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1 Introduction and Preliminaries function onQ, if

In this section, we shall briefly introduce some recent f/“ngr(l y,ru+ (1—rjw)

studies of the subject. We discuss some previously known= tFZ (X,u) +t(1=r).7(x,w)

concepts and results. These preliminaries help the readers ~ +r(1—t).Z (y,u) + (1 —t)(1—r).Z(y,w),
to unde.rstand the main results of .the paper. .Befor%heneverxye la,b], uwe [c,d] andtr € [0,1].
proceeding let us recall the classical convexity on
coordinates, which is also known as two dimensionalRecently Gordji et al. 1] introduced the class of
classical convexity. Dragomir 7] was the first to  n-convex function.

investigate this extension of classical convexity in
connection with integral inequalities. Let us consider a
bidimensional interval2 = [a,b] x [c,d] C R2witha< b
andc < d. A function.# : Q — R is said to be convex .7 (tx+ (1—-t)y) < .Z(y)+tn(F(x),.Z(y)),
function onQ), if the following inequality vx,yel,teo,1].

Definition 2. A function.# : 1 C R — R is said to ben-
convex function with respect tp: R x R — R, if

F(tx+ (1-t)zty+ (1-t)w) <t.Z(x,y) + (1-1).Z (zw), This class generalizes the class of convex functions. For
some recent studies on-convex functions, interested
holds, for all(x,y), (z w) € A andt € [0,1]. readers are referred t4,[L0].
Riemann-Liouville integrals are defined as follows:
A function .# : Q — R is said to be convex o, - pe
if the partial functionsZ, : [a.b] — R, Z(u) — F(u,y)  ooinuon 3([43). - Let 7 e Llabl.  Then
and %y : [c,d] — R, Z(v) = .Z(x,v) are convex for all
X € [a,b] andy € [c,d].

Riemann-Liouville integrals 1. and J .7 of order
o > 0 are defined by

X
Definition 1. Consider the rectangl® = [a,b] x [c,d] C 0 F(X) = L/(x—t)"*lgz(t)dt, X> a,

R2. AfunctionZ : Q — Ris said to be coordinated convex - I(a) ]
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and
1 b
a —1 gr
5 @ /(t t)dt, x<b,
X
where

r(a) :/ et 1dy,
0

is the well known Gamma function.

and

I0F (x,S8) = Lafx(x_t)wly (t,%59) dt,

X>a

b
For more details and studies on the concepts and results of J&.% (x, %5%) = ﬁ Jt—x)17 (t,59) dt,
X

fractional calculus, sed .

Sarikaya L8] gave new extensions of classical Riemann-

Liouville integrals as follows:

Definiton4. Let % < L(jab x [cd]).

Riemann-Liouville integrals Oflﬁ :fd, Jg7ﬁc+

Jb o

‘J:érﬁfr ‘gz (X7 y)

Xy
- W / / (x— )7 Ly~ 9)f L7 (t,9dsth,

X>ay>c

x<by>c

b d
1 a
_r(a)r(ﬁ)x/ y/ (1= 5=y (@ syt
X< hyy<d,

respectively.

Note that

BP0 Z(xy) =30 F(xy)
= ‘]87707(;+ ‘g\(xa y)

= Jolod,g‘\(X,y) - <g\(xay)v

of ordera, B > 0 with a,c > 0 are defined by

x<b
Y
KT (32Y) = i [ =97 (232 9)ds
y>cC

y <d.

Following auxiliary results will play significant role in ¢h
development of the main results of the paper.

Lemma 1([19). Let.Z : Q c R?> — R be a partial
differentiable functions o := [a,b] x [c,d] in R? with

a<band c<d. If £Z ¢ #(Q), then the following
equality holds:

/\(@b,c.d;x.y)
J(b ad-c) [ [
=— 7= “ [ [@a-2)(1-29
]
°F
X35 ——(ta+ (1—1t)b,sc+ (1—s)d)dtds,
where
/\(ab,c.d;x.y)

F

Z(a,c)+ F(a,d)+ Z(b,c)+.%(b,d)

