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Abstract: The classical Transportation Problem (TP) Tableau which utilizes continuous variable cost has been used to model and solve
distribution problems. However, many real distribution problem decisions which require various combination of fixed and variable cost
and having several mixed variables of the binary integers and continuous types make this approach limited. This challenge requires
new integrated models that are also NP hard for which exact algorithms such as branch and bound, cutting plane algorithm may be
inefficient to use as the problem size increases in practicalbusiness cases. We present in this paper, an integrated model of Facility
Location (FL) and Step-Fixed Charge Transportation Problem (SFCTP). This problem is solved using a solution heuristicthat utilizes
relaxation and linearization approach to recast it to the classical TP as a starting solution. For the improved solution, a low cost and
efficient perturbation heuristic that works in a row-wise manner is developed. We also propose a lower bound based on literature as a
guide in achieving a solution. Lastly, a numerical example is presented to illustrate the procedures of the solution.

Keywords: Facility location, step-fixed charge, linearization and relaxation, row perturbation heuristic

1 Introduction

Decisions of different time horizons such as facility
location, route selection and load consolidation are often
encountered in distribution planning. While models exist
in literature that supports making each of these decisions
separately, there is a need to plan them in an integrated
manner if global optimality is intended. The classical
distribution model or transportation problem is an
example of a single decision model which uses variable
routing cost and is solved using the transportation tableau.
However, this simplistic approximation may not be
realistic in many business cases, and has prompted
research into the area of transportation planning with
fixed charges. These fixed charges are often incurred
when siting facilities and during route selection planning
for distribution. This means there is the need to plan both
the location of the storage facilities like depots and
warehouses in an integrated manner with the selection of
route for the distribution of the materials, in which there
are fixed charges along the route. There does not seem to
have been many solutions provided for such problems.
The complexity of the problem may be further increased
by considering the fact that in route planning today, there
may be economy or dis-economy of scale in the

consolidation of load. Such may be due to price break or
volume discounts economies or long distance traffic
dis-economy amongst others, and these are becoming
more real on daily basis as supply chains become longer.
This means we may be dealing with an integrated
problem of facility location, load consolidation and
vehicle routing with fixed charge and price breaks as a
typical instance. This type of problem is not unusual in
practice, and so, there is a need to develop a solution for
such problem.

Integrated models and solutions such as the Fixed Charge
Transportation Problem (FCTP) and the Step-Fixed
Charge Transportation Problem (SFCTP) are examples of
variants of the classical TP. These variants relax the entire
linearity assumptions of the classical transportation cost
objectives. [1] described the FCTP as one in which there
is a variable cost and a fixed cost incurred for opening a
transportation route with a shipment greater than zero.
Also according to [2] in the analysis of another variant of
the FCTP, known as the SFCTP, there can be more than
one fixed cost incurred for opening a transportation route
with the objective function behaving like a step function
or a piece wise linear function.
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The FCTP has attracted a lot of research interests where
the fixed charges in the problem statement are either at
the source or along the routes. Models and solutions
presented by [1,3,4,5,6] show that the fixed charges
could occur either at the source or along the routes.
Recently, new models and solutions have emerged with
various variants of the FCTP such as in the work of [6,7,
8,9]. The SFCTP variant of the FCTP is seen in the
multi-item volume (or weight) transportation cost
discounting models of [10] and volume discount on
distribution cost of [11,12]. Research in the field of the
SFCTP is growing as indicated by [2,13,14] with new
problem-type models and solution techniques being
continually developed. [5] gave practical applications
such as increasing taxes due to high turnover or some
increasing fees paid after attaining some user level. [14]
extended the Fixed Charge Solid Transportation Problem
(FCSTP) by presenting a lagrangian relaxation heuristic
for the Step-Fixed Charge Solid Transportation Problem
(SFCSTP) to solve large instances of the problem.

As indicated by [14] and [16] the FCTP has been argued
to be an NP-hard problem. Similarly [14] has shown the
SFCTP to be much harder to solve than the FCTP. This is
quite logical due to the fact that the step function
introduces more non- linearity into the objective function,
making the problem much more difficult to solve. In order
to reduce the expensive computations of exact methods
such as the cutting plane algorithm, branch and bound for
mixed integer and integer variable problems which could
provide optimal solutions but inefficiently with increase
in problem size, heuristics have been developed to solve
the SFCTP. Although heuristics have the possibility of
terminating quickly at a local optimum and giving
suboptimal solutions as indicated by [2], in most
instances their solutions are good and efficient [17,18,5]
in solving the FCTP and SFCTP proceeded with good
initial solutions through binary integer variables
linearization and relaxation. Moreover, in the case of [5],
their improved solution to the SFCTP is obtained through
the use of a perturbation logic.

