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Abstract: Consider the first-order linear differential equation wstveral retarded argumentst) + 3", pi (t)x(7i (t)) = 0, t > to,
where the functiong;, 7j € C([to, ), 211d ™), for everyi =1,2,...,m, 7 (t) <t fort > toand lim_. 7j (t) = c0. A survey of the most
interesting oscillation conditions is presented. An exknilfustrating the results is given.
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1 Introduction (1.1) and (1.2) has been the subject of many investigations.
See, for example, [1-40] and the references cited therein.

In the case of monotone arguments, a survey of the
most interesting oscillation conditions for Eq.(1.2) can b

Consider the first-order linear differential equation with
several non-monotone retarded arguments

m found in [36]. While in the general case of non-monotone
X (t)+ Zpi (OX(Ti (1)) =0, t > 1o, (L1)  arguments we present the following interesting sufficient
i= oscillation conditions.
where the functionsp;,7j € C([tg,),R*), for every In 1994, Koplatadze and Kvinikadz2¢] established

i=1,2,...,m (hereR" = [0,:)), T; (t) <t fort >tgand the following: Assume

Mo T ) = co. _ o(t) ;= supr(s), t>0. (1.3)
Let To € [to,+%), T(t) = Min<i<m{Ti(t)} and s<t

7_1(t) = sup{s: 1(s) <t}. By a solution of the equation . )

(1.1) we understand a function € C([To, +),R), Clearlya(t) is non-decreasing anmt) < of(t) for all t >

continuously differentiable ort_1(To),+] and that O Letke Nexistsuch that

satisfies (1.1) fot > 7_1(Tp). Such a solution is called t at)
oscillatoryif it has arbitrarily large zeros, and otherwise it limsup p(s) exp{/ p(&)Yk(&)dé } ds>1-—c(a),
is called non-oscillatory. = Jo(t) a(s)

14
In the special case wheme= 1 equation (1.1) reduces (14)

to the equation

X (t)+p(t)x(t(t)) =0, t >1o, (1.2) Wi(t) =0, wk(t):exp{‘/rzt) p(f)wk,l(f)dz}, k=23,.. fortc RY, (15)

wherea :=liminfi_,e fﬁ(t) p(s)ds< 1,

where the functionp, T € C(Jto,),R™), 1(t) <t for

t > to and lim_,e T (t) = o. and

For the general theory of these equations the reader is 0 ifa>1
referred to [13,16, 18, 19, 32]. c(a) =1 , . e’ .

The problem of establishing sufficient conditions for 2 (1_ a—v1-2a— az) f0<a<g.
the oscillation of all solutions to the differential equats (1.6)
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Then all solutions of equatiofi.2) oscillate. where

In 2011 Braverman and Karpuzg][ derived the

following sufficient oscillation condition for Eq.(1.2) mot /m &
w=0 wi<>—exp<z I (fire) wu(s)ds),i:z,s,...,

t J=1rj(t

o(t)
limsup p(s) exp{/ p(E)dE}ds> 1, (17)
t—oo  JOo(t) 1(s) 1
while in 2014 Stavroulakis J7] improved the above O < @i:=liminf / pi(s)ds< g, i=12,...,m (1.14)
condition as follows: ai(t)

timsup [ p( )exp{/(ﬂit> p(E)dé}ds> 173(147\/172%5‘2) g  and

toew  Jo(t) 2

m

)

) : 2
In 2018 Chatzarakis, Purnaras and Stavroulakis [9] () = 1—0i—y/1-20i—0 19
improved further these conditions as follows: Assume A 2 ’ e
that for somek € N . _ (115
then all solutions of Eq. (1.1) oscillate.
¢ at) In 2016 Bravermen, Chatzarakis and StavroulaKjs [
limsup | p(s)exp / R (u)du | ds> 1, (1.9) obtained the following iterative sufficient oscillation

R (s conditions
or
o lim sup/ Zp. ,Ti(u)du>1,  (1.16)
I|msup/ exp(/ )ds> 1- szzufuz, (1.10) tHoo
" or
<
where 0< a , and |' / T ——
t . |mtsg£ zlp. ))du> 17#’ (1.17)
1+ [ p(s exp(/ p(u exp(/ R ( dé) du> ds}
1(t) (s) (u) or
. . . - m
with Po(t)_ =p(t). Then all _solut|ons.of Eq. (1.2) _oscnlate. Ii{n iogf / Z\pi (Uyar (h(t), T (u))du> 1 (1.18)
Concerning the differential equation (1.1) with several - i= e
non-monotone arguments the following related oscillation h
results have been recently published. where
Assume that there exist non-decreasing functimns h(t) = maxhj(t) andhi (t) = sup 7i(s), i=1,2,...,m
C([to,»),R™) such that 1<i<m to<s<t
i(t)<oi(t)<t,i=12,....m (1.11) . tm 1
' O<a:= “ﬂ'ﬂf / _;pi (s)ds< e (1.19
In 2015 Infante, Kopladatze and Stavroulakis [21] proved ht) '~
that if
and
1/m
m t i (t)
Iimsup [ /p. exp(/ zlp. EXP(/ZP' du) dé) ds} (t S =exp /ZQ s
e al(t Ti ()