N 4
b d
// (x,y)dydx

[-7 (x,¢) + .7 (x,d)]

| ——
o
| [+~
I\
P o

d

bt [IF @y + #by) |

C

Lemma 2([20). Let .# : Q c R? » R be a partial
differentiable functions o := [a,b] x [c,d] in R? with
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a<bandc<d.If % € .Z(Q), then the following convex functions of 2-variables on coordinates. This is

equality holds: the main motivation of this paper. It is expected that the
results obtained in this paper may stimulate further
\/(a,b,c.d;x,y;a,B;T) research in this direction.
‘)02‘
B (b—a)(d—c)
- 2 Generalized coordinated convexity
1 l
. //t $9°7 (ta+ (1—t)b,sc+ (1—s)d)dstt Now we are in a position to define the class of so called
otds ’ Generalized convex functions of 2-variables on
10 10 coordinates.
_ _pagfl 7 _ _ Definition 5. Consider the rectangle
[ - Sﬁdtd (ta+ (1—t)b,sc+ (1 s)d)dsdh
00 Q =[a,b] x [c,d] c R?.
11
2
_//ta(l_s)ﬁﬁ 7 (ta+ (1—t)b,sc+ (1—s)d)dsdt A function.# : Q — R is said to be Generalized convex
2% otds function of 2-variables o2 with respect to bifunction
- n(,.),if
+ [ [a-vea-9f Z(ta+ (L-thbre+(1-r)d)
00 ng(a,C)—l—r(l ) ( ( 7d)7 ( ))
PF 1 op L o +t(1-r)n(Z(a,d),7(a,c))
* s\t (Lmtbset (1 sjd)dsdt . +1-)(1-1)N(F(b,d), F(a0)).
where Note that if we takey(B3,a) = B — a, then we have
o F(ta+ (1—-t)b,rc+ (1—r)d) <trF(a,c)
X(a’b’c’d*xay*“ﬁ'” H(1-0).2(b,0) +t(1—1).F(ad)
_ F@9+F@d)+ F(bo)+ F(bd) FA-HiE-nFb.d).
B 4
ra+Hrp+1) 928 7(6.d) + 35 F(b,c) 3 Results in connection with ordinary
(b—a) (d CB at.c at.d
calculus
+30F 7 (@d)+ 3 F F(ao) o | . .
In this section, we derive some Hermite-Hadamard like
r+1)|.s B inequalities via generalized convex functions on
_m I 7 (ad)+ 57 (b,d) coordinates using the concepts of ordinary calculus.
Theorem1. Let .Z : Q C R? — R? be a partial
+Jgig(a’ c) +J57ﬁ(b’ c)] differentiable functions o := [a,b] x [c d] in R? with
PF
a<band c<d and G5 € Z(Q). If ’MS’
Ma+1) generalized convex function of 2-variables on
~4(b—a)@ a7 (0,€) + 35 7 (b,d) coordinates, then the following inequality holds:
+J 7 (a,c) +J§3¢‘(a,d)] . (&b, c,d;x,y)|
F
(b—a)(d—c)
For some recent details on different generalizations of < 16
classical convexity and integral inequalities of 2w 2 .
Hermite-Hadamard type, seel,?,3,5,6,7,9,12 15,16, |22 a0 +1,7 4 7 b,d), 4 J(a 0
17). otos otds ' otds
Inspired by the research work discussed above, we define 2T

2
a new class of convexity which is a joint generalization of +}f7 (‘ 0°F (a,d)
coordinated convex functions angl-convex functions. dtds

)

This class is called as generalized convex functions of 1 9’7 9’7
2-variables on coordinates. We also derive some +>0 (b,d)|, @c) |-

; . X e . . 4 otds otds
Hermite-Hadamard like inequalities via generalized

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

340 %N S\ M. U. Awan et al.: Generalized coordinated nonconvex...

Proof. Using Lemmal and the property of modulus, we +1 0°F ——(a,d) 0°F (a,c) ’
piooreing property ! T\ | atas '\ atas
1
(|22 ol [ @0 )
/\(@b.c.d;xy) T\ |atas"™?| *|5tas '
‘)02‘
g 11 Proof. Using Lemmal and the property of modulus, we
//|1—2t||1—25| have
00 /\(ab,c.d;xy)
"7 1-t)b 1-s)d)|dtd 7
X dtds(ta+( —t)b,sc+ (1—s)d)|dtds.