The cost of facility location is a type of fixed charge that
FCTP problems and most importantly SFCTP problems
have not been considered extensively. [19] presented an
integrated step-fixed charge with facility location costs
problem and referred to it as Capacitated Facility
Location Problem (CFLP) with Piecewise Linear
Transportation Cost (PLTC). While the fixed charges for
both the FCTP and SFCTP are incurred as a result of the
use of a route from a supply point, facility location costs
are incurred due to siting or opening of facilities before
any shipping are done through the routes [20]. Facility
location fixed charge as described by [21] is therefore a
longer horizon decision and different from the route
selection fixed charge. Merging this with FCTP or SFCTP
gives a problem that seeks to optimize both Facility
Location Problem (FLP) and Step-Fixed Charge
Transportation Problem (SFCTP) decisions together. This

problem can be described as the Step-Fixed Charge
Transportation and Location Problem (SFCTLP).
Facility location in itself is known to be NP hard, and so
is vehicle routing and load consolidation, and so, it is
expected that the problem considered would be NP hard.
The usual approach, therefore, is to either simplify the
problem through the transformation of the original
problem into some more solvable approximation, or
through the relaxation of some original constraints, or to
solve the original problem using some heuristic, or in
certain instances, have some combinations of all these
approaches. These approaches are seen in integrated
facility location models of [19,22,23].
This paper considers a heuristic to solve the SFCTLP, and
is illustrated with a small hands-on problem size example.
This is done in order to show an in-depth understanding
of the workings of our solutions for the SFCTLP in a
similar manner to [1,24]. The main objective in this
article is about minimizing the traditional distribution
problem cost of a source to destination where a minimum
number of facilities with known capacities have to be
chosen from amongst other competing capacitated
facilities or locations with fixed location costs in order to
ship an item through routes with step-fixed costs.
This SFCTLP emanates also as a variant of the SFCTP in
like fashion as the SFCTP and SFCSTP. We proceed by
discussing the formulation of the SFCTP and reviewing
known starting initial solutions for solving it, before
presenting the integrated model for the SFCTLP, followed
by a solution heuristic and then a numerical example.

2 SFCTP Model Formulation

The classical TP, and its variants such as FCTP, SFCTP,
SFCSTP are described asm suppliers andn demand point
distribution problems, wherem denotes the number of
sources (factories, warehouses or distribution centers) and
n refers to the number of customers or demand points.
There are supply and demand requirements which often
are represented as capacitiesSi and demandD j for each
sourcei and demand pointj respectively over a known
time period. Them suppliers incur a unit transportation
costci j per unit distance and a fixed chargehi j whenever
a transportation route is opened (utilized for shipping)
under constraints of supply capacity meeting a typical
demand of transportation algorithm.
There are more than one set of fixed charges in the route
(i, j) when step-fixed charges are considered. In the
SFCSTP, the fixed charges are represented by the vehicle
cost of conveying different volumes of the load. While, in
SFCTP, the fixed charges may be incurred either through
duties, taxes or vehicle costs of different volumes
transported. The number of fixed charges depends on the
number of break points in the step function desired. In
this case, two steps of fixed charges,hi j1 and hi j2, are
considered without loss of generality. The fixed charge
hi j1 is incurred when a route is opened and termed as
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Hi j1 in the objective function and the secondhi j2 is
incurred when the shipment load (or transported unit)
exceeds an amountAi j, and termed asHi j2 in the
objective function also.Ai j is referred to as the break
point and may be fixed or varying per route(i, j)
depending on the model under consideration. When there
is load distribution in any route i.e.xi j ≥ 0, hi j1 is
incurred. Whilehi j2 is incurred whenxi j ≥ Ai j.
The standard mathematical model for the SFCTP is
represented below:
Min Z =

m

∑
i=1

n

∑
j=1

ci j xi j +
m

∑
i=1

n

∑
j=1

2

∑
k=1

gi jkhi jk (1)

Subject to

n

∑
j=1

xi j = Siyi ∀ i= 1−m (2)

m

∑
i=1

xi j = D j ∀ j = 1−n (3)

m

∑
i=1

Siyi =
n

∑
j=1

D j ∀ i= 1−m, ∀ j = 1−n (4)

Wheregi j1 =

{

1 xi j > 0
0 Otherwise , gi j2 =

{

1 xi j > Ai j
0 Otherwise

yi = 0 or 1

xi j ≥ 0

[2] noted that the solution methods of the SFCTP depend
on the break point position i.e. ifAi j < min(Si , D j ) or
Ai j ≥ min(Si , D j ). If Ai j ≥ min(Si , D j ), the optimal
solution to the SFCTP is an optimal solution to FCTP.
The SFCTP solution heuristic of [5] and the SFCTLP
heuristic presented in this paper work through building a
relaxed cost matrix which are modifications of [18]
relaxation for the FCTP. In our model the binary integer
zi j associated with the fixed chargeshi j (standard SFCTP
model above) orHi j (in our model below) is replaced by
xi j/Mi j whereMi j = min(Si , D j ). Thus a relaxed cost
matrix is formed. [5] followed in similar fashion to obtain
a first relaxed cost matrixCi j = ci j +

hi j1 + hi j2
Mi j

or

Ci j = ci j +
Hi j1 + Hi j2

Mi j
and second relaxed cost matrix

Ci j = ci j +
hi j2

Mi j−Ai j
or Ci j = ci j +

Hi j2
Mi j−Ai j

.
To improve their initial solution of SFCTP, [5]
demonstrated that the number of basic variables for a near
optimal solution of the SFCTP having two steps (or tiers)
can be greater than(m+ n−1) that is traditionally
expected for a classical TP. They considered a
minimization model of the step-fixed charge problem and

