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Abstract: Consider the first-order linear differential equation withseveral retarded argumentsx′ (t)+∑m
i=1 pi (t)x(τi (t)) = 0, t ≥ t0,

where the functionspi , τi ∈C
(

[t0,∞) , 211d+
)

, for everyi = 1,2, . . . ,m, τi (t)≤ t for t ≥ t0and limt→∞ τi (t) = ∞. A survey of the most
interesting oscillation conditions is presented. An example illustrating the results is given.
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1 Introduction

Consider the first-order linear differential equation with
several non-monotone retarded arguments

x′ (t)+
m

∑
i=1

pi (t)x(τi (t)) = 0, t ≥ t0, (1.1)

where the functionspi ,τi ∈ C([t0,∞) ,R+) , for every
i = 1,2, . . . ,m, (hereR+ = [0,∞)), τi (t)≤ t for t ≥ t0 and
limt→∞ τi (t) = ∞.

Let T0 ∈ [t0,+∞) , τ (t) = min1≤i≤m{τi (t)} and
τ−1 (t) = sup{s : τ (s)≤ t}. By a solution of the equation
(1.1) we understand a functionx ∈ C([T0,+∞) ,R),
continuously differentiable on[τ−1 (T0) ,+∞] and that
satisfies (1.1) fort ≥ τ−1 (T0). Such a solution is called
oscillatory if it has arbitrarily large zeros, and otherwise it
is called non-oscillatory.

In the special case wherem= 1 equation (1.1) reduces
to the equation

x′ (t)+ p(t)x(τ (t)) = 0, t ≥ t0, (1.2)

where the functionsp, τ ∈ C([t0,∞) ,R+) , τ (t) ≤ t for
t ≥ t0 and limt→∞ τ (t) = ∞.

For the general theory of these equations the reader is
referred to [13,16, 18, 19, 32].

The problem of establishing sufficient conditions for
the oscillation of all solutions to the differential equations

(1.1) and (1.2) has been the subject of many investigations.
See, for example, [1-40] and the references cited therein.

In the case of monotone arguments, a survey of the
most interesting oscillation conditions for Eq.(1.2) can be
found in [36]. While in the general case of non-monotone
arguments we present the following interesting sufficient
oscillation conditions.

In 1994, Koplatadze and Kvinikadze [26] established
the following: Assume

σ(t) := sup
s≤t

τ(s), t ≥ 0. (1.3)

Clearlyσ(t) is non-decreasing andτ(t) ≤ σ(t) for all t ≥
0. Let k∈ N exist such that

limsup
t→∞

∫ t

σ(t)
p(s)exp

{

∫ σ(t)

σ(s)
p(ξ )ψk(ξ )dξ

}

ds> 1−c(a),

(1.4)
wherea := lim inf t→∞

∫ t
τ(t) p(s)ds≤ 1

e,

ψ1(t) = 0, ψk(t) = exp

{

∫ t

τ(t)
p(ξ )ψk−1(ξ )dξ

}

, k= 2,3, ... for t ∈ R
+, (1.5)

and

c(a) =







0 if a> 1
e,

1
2

(

1− a−
√

1−2a− a
2
)

if 0 < a≤ 1
e .

(1.6)
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Then all solutions of equation(1.2) oscillate.

In 2011 Braverman and Karpuz [6] derived the
following sufficient oscillation condition for Eq.(1.2)

limsup
t→∞

∫ t

σ(t)
p(s)exp

{

∫ σ(t)

τ(s)
p(ξ )dξ

}

ds> 1, (1.7)

while in 2014 Stavroulakis [37] improved the above
condition as follows:

limsup
t→∞

∫ t

σ(t)
p(s)exp

{

∫ σ(t)

τ(s)
p(ξ )dξ

}

ds> 1− 1
2

(

1−a−
√

1−2a−a
2
)

(1.8)

In 2018 Chatzarakis, Purnaras and Stavroulakis [9]
improved further these conditions as follows: Assume
that for somek∈ N

limsup
t→∞

t
∫

σ(t)

p(s)exp







σ(t)
∫

τ(s)

Pk (u)du






ds> 1, (1.9)

or

limsup
t→∞

t
∫

σ(t)

p(s)exp





σ(t)
∫

τ(s)

Pk (u)du



ds> 1− 1−a−
√

1−2a−a
2

2
, (1.10)

where 0< a≤ 1
e, and

Pk (t) = p(t)



1+

t
∫

τ(t)

p(s)exp





t
∫

τ(s)

p(u)exp





u
∫

τ(u)

Pk−1 (ξ )dξ



du



ds





with P0(t) = p(t). Then all solutions of Eq. (1.2) oscillate.
Concerning the differential equation (1.1) with several
non-monotone arguments the following related oscillation
results have been recently published.