1

> a1 (t.9) = exp /Zp' a (Ut (W)du |, r e N,
(1.12)
then all solutions of Eq. (1.1) oscillate.

Also in 2015 Kopladatze [27] improved the above . )
condition as follows: Let there exist sorkes N such that Also, in 2016 Akca, Chatzarakis and StavroulaKip [
improved that result replacing condition (1.8) by the

m

t a # " iterative condition
Iirtnsup / pi (s)exp m/ (ﬂpg > &)dé
- a(t

J Ilmsup/ Zpl T (u))du> 1414

1 m t—oo /\O
>— |1-J]1c(ai)|, 1.13
mm[ D i ( 01 (113 (1.20)
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where)q is the smaller root of the equatidn= e**, or
t 1 n .
o tm 1 limsup (/ Q1(v)dv+ C(p)efg(t) Jic1 pI(S)ds) >1,
O<a:= ||m|nf / lei (s)ds< s t—so0 a(t)
'~ where

andr (t) = 1rgia<§1{ri (t)}.

Qu(t) = k;i;pi (t)

t t o sn oedse (KO sn ig—e o ud
/m pk(s)e/gk(t)z|:1pl(5) St (s) 31q (A(ar) )Py (W) Yds & € (0,A(q),
T

In 2017 Chatzarakis [8] derived the following: Assume

that for some&k € N and
t
! h(t) quliminf/ pi(s)ds £=1,2,...m
limsup [ P(s)exp /Fl((u)du ds>1, (121 = ()
e h(t) 1(s) or

1
or . nofnot "
limsup <|'|

. Rk(s)ds>
¢ ) s t—w —1 \k=1"9j(t)
limsup [ P(s) exp(v/ &(u)du) ds>1- M, ! k=1

(1.22)

o 2 n
T g 4 Mkea ©B) STl 3apeeds . L
n" n"
or
. . 5 where
. . S n i d
fimsup f_ P eXp< ./r<s) PK(U)du) 0 T Vi P Rq(s) = elos iz PWdu
n S o Ok(S) <n
y @ XL [ pwe i PNy g e (0,4 (p)),
) t o(s) 1+InA; 1-a—+vV1-2a-—a? i= Ti(s)
limsup p(s) exp(/ &(u)du) ds> — ,
toe Jo(t) J A 2 and
(1.24)
or

e

t
0<Bk::Iiminf/ pi(s)ds<
t a(s) 1 t=o Jg(t)
Iiminf/ p(s)exp(/ H<(u)du) ds> =, (L.25)

o(t) 7(9) e

t—o0

Then Eq. (1.1) is oscillatory.

whereh(t), 7 (t), o are defined as abov#; is the smaller
root of the transcendental equatidn= e**, and

Re(t) = P(t) [l+ / P(s)exp("/ P(u)exp(r/ n“(s)dg> du) ds
T(t)

(s) ()

Recently Bereketoglu et al [4] improved the above
conditions as follows:

Theorem 1.Assume that there exist non-decreasing
functionso; € C([to,),R™) such that (1.11) is satisfied

with Py(t) = P(t) = 3", pi (t). Then all solutions of Eq.
(1.1) oscillate.

In 2018 Attia et al B] established the following
oscillation conditions.