presented a numerical example to support their claim.
They also noted that for a two tier or two step-fixed
charge problem where load distributionxi j is such that
xi j ≤ Ai j or xi j > Ai j , perturbation moves would result in
above or belowAi j distribution. This is quite logical as it
expected that some optimal load values would occur at
the break points. They also established that using the
transportation problem would create solutions with
(m+ n−1) or less to which a particular perturbation
would be needed to redistribute the load units to take
advantage of the fixed charges along the routes.
In Figure 1 and 2 below, the cost objective pattern with
different fixed-cost values and the expected linearization
as illustrated by [5] are shown.
[2] however showed the limitation of the second relaxed
cost in the works of [5] whenMi j ≤ Ai j with Ci j (relaxed
cost) not giving a positive result. They further proposed
three formulas for calculating relaxed cost (Ci j) which are
based on firstly whetherAi j < Mi j or Ai j ≥ Mi j, secondly
on Ai j being included or not in the formula and thirdly
on the number ofMi j − Ai j shipments done. They used
fi j1 and fi j2 as their route fixed cost in their formulas as
represented below.
The first one is given as

Ci j =







ci j +
fi j1
Mi j

i f Ai j ≥ Mi j

ci j +
fi j1 + fi j2

Mi j
i f Ai j < Mi j

∀(i, j) 5(a)

The second given as

Ci j =







ci j +
fi j1
Mi j

i f Ai j ≥ Mi j

ci j +
fi j2

Mi j−Ai j
i f Ai j < Mi j

∀(i, j) 5(b)

The third given as Ci j =






ci j +
fi j1
Mi j

i f Ai j ≥ Mi j

ci j +
fi j2
Ai j

+
fi j1

Mi j−Ai j
i f Ai j < Mi j

∀(i, j) 5(c)

From their analyses they came to the conclusion that the
first formula gave the best approximation when compared
to [18] and [5] they also made suggestions as to using the
other formulas as better starting solutions for the SFCTP.

3 SFCTLP Problem Structure and
Formulation

Two methods are utilized for the linearization and
relaxation of the initial solution development of SFCLTP.
The first procedure is as described by [18] , [5] and [2]
which employs the transportation model variable cost
structure to form a relaxed cost matrix. As discussed in
earlier sections, the position ofAi j i.e. Ai j < Mi j or
Ai j ≥ Mi j in developing the relaxed or reduced
transportation cost matrix would have an effect on the
SFCTP solution found. We also note that the break point
position i.e.Ai j < Mi j or Ai j ≥ Mi j for any problem
involving a two tier fixed-charge cost on a route would
affect the relaxation and perturbation pattern when
seeking for a solution heuristic. Therefore, we have
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Fig. 1: Two-step linearization and relaxation Structure [5]

Fig. 2: Linearization and relaxation structure whenHi j1 < Hi j2

extended the model of [18] , [5] and more importantly the
second formula by Altassan, El-Sherbiny [2] by creating
our starting SFCTP part of the problem using

Ci j =







ci j +
hi j1
Mi j

i f Ai j ≥ Mi j

ci j +
hi j1 +hi j2
Mi j−Ai j

i f Ai j < Mi j
∀(i, j) 5(d)

We have used a summation of route fixed costshi j1 +hi j2
or (Hi j1 +Hi j2 ) instead ofhi j2 (Hi j2 ) alone to account
for incurring the fixed costhi j1 (Hi j1 ) whenever a route
is opened beforehi j2 is incurred due to the break point
Ai j . Also, we have usedhi j instead offi j used in the route
fixed costs.

The second procedure develops an average relaxation
method, as indicated by equation(14) below. This second
method relaxes the location variableyi by creating an
average location variable valueyi

a for all the competing
locations. Through some perturbation techniques
developed on the initial solution, better solutions are
obtained.

Our problem is stated as the capacitated facility location
problem with step-fixed Charges along the transportation
routes i.e. Step-Fixed Charge Transportation and Location
Problem (SFCTLP).

3.1 Model assumptions

We make the following assumptions in our model:

1.Deterministic input.
2.One stage or two echelon problem.
3.Two step-fixed charge cost.
4.Single period and single item distribution problem.

3.2 Model Parameters

i : Index for sources (plants, locations or rows).
m : Number of sources (plants , warehouses etc.).
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n : Number of destinations (or demand point).
j : Index for demands (destinations or columns).
k : Index for levels or (number of steps).
ci j : Unit cost of shipment on route(i, j).
Si : Capacity for each locationi.
hi j1 : First level fixed cost on route(i, j).
hi j2 : Second level fixed cost on route(i, j).
Hi j1 : First level step-fixed cost based on load distribution.
Hi j2 : Second level step-fixed cost based on load
distribution.
xi j: Allocation variable (or load distributions) along route
(i, j).
yi: Location variable for plant or source (0 or 1).
gi j1: Step-fixed charge variable (determining first or
second level of fixed cost).
zi j: Fixed charge variable in the objective function (0 or 1).
Ai j: Break point for the fixed costs along the route(i, j).