Assume that there exist non-decreasing functionsσi ∈
C([t0,∞) ,R+) such that

τi (t)≤ σi (t)≤ t, i = 1,2, . . . ,m. (1.11)

In 2015 Infante, Kopladatze and Stavroulakis [21] proved
that if

limsup
t→∞

m

∏
j=1







m

∏
i=1

t
∫

σ j (t)

pi (s)exp







σi (t)
∫

τi (s)

m

∑
i=1

pi (ξ )exp







ξ
∫

τi (ξ)

m

∑
i=1

pi (u)du






dξ






ds







1/m

>
1

mm,

(1.12)
then all solutions of Eq. (1.1) oscillate.
Also in 2015 Kopladatze [27] improved the above
condition as follows: Let there exist somek∈ N such that

limsup
t→∞

m

∏
j=1







m

∏
i=1

t
∫

σ j (t)

pi (s)exp






m

σi (t)
∫

τi (s)

(

m

∏
ℓ=1

pℓ (ξ )

) 1
m

ψk (ξ )dξ






ds







1
m

>
1

mm

[

1−
m

∏
i=1

ci (αi)

]

, (1.13)

where

ψ1 (t) = 0, ψi (t) = exp

(

m
∑
j=1

t
∫

τ j (t)

(

m
∏
ℓ=1

pℓ (s)

) 1
m

ψi−1 (s)ds

)

, i = 2,3, . . . ,

0<αi := lim inf
t→∞

t
∫

σi(t)

pi (s)ds<
1
e
, i = 1,2, . . . ,m, (1.14)

and

ci (αi) =
1−αi −

√

1−2αi −α2
i

2
, i = 1,2, . . . ,m,

(1.15)
then all solutions of Eq. (1.1) oscillate.

In 2016 Bravermen, Chatzarakis and Stavroulakis [7]
obtained the following iterative sufficient oscillation
conditions

lim sup
t→∞

t
∫

h(t)

m

∑
i=1

pi (u)ar (h(t) ,τi (u))du> 1, (1.16)

or

limsup
t→∞

t
∫

h(t)

m

∑
i=1

pi (u)ar (h(t) ,τi (u))du> 1− 1−α −
√

1−2α −α2

2
, (1.17)

or

liminf
t→∞

t
∫

h(t)

m

∑
i=1

pi (u)ar (h(t) ,τi (u))du>
1
e

(1.18)

where

h(t) = max
1≤i≤m

hi (t) andhi (t) = sup
t0≤s≤t

τi (s) , i = 1,2, . . . ,m,

0< α := lim inf
t→∞

t
∫

h(t)

m

∑
i=1

pi (s)ds≤ 1
e

(1.19)

and

a1 (t,s) = exp





t
∫

s

m

∑
i=1

pi (u)du



 ,

ar+1(t,s) = exp





t
∫

s

m

∑
i=1

pi (u)ar (u,τi (u))du



 , r ∈ N.

Also, in 2016 Akca, Chatzarakis and Stavroulakis [1]
improved that result replacing condition (1.8) by the
iterative condition

limsup
t→∞

t
∫

h(t)

m

∑
i=1

pi (u)ar (h(u) ,τi (u))du>
1+ lnλ0

λ0

(1.20)
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whereλ0 is the smaller root of the equationλ = eαλ ,

0< α := lim inf
t→∞

t
∫

τ(t)

m

∑
i=1

pi (s)ds≤ 1
e

andτ (t) = max
1≤i≤m

{τi (t)} .

In 2017 Chatzarakis [8] derived the following: Assume
that for somek∈N

limsup
t→∞

t
∫

h(t)

P(s)exp







h(t)
∫

τ(s)

Pk (u)du






ds> 1, (1.21)

or

limsup
t→∞

t
∫

h(t)

P(s)exp





h(t)
∫

τ(s)

Pk (u)du



ds> 1− 1−α −
√

1−2α −α2

2
, (1.22)

or

limsup
t→∞

∫ t

h(t)
p(s)exp

(

∫ t

τ(s)
Pk(u)du

)

ds>
2

1−α −
√

1−2α −α2
, (1.23)

or

limsup
t→∞

∫ t

σ(t)
p(s)exp

(

∫ σ(s)

τ(s)
Pk(u)du

)

ds>
1+ lnλ1

λ1
− 1−α −

√
1−2α −α2

2
,

(1.24)

or

liminf
t→∞

∫ t

σ(t)
p(s)exp

(

∫ σ(s)

τ(s)
Pk(u)du

)

ds>
1
e

, (1.25)

whereh(t),τ (t) ,α are defined as above,λ1 is the smaller
root of the transcendental equationλ = eaλ , and

Pk (t) = P(t)



1+

t
∫

τ(t)

P(s)exp





t
∫

τ(s)

P(u)exp





u
∫

τ(u)

Pk−1 (ξ )dξ



du



ds





with P0(t) = P(t) = ∑m
i=1 pi (t). Then all solutions of Eq.