Assume that

t n 1
0 < p :=liminf pr(s)ds< —,
t=eJg(t) k; ©) e
and
t n .
limsup (/ Q(v)ydv+ C(p)efé(t) Zi:1p|(5)ds) > 1,
e 9(t)
where

Q(t) - kZli; . (t)

t g n : k) <n
oc(S) oo 21 P(SIasHA (P) =€) [ s 31y pr(u g s
v

T (

£<(0,A(p)),

and for some k N

[ t Gi(t) 1/m
. mo|m 1
"rlsoyp]: i[l J pi (S)exp T./ &(u)du) ds) >W"

) ®

(1.26)
or

m m t~ Cﬁ(l) 1/m m
”ijuPJ: [ﬂ /) pi (s) exp(rl/ &(u)du) ds)l > r’;“ {1—[1(3 (ai)} ,

(1.27)

where

1/m
R(t) = ipj (t) {l+m [ﬁ j pi(s) exp(rl/t Pkl(u)du) ds} }

(9

m 1/m
Po(t) =m [ﬂ Pe (t)] :
/=1

a; is given by (1.14) and;€a;) by (1.15). Then all
solutions of Eq.(1.1) oscillate.
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RemarKkt is clear that the left-hand sides of both with
conditions (1.26) and (1.27) are identically the same and

also the right-hand side of (1.27) reduces to (1.26) when )

¢ (a;) = 0. So it seems that both conditions are the sameand fori=1,2,

Po(t) = 2v/pa(t) pa(t),

when ¢; (aij) = 0. One may notice, however, that the
condition (1.14) with 0< o < 1/eis required in (1.27)
but not in (1.26).

In the case of monotone arguments we have the

following theorem.

Theorem 2. Let 1; be non-decreasing functions and for
some ke N

1

mm

_ m|m t 5i(t) ym or

s | [ (e awm)es)| 4
i=1 [=1r(0) Ti(s) h [1— M ci(ai)

i=1

where

H f pi(9) exp< J

=11 (t)

Rc(t) =311 pi () {1+m

with
lm 1/m
Po(t):m pf(t) )
n
t
aizlimiorgf/pi(s)ds,izl,z,...,m,
T(t)
and
0, ifai>}
G (a) = o @
YT 1—a— /1 20—«
| 5 ' ',ifogaigé.

Then all solutions of Eq.(1.1) oscillate.

2 Corollariesand Examples
For the casen= 2, Eq. (1.1) reduces to the equation
X () + pr(t)x(te (1)) + p2()x(12(t)) =0.  (2.1)

From Theorem 1 the following corollary is immediate.

Corollary 1. Assume that there exist non-decreasing

functionsa; € C([tg,),R") such that (1.11) is satisfied
fori=1,2, and for some k& N

=

limsup_,,

2 [ 2 t ait) 1/2
{_l‘l I b (S)eXp< / H<(u)du> ds} >
=1 |i=1g;(t) Ti(s) Z]i [17

i LN O NI

o] (cri)]

where

1/2
R(t) =371 pj (1) {1+2 iE|1 V_Et) pi (s) exp(I_(jt") F’kl(u)du) ds} },

t
aj = liminf / pi ds
t—o0
ai(t)

, 1
0, if aj > -
e

l—Gi—\/l—ZCIi—C{iz 1

5 <
(2.2)

Ci (ai) =

Then all solutions of Eq.(2.1) oscillate.

Moreover, in the case of the equation (1.2
X (1) + p(H)X(T (1) =0,
we have the following corollary.
Corollary 2. Assume that there exists a non-decreasing

function o (t) such thatt(t) < o(t) <t and for some
keN

t a(t) 1
limsup_. [ p(s)exp( Fk(u)du) ds>{ or
t

alt) 1(s) 1—c(a)
(2.3)
where
t t
Ad(t) = p(t){1+ .(f) p(S)exp< .(f) PKl(u)dU> d } Po(t) =p(t),
ot T(S,
t
o = liminf / p(s)ds
oa(t)
and
0, if a > %
¢@=Y1-a-vi-2a-a? 1 (24
> ,ifo<a< o

Then all solutions of Eq.(1.2) oscillate.

The following example (cf. [6],[21]) is given to illustrate
our results. It is to be pointed out that in this example it
is shown that our conditions essentially improve related
known conditions in the literature.

Example 1(Cf. [6],[21]) Consider the equation

X (t)+px(t(t))=0,t>0, p>0, (2.5)

(@© 2018 NSP
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with the retarded argument Observe, however, that far= 0.27,
P
t—1, te[3n, 3n+1], Mz0742275<1
T(t)=< —3t+(12n+3), t€[3n+1, 3n+2], 5eP ' '
St—(1n+13), t€[3n+2, 3n+3]. Therefore the condition (2.7) is not satisfied.

