.2) Check ", Syi — 3]_1Dj= 0 i.e75-75=
0

Stop and exit procedure

Return Z ( £B) = 790

Therefore Z (RPH) = 790

6 Discussion Of Solutions Obtained

For the numerical examples in section 5.1 above, usin

In this model, the step-fixed charge transportation
problem of [L8 has been extended. Moreover, the
linearization and relaxation method developed Blydnd

[1] have been extended using the normal transportation
tableau as a starting solution. Through a perturbation
technique that uses the variable transportation cost, fixed
facility location cost, and step-fixed charge cost along the
selected route in deciding the perturbation moves, we
progressively obtain better solutions than the optimal
solution obtained from the relaxed transportation
problem. These solutions are considered good enough,
and we have termed the heuristic Row Perturbation
Heuristics (RPH).

Future directions on our model could be on applying
single solution metaheuristics such as simulated
annealing, Tabu search or population metaheuristics such
as genetic algorithm, particle swarm optimization to
evaluate the relative effectiveness and efficiency of RPH
to these metaheuristics. Lastly, initial solutions thando

use the relaxation and linearization which we have
employed and better improvement solutions for SFCLTP
could be investigated on.

g

the recast/ relaxed cost matrix as stated in equation 16(a)

and 16(b)Zr, = 835.9. Also, our lower bound calculation
from equation (6g) giveZ g = 766. In this example, the
relaxed value i.e.Zg, gives an upper bound to the
objective functionZ( Zg,) = 935 obtained by equation
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