(1.1) oscillate.

In 2018 Attia et al [3] established the following
oscillation conditions.

Assume that

0< ρ := lim inf
t→∞

∫ t

g(t)

n

∑
k=1

pk(s)ds≤ 1
e
,

and

limsup
t→∞

(

∫ t

g(t)
Q(v)dv+ c(ρ)e

∫ t
g(t) ∑n

i=1 pi(s)ds
)

> 1,

where

Q(t) =
n

∑
k=1

n

∑
i=1

pi(t)

∫ t

τi(t)
pk(s)e

∫ t
gk(t)

∑n
i=1 pi(s)ds+(λ (ρ)−ε)

∫ gk(t)
τk(s)

∑n
ℓ=1 pℓ(u)du

ds,

ε ∈ (0, λ (ρ)),

or

limsup
t→∞

(

∫ t

g(t)
Q1(v)dv+ c(ρ)e

∫ t
g(t) ∑n

i=1 pi(s)ds
)

> 1,

where

Q1(t) =
n

∑
k=1

n

∑
i=1

pi (t)

∫ t

τi (t)
pk(s)e

∫ t
gk(t)

∑n
i=1 pi (s)ds+

∫ gk(t)
τk(s)

∑n
ℓ=1(λ (qℓ)−εℓ)pℓ(u)du

ds, εℓ ∈ (0, λ (qℓ)),

and

qℓ = lim inf
t→∞

∫ t

τℓ(t)
pℓ(s)ds, ℓ= 1,2, ...,m

or

limsup
t→∞

n

∏
j=1

(

n

∏
k=1

∫ t

g j (t)
Rk(s)ds

) 1
n

+
∏n

k=1 c(βk)

nn e∑n
k=1

∫ t
gk(t)

∑n
ℓ=1 pℓ(s)ds

>
1
nn ,

where

Rk(s) = e
∫ s

gk(s)
∑n

i=1 pi (u)du

n

∑
i=1

pi(s)
∫ s

τi(s)
pk(u)e

(λ (ρ)−ε)
∫ gk(s)

τk(u)
∑n
ℓ=1 pℓ(v)dv

du, ε ∈ (0, λ (ρ)),

and

0< βk := lim inf
t→∞

∫ t

σi(t)
pi(s)ds≤ 1

e
.

Then Eq. (1.1) is oscillatory.

Recently Bereketoglu et al [4] improved the above
conditions as follows:

Theorem 1.Assume that there exist non-decreasing
functionsσi ∈ C([t0,∞) ,R+) such that (1.11) is satisfied
and for some k∈ N

limsup
t→∞

m

∏
j=1







m

∏
i=1







t
∫

σ j (t)

pi (s)exp







σi (t)
∫

τi (s)

Pk (u)du






ds













1/m

>
1

mm
, (1.26)

or

limsup
t→∞

m

∏
j=1







m

∏
i=1







t
∫

σ j (t)

pi (s)exp







σi (t)
∫

τi (s)

Pk (u)du






ds













1/m

>
1

mm

[

1−
m

∏
i=1

ci (αi )

]

,

(1.27)
where

Pk (t) =
m

∑
j=1

pj (t)















1+m







m

∏
i=1

t
∫

σ j (t)

pi (s)exp







t
∫

τi (s)

Pk−1 (u)du






ds







1/m














,

with

P0(t) = m

[

m

∏
ℓ=1

pℓ (t)

]1/m

,

αi is given by (1.14) and ci (αi) by (1.15). Then all
solutions of Eq.(1.1) oscillate.
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Remark.It is clear that the left-hand sides of both
conditions (1.26) and (1.27) are identically the same and
also the right-hand side of (1.27) reduces to (1.26) when
ci (αi) = 0. So it seems that both conditions are the same
when ci (αi) = 0. One may notice, however, that the
condition (1.14) with 0≤ αi ≤ 1/e is required in (1.27)
but not in (1.26).

In the case of monotone arguments we have the
following theorem.