11
B9 [y s
is generalized convex function 00

Since itis given tha#mS

of 2-variables on coordinates, so we have 2 g
———(ta+ (1—t)b,sc+ (1—s)d)|dtds.
"\ gtas
A(@b,c.d;xy) . . .
7 Using power mean inequality, we have
11
Sw//ll—ZtHl—ZSI /\(ab.c.d;x.y)
4 7
00 N
i PT P27 (b—a)d—o)( [ o
7 _ 7 < 1-—2t||1— 2s|dtds
x[ s (@0)|+r( t)n( s B MS(ac)) < 2 0/O/I | |
0°.F 027 11
+t(1_r)’7< atas & )‘ s & °)> ><<//|1—2t||1—25|
0235 029 00
— — - P 1
+a-0a-nn(|Sal. | S )]drdt s a N\
x| =—(ta+ (1 —t)b,sc+ (1—s)d)| dtds | .
(b—a)(d—c) dtds
B 4 L hake2Z % i funci
) 1 27 aols i 023‘( | 27 ao S]:nzce |t.|sg||vent a‘tmg‘ |;s genera |z;>d convex function
2| 3t0s e\ 595 P Ji0s of 2-variables on coordinates, so we have
1 (|27 2F A(&b,c,d;x,y)
—’7 < 0'[05( 7d)‘7 m(a70) > F
b—a)(d—c) 1\l
1 (|62 27 < (b-a)d-¢) Iyt
+1—6r] < —o“rtds(b’d)" —0tds(a’c) ﬂ . 4 (4)
This completes the proof.0] x l//|1—2t||1—25|
00
Theorem2. Let 7 : Q C R* — R® be a partial 27 q 27 27 q
differentiable functions o2 := [a,b] x [c,d] in R? with ——(a,c)| +r(1—t)n < ——(b,d)| ,|=—==(a,c) >
a<band c<d and §55 € Z(Q). If |Gc| s
generalized convex function of 2-variables on 0*°F 1027 K
coordinates, then for ¢ 1, we have Hd=nn ( 0tds(a’d) 0tds(a ) )
1
. 027 2.7 q q
Q(a,b,c,d,x,y) +(1—t)(1—r)n(0t—05( )| |55 (@0) ) drat
- (b—a)(d—c) _ (b—a)(d—c)
- 16 B 16
y a@(ac)q+1 029( ) aZg(ac)q y a@(ac)q+1 029( ) aZg(ac)q
dtas T\ |atas"™Y] *|atas'® dtas T\|atas"™ | *|atas
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1 (|e27 027 g b—a)(d—c
”( 105 9| | 518 (@9 ) <! )(1 )
. 4(p+1)°
1 (|27 27 ™ | ¢
+_r’( 0“95( ’ ) ) m(aac) ) . X[//
00
This completes the proof.O 2T q 2T 2.7 q
Theorem 3. Let .Z : Q ¢ R?2 — R? be a partial { dtds(a ©) +r(1—t)n( dtds(b’ )| atas(a’c) )
differentiable functions o2 := [a,b] x [c,d] in R? with
27 279 . 02.F 2F a
a<b and c<d and 55 € £(Q). If ’m’ is +t(1-r)n m(a,d) , m(a,c)

generalized convex function of 2-variables on

coordinates, then fo%J +1=1 wehave 2T 2 g i
q F 0-F
+(1—t)(1—r)n< m(b,d) Ji0s (a,c) ) }drdt]
/}Q\(avbvcad;xvy)‘ B (b_a)(d_c)
(b a)(d— c) A(p+1)7
- 2 g q 2 g 2 g q
029 @ q 2T q 02J q otos atds atds
s &9 _’7( 105 9| | 5155 &9 ) 1 aZg(a 1192 g .
L /lo2e 2g [ 2"\ |tas'* Y| | atas
3" ( atas(a’d) | 3tas®© ) 1 (187 0 [0 o §
2"\ | 5tas P 9| | 5ras®©
1 ( OZJ( ) 0%/( )q) a S
il , a,c .
dtds dtds This completes the proof.O
Proof. Using Lemmal and the property of modulus, we
have . . . .
4 Results in connection with fractional
A& b,C,d;x,y)| calculus
7

11 In this section, we derive some fractional estimates of

o (b-a)d—c //|1—2t||1—2$| Hermite-Hadamard like inequalities via generalized

B 4 - convex functions on coordinates using the concepts of
fractional calculus.