3.3 Mathematical Model (Objective function
and Constraints)

(Objective function) MinimizeZ = ∑m
i=1 ∑n

j=1 ci jxi j +

∑m
i=1 Fi yi + ∑m

i=1∑n
j=1∑2

k=1 Hi jkzi j (6a)

Where:
m

∑
i=1

n

∑
j=1

Hi j1 =
m

∑
i=1

n

∑
j=1

gi j1hi j1

m

∑
i=1

n

∑
j=1

Hi j2 =
m

∑
i=1

n

∑
j=1

gi j2hi j2

∴

m

∑
i=1

n

∑
j=1

Hi j1 +
m

∑
i=1

n

∑
j=1

Hi j2 =
m

∑
i=1

n

∑
j=1

gi j1hi j1 +
m

∑
i=1

n

∑
j=1

gi j2hi j2

Where:

gi j1 =

{

1 xi j > 0
0 Otherwise ,gi j2 =

{

1 xi j > Ai j
0 Otherwise

m

∑
i=1

n

∑
j=1

2

∑
k=1

Hi jkzi j =
m

∑
i=1

n

∑
j=1

Hi j1 zi j +
m

∑
i=1

n

∑
j=1

Hi j2 zi j

subject to (constraints):
∑n

j=1 xi j ≤ Siyi

∀ i = 1−m (7)
∑m

i=1 xi j = D j ∀ j = 1− n (8)
∑m

i=1 Siyi ≥ ∑n
j=1 D j ∀ i = 1−m, ∀ j = 1−n(9)

xi j ≥ 0 (10a)
yi = 0 or 1 zi j = 0 or 1 (10b)
Equation 6(a) is the objective function. The first term is a
variable cost, the second term is the facility location cost
and third term is the route step-fixed charge cost.
Equation (7) is the supply capacity constraint of each
location or sources. Equation(8) is the demand constraint

to be met. Equation (9) is the aggregate constraint for
supply and demand balance. Equation (10a) refers to the
non-negativity constraint while (10b) refer to the binary
integer constraints.

4 Solution Method

Our solution method iterates through the steps and rules
below in seeking for an improved solution:
Step 1: We develop an initial solution by linearization and
relaxation of the binary variables (yi and zi j ) in the model
problem
Step 2: We calculate a lower bound for SFCTLP.
Step 3: Improve our initial solution through a structured
perturbation procedure which we refer to as Row
Perturbation Heuristic (RPH)
The RPH works through improving the initial solution
method by iterating through the following well
established procedures of moving to a good low cost
solution in an efficient manner. [19] discussed how the
use of some of the rules below can drive towards a
reduced cost solution.

1.Least cost rule.
2.Utilization rule.
3.Fixed-cost elimination rule (Location fixed cost and

route selection fixed cost).
4.Feasibility rule.

The heuristic uses the least cost rule to determine which
sources to open and where to allocate capacities.
Moreover, it allocates load units to reduce the number of
fixed costs incurred i.e. facility location cost and route
fixed costs by pushing load units to already open sources,
closing unneeded locations in the process and also
moving away from the higher tier fixed cost. Feasibility
rule has been used to ensure capacity and demand
constraints are satisfied during the load redistribution.

4.1 Initial Solution

This is achieved through the linearization and relaxation
of integer (binary) variables i.e. the facility locationyi and
fixed-charge selection zi j variables. A Relaxed
Transportation Problem (RTP) is thus formed as result.
Using the relaxation of integer variables described earlier:
Where:zi j = xi j/Mi j andMi j = min(Si , D j )
Using equation (9), the minimum supply requirement
implies that:

m

∑
i=1

Siyi ≥

n

∑
j=1

D j ∀ i= 1−m, ∀ j = 1−n (11)

We develop a new location variableyi
a, which is the

average of∑m
i=1 yi to help relax the location variableyi.

Thus equation (11) is restated as
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m

∑
i=1

Si yi
a =

n

∑
j=1

D j (12)

∴

m

∑
i=1

Si yi
a =

m

∑
i=1

n

∑
j=1

xi j (13)∴

yi
a =

∑m
i=1 ∑n

j=1 xi j

∑m
i=1 Si

(14)

Substitutingyi
a for yi and zi j = xi j/Mi j we transform

equation (6a) as:
Minimize ZR1=

m

∑
i=1

n

∑
j=1

ci j xi j +
m

∑
i=1

Fi yi
a +

m

∑
i=1

n

∑
j=1

2

∑
k=1

Hi jk
xi j

Mi j
(6b)

Substituting equation (14) in(6b) gives:
Minimize ZR1 =

m

∑
i=1

n

∑
j=1

ci j xi j +
m

∑
i=1

Fi

[

∑m
i=1 ∑n

j=1 xi j

∑m
i=1 Si

]

+
m

∑
i=1

n

∑
j=1

2

∑
k=1

Hi jk
xi j

Mi j
(6c)

ZR1 =

m

∑
i=1

n

∑
j=1

[

ci j +
∑m

i=1 Fi

∑m
i=1 Si

+
∑2

k=1 Hi jk

Mi j

]

xi j (6d)

Therefore

ZR1 =
m

∑
i=1

n

∑
j=1

[ Ci j] xi j (6e)

Where;

Ci j = ci j +
∑m

i=1 Fi

∑m
i=1 Si

+
∑2

k=1 Hi jk

Mi j
∀ (i, j) (15)