Theorem 2. Let τi be non-decreasing functions and for
some k∈ N

limsupt→∞
m
∏
j=1

[

m
∏
i=1

t
∫

τ j (t)

(

pi (s)exp

(

τi(t)
∫

τi(s)
Pk (u)du

)

ds

)]1/m

>















1
mm

or

1
mm

[

1−
m
∏
i=1

ci (αi)

]

where

Pk (t) = ∑m
j=1 p j (t)







1+m

[

m
∏
i=1

t
∫

τ j (t)
pi (s)exp

(

t
∫

τi(s)
Pk−1 (u)du

)

ds

]1/m






,

with

P0(t) = m

[

m

∏
ℓ=1

pℓ (t)

]1/m

,

αi = lim inf
t→∞

t
∫

τi(t)

pi (s)ds, i = 1,2, . . . ,m,

and

ci (αi)=















0, if αi >
1
e

1−αi −
√

1−2αi −α2
i

2
, if 0≤ αi ≤

1
e
.

(1)

Then all solutions of Eq.(1.1) oscillate.

2 Corollaries and Examples

For the casem= 2, Eq. (1.1) reduces to the equation

x′ (t)+ p1(t)x(τ1 (t))+ p2(t)x(τ2 (t)) = 0. (2.1)

From Theorem 1 the following corollary is immediate.

Corollary 1. Assume that there exist non-decreasing
functionsσi ∈ C([t0,∞) ,R+) such that (1.11) is satisfied
for i = 1,2, and for some k∈ N

limsupt→∞
2
∏
j=1

[

2
∏
i=1

t
∫

σ j (t)
pi (s)exp

(

σi (t)
∫

τi(s)
Pk (u)du

)

ds

]1/2

>















1
4
or

1
4

[

1−
2
∏
i=1

ci (αi)

]

where

Pk (t) = ∑2
j=1 p j (t)







1+2

[

2
∏
i=1

t
∫

σ j (t)
pi (s)exp

(

t
∫

τi(s)
Pk−1 (u)du

)

ds

]1/2






,

with
P0(t) = 2

√

p1 (t) p2(t),

and for i= 1,2,

αi = lim inf
t→∞

t
∫

σi(t)

pi ds,

ci (αi) =















0, if αi >
1
e

1−αi −
√

1−2αi −α2
i

2
, if 0 ≤ αi ≤

1
e
.

(2.2)
Then all solutions of Eq.(2.1) oscillate.

Moreover, in the case of the equation (1.2)

x′ (t)+ p(t)x(τ (t)) = 0,

we have the following corollary.

Corollary 2. Assume that there exists a non-decreasing
function σ (t) such thatτ (t) ≤ σ (t) ≤ t and for some
k∈ N

limsupt→∞
t
∫

σ(t)
p(s)exp

(

σ(t)
∫

τ(s)
Pk (u)du

)

ds>







1
or

1− c(α)

(2.3)
where

Pk (t) = p(t)

{

1+
t
∫

σ(t)
p(s)exp

(

t
∫

τ(s)
Pk−1 (u)du

)

ds

}

, P0 (t) = p(t) ,

α = lim inf
t→∞

t
∫

σ(t)

p(s)ds

and

c(α) =











0, if α >
1
e

1−α −
√

1−2α −α2

2
, if 0≤ α ≤ 1

e
.

(2.4)

Then all solutions of Eq.(1.2) oscillate.

The following example (cf. [6],[21]) is given to illustrate
our results. It is to be pointed out that in this example it
is shown that our conditions essentially improve related
known conditions in the literature.

Example 1.(Cf. [6],[21]) Consider the equation

x′ (t)+ px(τ (t)) = 0, t ≥ 0, p> 0, (2.5)

c© 2018 NSP
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with the retarded argument

τ (t) =







t −1, t ∈ [3n, 3n+1],
−3t+(12n+3), t ∈ [3n+1, 3n+2],
5t− (12n+13), t ∈ [3n+2, 3n+3].

For this equation, as in [6,21], one may choose the funtion

σ (t) =







t −1, t ∈ [3n, 3n+1],
3n, t ∈ [3n+1, 3n+2.6],

5t − (12n+13), t ∈ [3n+2.6, 3n+3].

If we choosetn = 3n+3, then fork= 1, we find

limsupt→∞
t
∫

σ(t)
pexp

(

σ(t)
∫

τ(s)
P1(u)du

)

ds≥ limn→∞
3n+3
∫

3n+2
pexp

(

3n+2
∫

5s−(12n+13)
P1 (u)du

)

ds,

where

P1(t) = p











1+

t
∫

σ(t)

pexp







t
∫

τ(s)

pdu






ds











= p











1+

3n+3
∫

3n+2

pexp







3n+3
∫

5s−(12n+13)

pdu






ds











= p

(

1+
e6p−ep

5

)

.