2F
x| 5igs (ta+ (1-t)b,sc+ (1-s)d)|dtds. Theorem4. Let .7 : Q c R2 - R be a partial
differentiable functions o := [a,b] x [c d] in R? with
Using Holder’s inequality, we have a<b and c< d and gwfs € 2(Q). If ’Ms
generalized convex function of 2-variables on
/\(ab,c.d;x.y) coordinates, then the following inequality holds:
F
11 1 \/(a,b,c,d;xy;a,B;T)
_ _ P
< -39 [ [1a-2a-29)Pacs 4
4 ;4 . (b—a)d—c)
1102/ q 1 4a+1 B+1)
x / / _(ta+ (1-)b,sc+ (1-9)d) dtds) . PF 02F
<0 J | 9tos ata N0\ | 5tas ® 9| | 5tas @ ©)
Sinceitis g|ventha.tgt5;‘ is generalized convex function n ( 02—J(a d)‘ o‘rZ_y(a 0) )
of 2-variables on coordinates, so we have otds otds
0°F 0°F
A(a.b,c.d;xy) +'7( atas > )‘ 105 &©) ) }}
F
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\/(a,b,c.dixy;a,B;I)
F Theorem5. Let .Z : Q ¢ R> - R be a partial
(b— a)(d— c) differentiable functions o := [a,b] x [c,d] in R? with

i 927 |4
a<band c<d and 55 € Z(Q). If |55

027 7
Jtds

This completes the proof.O

027

atas 9]

a,c)

Proof. Using Lemma2 and property of modulus, we have +n <

is

1 1 2.F generalized convex function of 2-variables on
X //t"sﬁ Fids (ta+ (1—t)b,sc+ (1—s)d)|dsdt coordinates, then fo%+l:1, we have
00
11 . \/(a,b,c.d;x,y;a,B;1)
// t)osP gt;‘ (ta+ (1 —t)b,sc+(1—s)d)‘dsdt 7 (b—a)(d—0
<
° “4a+1)(B+1)
/ / 91— 9827 (ta+ (1-thb.sot (1—s)d)‘dsdt 9°F 9*F
) dtds ’ { g n( aias P D 5055 C))
11 dzfi LA
+// dtds ad dtds
00
9°F 927 )
2 + b, a,c .
x dtjs(ta+(1—t)b,sc+(1_s)d)‘dsdt}. ”( ats> Y| | 5ras >

Proof. Using Lemma2 and property of modulus and the

Holder's inequality, we have
Since itis given tha#mS is generalized convex function q y

of 2-variables on coordinates, then \/(a b,c,d:x,y: a,B:)

\/(ab,c.d;x.y;a,B;T)

F

l

< (b—a)(d—c) 1A; 11

s « (o/O/tp“sPBdsdt> (o/o/ p“sdesdt>

x{//[t“sg—i—(l—t)“sﬁ
00

HO(1-9)Pf 4 (1—t)°'(1_s)ﬁ]

11 1
027 / / o ’
o7 + 1—-1)P9(1—s)PPdsdt
{ o) [ [a-oma-s
0.7 0.7 11 q 1
1-t —_— 2 g q
< )’7< atas 29| | gias @ C)) ><<// 0t—;s(ta+(1—t)b,sc+(1—s)d) dsdt) .
027 027 0o
+t(1—9)n < W(a,d)‘ 50 —(a,c) )
S S Since it is given tha#mS is generalized convex function
027 02T of 2-variables on coordinates, then
+a-na-9n (|50 a). T }dsdt}

 (b-a)d—o) \/(abcdxy,aBI‘)
~ Aa+1)(B+1) (b—a)(d—o)

2g 27 ol |27 = 1
o . 0°F
+n ( %(a,d) Zt;;(a c) ) X{O/O/{ o"to"s(a’c)’
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027 027 generalized convexity, Carpath. J. Math., 30(2), (2014).

+t(1-9)n ( m(a,d) ) m(a,c)) [7]S. S. Dragomir, On Hadamard's inequality for convex
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