For this equation, as in [6,21], one may choose the funtion N
2. The condition (1.13), fok = 2, reduces to

t—1, t € [3n, 3n+1],
ot)=< 3n, te[3n+1, 3n+2.6], t ot
5t —(12n+13), t€[3n+2.6, 3n+3]. Iirtnsup/ pexp / pYo(&)dé |ds>1—c(a),
. ol qC
If we choosé,, = 3n+ 3, then fork = 1, we find (2.8)
¢ o) - a2 whereyr (&) = 1, that is, to the condition
limsup_,e [ pexp( / Pl(u)du) ds>limpse [ pexp( i Pl(u)du>d
at) 7(s) 3n+2 5s—(12n+13)
where ! o)
t t Iirtnsup pexp / pdé |ds>1—c(a).
—»00

Pi(t) =pq 1+ / pexp / pdu | ds o '

alt) 1(s) Observe that, for, = 3n+ 3,

3t 3t "7 pexp( " pde Jas= "1 pexp( [ pe ) ds= 2,
=p 1+ / pexp / pdu ds o(3n+3) 1(s) 3n+2 5s—(12n+13)
3n+2 55— (12n+13) while .
6p _ b .
=p<1+e 5e>. G=|Itnllol;lf/p(s)d8:p
a(t)

Therefore

and

—p—/1—2p_ 2
t at) c(a) = c(p) l1-p—+/1-2p p.

. P (5P 2
| / PL(U)du | ds> P (e~ 1). .
|T1>S°oup Pexp 1(u)du ) ds= 5P, (e ) For p=0.27, we find
a(t) 7(s)
eP-1
Forp=0.27,P, ~ 0.472129 and so 5 ~ 0571485
£ (e5P1 _ 1) ~1.09775> 1. while the I’ight-hand side
5P,

1—c(p) ~ 0.946086

Thus the condition (2.3) is satisfied and therefore all - ) o
solutions of Eq(2.5) oscillate. Therefore the condition (2.8) is not satisfied.

Observe, however, that when we consider the 3. The condition (1.16) for = 1 reduces to

conditions stated inZ1], [27], [7], [1], [6] and [37] for t
the above equation (2.5), we obtain the following: limsup [ pag(h(t),7(s))ds> 1, (2.9)
t—ro0
h(t)
1. The condition (1.12) reduces to
where
t U(t> 3 t
limtsu+p pexp / pexp / pdu|d¢ [ds>1, h(t) = o (t) anday (t,s) :exp(/ pdu) :
——+00
a(t) 1(s) (&) s
(26) That is, to the condition
and the choice df, = 3n+3,asin [21, Example 4.2], leads '
to the inequality t oft)
(e5pep _ 1) Iirtnﬁsmup pexp / pdé | ds> 1, (2.10)
—5— >1 (2.7) alt) 7(s)

5eP

(@© 2018 NSP
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As before, foit, = 3n+ 3 andp = 0.27,

p_
¢ 5 ! ~ 0.571485 (2.11)
Therefore the condition (2.9) is not satisfied.
4. Condition (1.20) for = 1 reduces to
t a(t) 1+1nA
limsup | pexp / pdf | ds> e (2.12)
t—o0 /\O

a(t) 7(s)

where)y is the smaller root of the equatioh= eP. As
before, fort, = 3n+ 3 andp = 0.27,

eP_1
5

~ 0.571485
while
1+InAg
Ao
Therefore the condition (2.12) is not satisfied.

~ 0.937188

5. Similarly, fort, = 3n+ 3 andp = 0.27, we have
eP—1
5

~ 0.571485< 1,

and therefore the condition (1.7) is not satisfied.

6. Finally, the condition (1.8) reduces to

t a(t) n—./1_ _n2
limsup_,,, | pexp| [ pdé |ds> 1—:L P 1=2p—p
alt {C) 2
and fort, = 3n+ 3 andp = 0.27, as before, we have

p_
¢ 5 1 ~ 0.571485

while
_p_ —on_ 2
1 1P V; 2P— P 0.946086
Therefore this condition is not satisfied.

We conclude, therefore, that fpr= 0.27 no one of the

conditions (2.6), (2.8) fok =2, (2.9) and (2.12) for = 1,
(1.16) and (1.20) is satisfied.

It should be also mentioned that not only for this value

of p=0.27 but for all values op € [0.27,0.3]

5—:21 (e5p1 — 1) >1

and therefore all solutions of (2.5) oscillate. Observe,

however, that fop = 0.3
(& 1)

~0.974101< 1,
5eP

and 5
p_
5 1 ~ 0.696337< 1
p_
¢ 5 1 ~ 0.696337< 0.912993~ 1+)\In/\°
0

and therefore fop € [0.27,0.3] no one of the conditions
(2.6), (2.8) fork=2, (2.9) and (2.12) for =1, (1.16) and
(1.20) is satisfied.
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