Therefore

limsup
t→∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

P1(u)du






ds≥ p

5P1

(

e5P1 −1
)

.

For p= 0.27,P1 ≈ 0.472129, and so

p
5P1

(

e5P1 −1
)

≈ 1.09775> 1.

Thus the condition (2.3) is satisfied and therefore all
solutions of Eq.(2.5) oscillate.

Observe, however, that when we consider the
conditions stated in [21], [27], [7], [1], [6] and [37] for
the above equation (2.5), we obtain the following:

1. The condition (1.12) reduces to

lim sup
t→+∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

pexp







ξ
∫

τ(ξ )

pdu






dξ






ds> 1,

(2.6)
and the choice oftn = 3n+3, as in [21, Example 4.2], leads
to the inequality

(

e5pep −1
)

5ep > 1. (2.7)

Observe, however, that forp= 0.27,
(

e5pep −1
)

5ep ≈ 0.742275< 1.

Therefore the condition (2.7) is not satisfied.

2. The condition (1.13), fork= 2, reduces to

limsup
t→∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

p ψ2 (ξ )dξ






ds> 1− c(α) ,

(2.8)
whereψ2 (ξ ) = 1, that is, to the condition

limsup
t→∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

pdξ






ds> 1− c(α) .

Observe that, fortn = 3n+3,

3n+3
∫

σ(3n+3)
pexp

(

σ(3n+3)
∫

τ(s)
pdξ

)

ds=
3n+3
∫

3n+2
pexp

(

3n+2
∫

5s−(12n+13)
pdξ

)

ds= e5p−1
5 ,

while

α = lim inf
t→∞

t
∫

σ(t)

p(s)ds= p

and

c(α) = c(p) =
1− p−

√

1−2p− p2

2
.

For p= 0.27, we find

e5p−1
5

≈ 0.571485,

while the right-hand side

1− c(p)≈ 0.946086.

Therefore the condition (2.8) is not satisfied.

3. The condition (1.16) forr = 1 reduces to

limsup
t→∞

t
∫

h(t)

pa1(h(t) ,τ (s))ds> 1, (2.9)

where

h(t) = σ (t) anda1 (t,s) = exp





t
∫

s

pdu



 .

That is, to the condition

limsup
t→∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

pdξ






ds> 1, (2.10)
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As before, fortn = 3n+3 andp= 0.27,

e5p−1
5

≈ 0.571485 (2.11)

Therefore the condition (2.9) is not satisfied.

4. Condition (1.20) forr = 1 reduces to

limsup
t→∞

t
∫

σ(t)

pexp







σ(t)
∫

τ(s)

pdξ






ds>

1+ lnλ0

λ0
, (2.12)

whereλ0 is the smaller root of the equationλ = epλ . As
before, fortn = 3n+3 andp= 0.27,

e5p−1
5

≈ 0.571485,

while
1+ lnλ0

λ0
≈ 0.937188.

Therefore the condition (2.12) is not satisfied.

5. Similarly, fortn = 3n+3 andp= 0.27, we have

e5p−1
5

≈ 0.571485< 1,

and therefore the condition (1.7) is not satisfied.

6. Finally, the condition (1.8) reduces to

limsupt→∞
t
∫

σ(t)
pexp

(

σ(t)
∫

τ(s)
pdξ

)

ds> 1− 1− p−
√

1−2p− p2

2

and fortn = 3n+3 andp= 0.27, as before, we have

e5p−1
5

≈ 0.571485

while

1− 1− p−
√

1−2p− p2

2
≈ 0.946086.

Therefore this condition is not satisfied.
We conclude, therefore, that forp= 0.27 no one of the

conditions (2.6), (2.8) fork= 2, (2.9) and (2.12) forr = 1,
(1.16) and (1.20) is satisfied.

It should be also mentioned that not only for this value
of p= 0.27 but for all values ofp∈ [0.27,0.3]

p
5P1

(

e5P1 −1
)

> 1

and therefore all solutions of (2.5) oscillate. Observe,
however, that forp= 0.3

(

e5pep −1
)

5ep ≈ 0.974101< 1,

and
e5p−1

5
≈ 0.696337< 1

e5p−1
5

≈ 0.696337< 0.912993≈ 1+ lnλ0

λ0

and therefore forp ∈ [0.27,0.3] no one of the conditions
(2.6), (2.8) fork= 2, (2.9) and (2.12) forr = 1, (1.16) and
(1.20) is satisfied.
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