However, considering the break point analyses we have
made in section 3 earlier, equation (15) would be limited.
Therefore using equation 5(d), equation 6(d) can further
be stated as

ZR2 =

m

∑
i=1

n

∑
j=1

[

ci j +
∑m

i=1Fi

∑m
i=1 Si

+
Hi j1

Mi j

]

xi j i f Ai j ≥Mi j ∀(i, j)

or
∑m

i=1 ∑n
j=1

[

ci j +
∑m

i=1Fi

∑m
i=1 Si

+
Hi j1 +Hi j2

Mi j−Ai j

]

xi j i f Ai j < Mi j ∀(i, j) (6 f )

From equation (6f) above, the cost matrix from which the
transportation tableau is constructed is given as:

Ci j = ci j+
∑m

i=1Fi

∑m
i=1 Si

+
Hi j1

Mi j
∀ (i, j) i f Ai j ≥Mi j (16a)

or
Ci j = ci j +

∑m
i=1Fi

∑m
i=1 Si

+
Hi j1 +Hi j2

Mi j−Ai j
∀ (i, j) i f Ai j < Mi j (16b)

The linear Equation (6f) above can be solved using any
optimal solution technique for transportation model (e.g.
method of modified u-v distribution). This is present in
optimization transportation software such as Tora.
The load distribution obtained from the relaxed costZR2 in
equation (6f) is used in calculatingZ in equation (6a) and
would be termed the current best solution(ZCB). After this,
necessary perturbations following our rules are employed
to arrive at another Z which is compared to the initial ZCB

. Comparing the values of ZCB andZ , If ZCB ≤ Z we keep
(

ZCB
)

as the current best, otherwise i.e. ZCB > Z, we term
Z as the current best.

4.2 Lower bound calculations

Using equation 5(a) and our average location variable
yi

a in equation(14) we have also extended[2] best starting
solution for SFCTP. Our SFCLTP lower bound is thus
calculated below.

ZLB =
m

∑
i=1

n

∑
j=1

[

ci j +
∑m

i=1 Fi

∑m
i=1Si

+
Hi j1

Mi j

]

xi j i f Ai j ≥Mi j ∀(i, j)

or
∑m

i=1 ∑n
j=1

[

ci j +
∑m

i=1 Fi

∑m
i=1 Si

+
Hi j1 +Hi j2

Mi j

]

xi j i f Ai j < Mi j ∀(i, j) (6g)

4.3 Solution Improvement (using The RPH
proposed):

The xi j allocations obtained from the optimal solution of
equation 6(f) is further perturbed using structured
combinations of the least cost preference, high utilization
of open locations and systematic elimination of fixed cost
either by closing an open location or by preventing use of
high fixed charge along the routes. The perturbation
technique aims at getting a better solution while using the
rules stated in section 4 as a guide. The Perturbation
moves are a top-down load re-distribution along a column
of each row to ensure that feasibility in demand is
attained as described in the (4× 4) transportation tableau
in Figure 3 below.
Si (location capacity) ,Di (Demand capacity). The last
column represents relaxed cost summation along a row.
From equation 6(a) above, we observe that there are three
cost terms in the objective function namely;

1.Variable cost(Vc) = ci jxi j.
2.Location or source fixed cost (Lc ) = ( Fiyi ).
3.Step-fixed cost(SFc) = ( ∑m

i=1 ∑n
j=1 ∑2

k=1 Hi jkzi j ) .

The degree of the values obtained for each of the terms
would determine the solution procedure and perturbation
technique to be used. We therefore note the following
scenarios out of several possible ones for our structured
perturbation logic:
(a)Vc ≫ Lc and SFc (Variable cost having the largest
value).
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Fig. 3: Sample perturbation moves

(b) Lc ≫ Vc and SFc (Location cost having the largest
value).
(c) S f c ≫ Vc and Lc (Step-fixed cost having the largest
value).
(d) Vc ∼= Lc ∼= SFc (The three terms being
approximately equal).
The summarized perturbation procedure is given below.

1.Using the linearization in 6(f) to obtain the starting
solution and initial load distribution. TheZ obtained
is termed the current best (ZCB).

2.(a) Calculate the values of the major terms of the
objective function i.e.Vc, Lc and SFc
(b.1) If Lc ≫ Vc and SFc go to step (3),
(b.2) Else IfS f c ≫ Vc and Lc go to step (4).
(b.3) Else go to Step 1 and exit Procedure.

3.(a.1) For location cost reduction (Lc) if dummy rows
are obtained from step (1)
(a.2) Yes: ignore row and capacity in calculation. Else
go to Step (3b.1)
(b.1) Check if∑m

i=1 Siyi − ∑n
j=1 D j ≥ min(Si=1 ···m) ,

excludingi = dummy row.
(b.2) If true proceed to 3c.1,
(b.3) Else if ∑m

i=1 Siyi − ∑n
j=1D j = 0 Stop and exit

procedure. Return ZCB

(b.4) Else go to Step (3h).
(c.1) Identify whether rows or locations with partially
utilized capacities are available.
(c.2) Arrange in the order of decreasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m whereCi j → relaxed

cost matrix (Break ties arbitrarily and select largest.)
(d.1) Identify rows or locations with fully utilized
capacities and arrange in the order of decreasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m whereCi j → relaxed

