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Abstract: In this work we investigated further solutions of new familyof nonlinear two-mode equations. We considered the two-mode
Sharma-Tasso-Olver (TMSTO) equation and two-mode fourth-order Burgers (TMBE-4th). These models describe the propagation of
two different wave modes simultaneously. We used the(G′/G)-expansion method and obtained more new solutions.
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1 Introduction

Two-mode nonlinear equations are second-order partial
differential equations (PDE) in time. They represent the
propagation of two-wave modes in the same direction
simultaneously [1]. This new type of equations have been
observed based on the fact that most of the nonlinear
equations are defined by first-order PDE in time. They
describe unidirectional waves where these equations
model one right-moving forx > 0. Such equations is the
well-known KdV. Other equations model two
left-right-moving as in Boussinesq which is defined by
second-order PDE in time. Therefore, Korsunsky [1]
developed this phenomena and he was able to identify and
derive two-mode KdV (TMKdV) as a nonlinear PDE of
second order in time. Further, different types of solitary
wave solutions are obtained to this TMKdV in [2,3,4,5,6,
7,8,9].

Recently, some two-modes nonlinear equations have been
established and studied. Wazwaz [10] obtained multiple
kink solutions of the two-mode Sharma-Tasso-Olver
(TMSTO) equation and two-mode fourth-order Burgers
(TMBE-4th) by using the simplified Hirotas method. In
[11,12,13], the simplified bilinear is used to study the
two-mode coupled Burgers equation, the two-mode
coupled modified Korteweg-de Vries and the two-mode
coupled Korteweg-de Vries.

Many researchers have put their efforts into action to

develop nonlinear dynamics during the last few decades.
The studies of nonlinear wave phenomena have taken
more than half a century to reproduce interesting and
exciting descriptions on their formation and propagation
[14]. One of their active contributions is the nonlinear
plasma theory which is considered as the most important
frontier for the fundamental understanding of proximal
space of the earth and a rich testing ground for
application of innovative mathematical methods. Most
investigated among the solitons in plasma are the
ion-acoustic solitary waves/solitons. Other examples of
these applications are the one-dimensional gas flow,
longitudinal wave propagation on a moving thread line,
and electromagnetic transmission line.

The motivation of this work is to revisit the TMSTO and
the TMBE-4th to extract more new solutions by using
(G′/G)-expansion method [15,16,17,18]. These
two-mode equations are defined respectively as

0 = utt − s2uxx + µ(
∂
∂ t

−αs
∂
∂x

){(u3+3uux)x}

+ µ(
∂
∂ t

−β s
∂
∂x

)uxxx, (1)

and

0 = utt − s2uxx + γ(
∂
∂ t

−β s
∂
∂x

)uxxxx

+ γ(
∂
∂ t

−αs
∂
∂x

){(u4+4uuxx+6u2ux +3u3
x)x}, (2)
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where u(x, t) is the field function and it represents the
height of the water’s free surface above a flat bottom,
−∞ < x, t < ∞. The coefficientsα and β are the
non-linearity and the dispersion variables respectively
such that|α| ≤ 1, |β | ≤ 1 ands is a positive integer that
is related to the phase velocities.

We should point here that the above two equations are
established in [10] and soliton solutions are obtained
under the conditionα = β = 1. In this work, we obtain
new soliton solutions to the TMSTO for arbitrary values
of α andβ , while in the case of TMBE-4th we require a
more general constraint which isα = β .

2 Survey of(G′/G)-expansion method

Consider the following nonlinear partial differential
equation:

P(u,ut ,ux,utt ,uxt , ...) = 0, (3)

where u = u(x, t) is an unknown function,P is a
polynomial in u = u(x, t) and its various partial
derivatives, in which the highest order derivatives and
nonlinear terms are involved. By the wave variable
ζ = x− ct the PDE (3) is then transformed to an ordinary
differential equation (ODE)

P(u,−cu′,u′,c2u′′,−cu′′,u′′, ...) = 0, (4)

whereu = u(ζ ). We write the solution of the ODE (4) as a
polynomial in(G′/G) as follows [15,16,17,18]

u(ζ ) = am(
G′

G
)m + ..., (5)

whereG = G(ζ ) is the solution of

G′′+λ G′+ µG = 0. (6)

The coefficientsa0,a1, ...,am and the parametersλ , µ are
constants to be determined later, provided thatam 6= 0.
The positive integerm can be determined by considering
the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in the ODE (4).