cost matrix (Break ties).If yes go to (3e.1). If none go
to (3g).
(e.1) Is there anXi j with maximum Ci j position
according to the row identified in Step (3d.1) ?
(e.2) If Yes: Remove allocations starting with
maximumCi j position from open and allocatedXi j

positions of the fully utilized rows as identified in
3(d.1) or ( as per partially utilized row as in step (3g) )
and add into position(i, j) of the partially utilized
rows in a decreasing order of
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m to balance the row

capacity (break ties as step3c).
(e.3) If No: maximum position has no load then move
to next in rank ofCi j, (break ties arbitrarily )
(f) Repeat step 3(e) until allocations have been
completely removed in the fully or partially utilized
row identified as per step (3e). Go to Step(3h).
(g) Arrange the partially utilized location or row
capacity in an order of decreasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m, (break ties as in 3c)

and select Maximum. Repeat Step (3e) to (3f).
(h.1) Use the current load distribution to calculate
Z(new) . Compare the values of ZCB andZ(new)
(h.2) If Z(new) < ZCB we termZ as the current best
and go to Step (1).
(h.3) If otherwise i.e.Z (new)> ZCB, Stop and exit
procedure.

4.(a.1) For the Step-fixed charge cost reduction, check if
any dummy rows?

(a.2) Delete any dummy rows or un-utilized locations
obtained in step 1.
(b.1) Identify if rows or locations with partially utilized
capacities are available.
(b.2) Arrange in the order of increasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m whereCi j → relaxed cost

matrix (Break ties arbitrarily).
(c) Identify rows and locations with fully utilized capacity
and arrange in the order of increasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m . (Break ties as in 4b). If

none go to (3b).
(d.1) Check If there are open and allocatedxi j positions
greater thanAi j within the largest row as identified by step
(4c) at maximumCi j position?
(d.2) No: If maximum position has no load move to next
in rank ofCi j
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(d.3) Yes: Check if un-allocated positions xi j of the row as
identified by step (4b.1) can accommodate move.
(d.3.1) No : If current capacity cannot accommodate the
reallocation, move to the next ranked partially utilized
capacity row according to (4b.1) Proceed till the identified
xi j position in step (4d.1) or ( 4g) has been redistributed
in a single step ofAi j. If no partially utilized row with
availability go to Step (3b).
(d.3.2) Yes: Redistribute (Ai j) identified at (4.d.1) starting
with thexi j with at maximumCi j position
(e) Repeat Step (4b) to (4d) until moves already taken are
about to be repeated or till a positionxi j −Ai j after using
step (4d or 4g) becomesxi j . Use the current load
distribution to calculateZ . go to Step (3b).

4.4 RPH Flow Chart description

A flow chart showing the perturbation steps described
above and how they iterate to improve the starting
solution is presented in Figure 4 below. The flow chart
symbols utilized have the same meaning as standard flow
chart symbols.
RPH iterative procedure as shown in the flow chart uses
the initial solution to determine quickly whether location
fixed-cost elimination or upper tier route fixed-cost
elimination would be appropriate to achieve an overall
cost reduction. The load redistribution using the order of
decreasing∑m

i=m ∑n
j=1Ci j from the fully-allocated routes

during Location fixed-cost elimination, aims to reduce
cost from high cost arcs or routes. Furthermore, reducing
cost by valueAi j from maximumCi j position at Step 4
prevents incurring upper tier route fixed cost. Also, load
redistribution into locations with increasing order of
∑m

i=m ∑n
j=1Ci j in step 4 ensures lower cost routes are

utilized before higher ones. The flow chart also has the
capacity to quickly arrive at a current best solution
depending on the problem structure encountered while
checking the condition∑m

i=1 Siyi − ∑n
j=1D j = 0 and

using the exit procedure of Step (2b.3).

5 Numerical Example

Given the supply and demand capacities, unit costs and
fixed charges as in the Table1 and 2 below (adapted from
[5]),we illustrate the workings of RPH.
The break pointAi j = 5 (constant ) through routei, j.
From equation 6(a) to 10(b) we note that;
If xi j > 0 and ≤ 5 , gi j1 = 1 , gi j2 = 0, and zi j =

1, there f ore;
Hi j1 zi j + Hi j2 zi j = gi j1hi j1zi j + gi j2hi j2zi j = (1) ×hi j1× (1)+ (0)× hi j2× (1) = Hi j1 zi j

If xi j > 0 and > 5 , gi j1 = 1 and gi j2 = 1, zi j =

1, there f ore;
[Hi j1 zi j + Hi j2 zi j = gi j1hi j1+ gi j2hi j2 = (1) ×hi j × (1)+ (1)× hi j2× (1) = Hi j1 zi j +Hi j2 zi j

If i f xi j = 0, zi j = 0, there f ore
Hi j1 zi j + Hi j2 zi j = 0

For (i, j) position (1,1), M11 = 10 , andA11 = 5 thus
A11 < M11
From equation (16a and 16b) above, equation 16b is
selected.