Now, if we let

Y = Y (ζ ) =
G′

G
, (7)

then by the help of (6) we get

Y ′ =
GG′′−G′2

G2 =
G(−λ G′− µG)−G′2

G2

= −λY − µ −Y2 (8)

or, equivalently

Y ′ =−Y 2−λY − µ . (9)

By result (9) and implicit differentiation, one can derive
the following two formulas

Y ′′ = 2Y 3+3λY2+(2µ +λ 2)Y +λ µ , (10)

Y ′′′ = −6Y 4−12λY3− (7λ 2+8µ)Y2

− (λ 3+8λ µ)Y − (λ 2µ +2µ2). (11)

Combining equations (5), (7) and (9-11), it results in a
polynomial of powers ofY . Then, collecting all terms of
same order ofY and equating to zero, yields a set of
algebraic equations fora0,a1, ...,am,λ , andµ .

It is known that the solution of equation (6) is a linear
combination of sinh and cosh or of sine and cosine,
respectively, if△ = λ 2−4µ > 0 or△ < 0. Without lost
of generality, we consider the first case and therefore

G(ζ ) =
(

A sinh(

√
△ ζ
2

)+B cosh(

√
△ ζ
2

)

)

e−
λζ
2 .

(12)

3 Two-mode Sharma-Tasso-Olver (TMSTO)

The TMSTO equation is given by:

0 = utt − s2uxx + γ(
∂
∂ t

−αs
∂
∂x

){(u3+3uux)x}

+ γ(
∂
∂ t

−β s
∂
∂x

)uxxx, (13)

By using the wave variableζ = x− ct, equation (13) is
then reduced in a simplified form to the ODE:

(c2−s2)u−γ(c+αs)(u3+3uu′)−γ(c+β s)u′′ = 0 (14)

By the proposed method, the solution of equation (14) is

u(ζ ) =
m

∑
i=1

ai(
G′

G
)i, (15)

then, we require the following two secondary equations

u3(ζ ) = a3
m(

G′

G
)3m + ... (16)

and

u′′(ζ ) = m(m+1)am(
G′

G
)m+2+ .... (17)

Considering the homogeneous balance betweenu3 andu′′

in equation (14), based on (16) and (17), we require that
3m = m+ 2. Thusm = 1, and therefore we can rewrite
equation (15) as

u(ζ ) = a1(
G′

G
)+ a0 = a1Y + a0. (18)

By the analysis given in the preceding section, we reach to
the following main relations

u′(ζ ) = a1(−Y 2−λY − µ), (19)

u′′(ζ ) = a1(2Y 3+3λY2+(2µ +λ 2)Y +λ µ), (20)

u3(ζ ) = a3
1Y 3+3a0a2

1Y
2+3a2

0a1Y + a3
0. (21)
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Substituting equations (19)-(21) into equation (14) and
collecting all terms with the same power ofY together
and equating each coefficient of the resulted polynomial
to zero, yields a set of algebraic equations fora0,a1,λ ,c
andµ .
(G′

G

)3
= (Y 3) : 0 = −2a1cγ +3a2

1cγ − a3
1cγ +3a2

1sαγ

− a3
1sαγ −2a1sβ γ

(G′

G

)2
= (Y 2) : 0 = 3a0a1cγ −3a0a2

1cγ +3a0a1sαγ

− 3a0a2
1sαγ −3a1cγλ +3a2

1cγλ
+ 3a2

1sαγλ −3a1sβ γλ
(G′

G

)1
= (Y 1) : 0 = a1c2− a1s2−3a2

0a1cγ −3a2
0a1sαγ

+ 3a0a1cγλ +3a0a1sαγλ − a1cγλ 2

− a1sβ γλ 2−2a1cγµ +3a2
1cγµ

+ 3a2
1sαγµ −2a1sβ γµ

(G′

G

)0
= (Y 0) : 0 = a0c2− a0s2− a3

0cγ − a3
0sαγ

+ 3a0a1cγµ +3a0a1sαγµ
− a1cγλ µ − a1sβ γλ µ . (22)

Solving the above system gives two solutions:

The first solution is:

u1(x, t) =
M1

(

A+B tanh
[(x− ct)∆2

2
√

2

]

)

(

B+A tanh
[ (x− ct)∆2

2
√

2

]

) . (23)

The second solution is:

u2(x, t) =
M2

(

A+B tanh
[(x− ct)∆3

2
√

2

]

)

(

B+A tanh
[ (x− ct)∆3

2
√

2

]