C11 =

[

c11+
F1+F2+F3+F4

S1+ S2+ S3+ S4
+

h111+ h112

M11−A11

]

C11 =

[

1+
100+200+250+150

25+25+25+25
+

10+20
10−5

]

= 14

For all (i, j) position,Ai j < Mi j
Equation 16b is selected forC11, C12...Cmn
Ci j relaxed cost matrix forC11, C12...Cmn is given Table 3
below.

5.1 Initial solution

Tora optimization software which uses the modified u-v
distribution method of solving linear transportation
models is used to solve the cost matrix above (as a
balanced problem) optimally to give the initial solution of
the SFCLTP (ZR2) represented in Table 4 below.
For our lower bound value for SFCLTP (ZLB), the cost
matrix below is obtained from the relaxed unit cost in
equation (6g) like the relaxed costs of (16a and 16b). The
load distributions after solving optimally with Tora
software are presented in Table 5 below.
Using equation (6f) above;
ZR2 = (14 ×5)+ (14 ×5)+ (10.5 ×5)+ (10 ×25)+ (10.67 ×20)+ (12 ×15) = 835.9

Using equation (6e) for our lower bound calculation,
ZLB = (11 ×10)+ (10.2 ×5)+ (9.6 ×25)+ (10 ×5)+ (10 ×15)+ (11 ×15) = 766

Using the load distribution for bothZR2 andZLB and
equation (6a) for calculatingZ for ZR2 andZLB which is
represented as Z(ZR2) and Z (ZLB) respectively,

Z (ZR2) = (14 ×5)+(14 ×5)+(10.5 ×5)+(10 ×25)+(10.67 ×20)+(12 ×15)

+(100+200+250+150) +(10+10+10+40+40+30) = 935

Z (ZLB)= (1 ×10)+(2 ×5)+(1 ×25)+(1 ×15)+(1 ×5)+(2 ×15)

+(100+200+250+150)+(10+30+10+40+40+30) = 955

Therefore our current best solution(ZCB) for the SFCLTP
Z (ZR2) = 935 with a lower boundZLB = 766

5.2 Improved solution (Using RPH)

In order to apply our RPH solution heuristic, the initial
solutionZR2 matrix is labelled row and column wise as in
Table 6 below.
From section 4.2 and using our initial solution Z(ZR2)
obtained in 5.1 we note that optimum objective function
cost and current best ( ZCB) = 935.
Step (1) Current best ( ZCB) = 935.
Step (2a) Variable cost(V c) = ci jxi j = 95

Location or source fixed cost (Lc ) = ( Fiyi ) = 700
Step fixed cost(SFc) = ( ∑m

i=1 ∑n
j=1∑2

k=1 Hi jkzi j ) =
140
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Fig. 4: Flow chart on row perturbation heuristic improving initialsolution

Table 1: Supply, demand, location (set up) costs and unit cost parameters
i SSSiii FFF iii j = 1 2 3 4

ci j

1 25 100 1 3 1 3
2 25 200 2 2 3 2
3 25 250 2 1 2 1
4 25 150 1 3 1 3
DDD jjj 10 30 20 15
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Table 2: Two tier fixed charges on routei, j
i hhhiii jjj111 ,,, hhhiii jjj222 hhhiii jjj111 ,,, hhhiii jjj222 hhhiii jjj111 ,,, hhhiii jjj222 hhhiii jjj111 ,,, hhhiii jjj222
1 10 ; 20 10 ; 10 10 ; 30 10 ; 10
2 10 ; 30 10 ; 20 10 ; 20 10 ; 20
3 10 ; 20 10 ; 30 10 ; 10 10 ; 30
4 10 ; 20 10 ; 10 10 ; 30 10 ; 10

j =1 2 3 4

Table 3: Ci j Relaxed cost matrix
14 11 10.67 12

17 10.5 12 12

15 10 10.33 12

14 11 10.67 12

Table 4: Optimal load distribution using the relaxed cost matrix
14

5

11 10.67 12 0
20

25

17 10.5
5

12 12
15

0
5

25

15 10
25

10.33 12 0 25

14
5

11 10.67
20

12 0 25

10 30 20 15 25

Step(2b.1) Therefore sinceLc ≫ Vc and SFc → Step 3

Step(3a.1) No dummy rows→ Step (3b.1)

Step(3b.1) Check
∑m

i=1 Siyi − ∑n
j=1D j ≥ min(Si=1 ···m) i.e 100−75= 25

→ Step (3c.1)

Step(3c.1) Row 1 and Row 2 are partially utilized→ Step
(3c.2).

Step(3c.2) Arranging in decreasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m. In decreasing order we

have(Row 2, Row1). Row 2 selected as having largest
∑m

i=m ∑n
j=1Ci j

Step(3d.1) Row 3 and Row 4 are fully utilized.
In order of decreasing
∑m

i=m ∑n
j=1Ci j f or i = 1,2...m (Row4, Row3).

Row 4 is selected→Step (3e.1).
The Row selection is shown in Table 7.

Step (3e.1) Row 4, hasX41 = 5 at largestCi j = C43 and
also load atX43= 20→Step (3e.2).

Step (3e.2) Remove allocation atX41 = 5 and add to
positionX21. Remove allocation atX43 = 20 also, but no
capacity to accommodate move at positionX21. Row 1 is
selected next in the decreasing order to receiveX43 = 20
→Step (3f).

Step (3f) Allocations have been fully removed go to
→Step (3h).

Step (3h.1) While current best ZCB = 935 New load
distribution is given in Table 8 below.

Z (new) = (1 ×5)+(2 ×5)+(2 ×5)+(1 ×25)+(1 ×20)

+(2 ×15)+(100+200+250)+(10+10+10+40+40+30) = 790

Step (3h.2)Z(new)< ZCB we termZ(new) as the current
best and go to Step(1).
Step (1) Current best ( ZCB) = 790.
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Table 5: Optimal load distribution for lower bound determination
11

10

10.8 10
15

11.33 0
20

25

13 10.2
5

11.5 11
15

0
5

25

12 9.6
25

10 10.67 0 25

11 10.8 10
5

11.33 0 25

10 30 20 15 25

Table 6: Row and column labelling of initial solution to apply RPH
Column1 Column 2 Column 3 Column 4 Dummy A
14
5

11.33 10.67 12 0
20

25 47.67 Row1

17 10.5
5

12 12
15

0
5

25 51.5 Row2

15 10
25

10.33 12 0
0

25 47.33 Row3

14
5

11 10.67
20

12 0
0

25 47.67 Row4

10 30 20 15 25

Table 7: Row selection for perturbation
14
5

11.33 10.67 12 47.67 25 Partially
utilized

17 10.5
5

12 12
15

51.5 25 Partially
utilized &
selected

15 10
25

10.33 12 47.33 25 Fully
utilized

14
5

11 10.67
20

12 47.67 25 Fully
utilized &
selected

10 30 20 15

Table 8: Load distribution after Applying RPH
14

5

11.33 10.67
20

12 25

17
5

10.5
5

12 12
15

25

15 10
25

10.33 12 25

14 11 10.67 12 25

10 30 20 15
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Step (2a) Variable cost(Vc) = ci jxi j = 100
Location or source fixed cost (Lc ) = ( Fiyi ) = 550
Step fixed cost(SFc) = ( ∑m

i=1 ∑n
j=1∑2

k=1 Hi jkzi j ) =
140
Step(2b.1) Therefore sinceLc ≫ Vc and SFc → Step
(3).
Step(3a.1) Dummy row at Row 4.→ Step(3a.2).
Step(3a.2) Ignore row in calculation of capacity.→
Step(3b.1).
Step(3b.1) Check
∑m

i=1 Siyi − ∑n
j=1 D j ≥ min(Si=1 ···m) i.e 75− 75 = 0

→Step (3b.2).
Step(3b.2) Check∑m

i=1 Siyi − ∑n
j=1 D j = 0 i.e 75−75=

0
Stop and exit procedure
Return Z ( ZCB) = 790
Therefore Z (RPH) = 790

6 Discussion Of Solutions Obtained

For the numerical examples in section 5.1 above, using
the recast/ relaxed cost matrix as stated in equation 16(a)
and 16(b)ZR2 = 835.9. Also, our lower bound calculation
from equation (6g) givesZLB = 766. In this example, the
relaxed value i.e.ZR2 gives an upper bound to the
objective functionZ( ZR2) = 935 obtained by equation
(6a). From Figures1 and 2, we note that the ideal relaxed
cost matrix is linear in the objective function and should
give a lower bound to the SFCLTP objective function.
Furthermore, there could be instances where the
relaxation type used could give an upper bound at the
break point as seen in Figure 2. Our lower-boundZLB
gives the minimum out of ZLB , Z2, Z( ZLB) and
Z ( ZR2) . However, the load distribution ofZR2 gives
better starting solution for our RPH .
The starting solution for our numerical exampleZ ( ZR2)
is 935. However, our solution heuristic gives an improved
objective value Z (RPH) = 790 with all constraints
satisfied. Using our RPH solution in section 5.1, location
4 ( or Row 4) among the other competing locations with
equal supply capacities but different set up costs is closed
as unprofitable for shipping through the fixed charges and
transportation costs. RPH thus uses a structured
combination of fixed-location cost elimination, cheap
route variable cost and load consolidation at lower tier
route fixed cost to drive towards an improved solution
while also ensuring feasibility of all constraints are
satisfied.

7 Perspective

An integrated model that combines the fixed location cost
and step-fixed charge transportation cost has been
proposed in this paper. We have termed it Step-Fixed
Charge Location and Transportation Problem (SFCLTP).

In this model, the step-fixed charge transportation
problem of [18] has been extended. Moreover, the
linearization and relaxation method developed by [5] and
[1] have been extended using the normal transportation
tableau as a starting solution. Through a perturbation
technique that uses the variable transportation cost, fixed
facility location cost, and step-fixed charge cost along the
selected route in deciding the perturbation moves, we
progressively obtain better solutions than the optimal
solution obtained from the relaxed transportation
problem. These solutions are considered good enough,
and we have termed the heuristic Row Perturbation
Heuristics (RPH).
Future directions on our model could be on applying
single solution metaheuristics such as simulated
annealing, Tabu search or population metaheuristics such
as genetic algorithm, particle swarm optimization to
evaluate the relative effectiveness and efficiency of RPH
to these metaheuristics. Lastly, initial solutions that donot
use the relaxation and linearization which we have
employed and better improvement solutions for SFCLTP
could be investigated on.
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