) . (24)

Where

M1 =
(3c+3sα −∆1)∆2

4
√

2(c+ sα)
,

M2 =
(3c+3sα +∆1)∆3

4
√

2(c+ sα)
,

and

∆1 =
√

c+ sα
√

c+9sα −8sβ

∆2 =

√

(c2− s2)(5c+9sα −4sβ +3∆1)

(c+ sβ )2γ

∆3 =

√

(c2− s2)(5c+9sα −4sβ −3∆1)

(c+ sβ )2γ
. (25)

The provided figures represent Kink and singular-Kink of
the TMSTO derived from equation (23) for some assigned
values of the free parameters involved in the solution.
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Fig. 1: Kink solution of TMSTO derived from equation (23)
whens = 1

4 , λ = 1
2 , α = 1, β = 1

2 , γ = 1, c = 1
2 , A = 0, B = 1.
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Fig. 2: Kink solution of TMSTO derived from equation (23)
whens = 1

4 , λ = 1
2 , α = 1, β = 1

2 , γ = 1, c = 1
2 , A =− 1

2 , B =
1
3 .

4 Two-mode fourth-order-Burgers equation
(TMBE-4th order)

In this section we construct new solutions for TMBE-4th
order:

0 = utt − s2uxx + γ(
∂
∂ t

−β s
∂
∂x

)uxxxx

+ γ(
∂
∂ t

−αs
∂
∂x

){(u4+4uuxx+6u2ux +3u3
x)x}, (26)

where α,β , and s are defined earlier. Parallel to the
analysis presented earlier, we use the wave variable
ζ = x− ct to convert equation (26) into the ODE

0 = (c2− s2)u− γ(c+αs)(u4+4uu′′+6u2u′+3u′2)

− γ(c+β s)u′′′. (27)

The solution of (27) is

u(ζ ) =
m

∑
i=1

ai(
G′

G
)i. (28)
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Also, we require the following equations

u4(ζ ) = a4
m(

G′

G
)4m + ... (29)

u′′′(ζ ) = m(m+1)(m+2)am(
G′

G
)m+3+ .... (30)

Balancing the termsu4 andu′′′ in equation (27) with the
aid of equations (29) and (30), we find that 4m = m+ 3.
Thus m = 1, and accordingly, equation (35) can be
rewritten as:

u(ζ ) = a1(
G′

G
)+ a0 = a1Y + a0. (31)

Then we derive the following relations

u′2(ζ ) = a2
1(Y

4+2λY3+(λ 2+ µ)Y2+2λ µY + µ2),(32)

u′′′(ζ ) = a1(−6Y 4−12λY3− (7λ 2+8µ)Y2

− (λ 3+8λ µ)Y − (λ 2µ +2µ2)), (33)

u4 = a4
1Y 4+4a0a3

1Y
3+6a2

0a2
1Y

2+4a3
0a1Y + a4

0. (34)

Substituting (32)-(34) in (27) and using the conditionα =
β , yields a set of algebraic equations fora0,a1,β ,λ ,µ ,γ,c
ands.

(G′

G

)4
= (Y 4) : 0= 6a1cγ −11a2

1cγ +6a3
1cγ − a4

1cγ

+ 6a1sβ γ −11a2
1sβ γ +6a3

1sβ γ − a4
1sβ γ

(G′

G

)3
= (Y 3) : 0=−8a0a1cγ +12a0a2

1cγ −4a0a3
1cγ

− 8a0a1sβ γ +12a0a2
1sβ γ −4a0a3

1sβ γ
+ 12a1cγλ −18a2

1cγλ +6a3
1cγλ

+ 12a1sβ γλ −18a2
1sβ γλ +6a3

1sβ γλ ,

and

(G′

G

)2
= (Y 2) : 0= 6a2

0a1cγ −6a2
0a2

1cγ +6a2
0a1sβ γ

− 12a0a1cγλ +12a0a2
1cγλ −12a0a1sβ γλ

+ 12a0a2
1sβ γλ +7a1cγλ 2−7a2

1cγλ 2

+ 7a1sβ γλ 2−7a2
1sβ γλ 2+8a1cγµ

− 14a2
1cγµ +6a3

1cγµ +8a1sβ γµ −14a2
1sβ γµ

+ 6a3
1sβ γµ −6a2

0a2
1sβ γ,

and

(G′

G

)1
= (Y 1) : 0= a1c2− a1s2−4a3

0a1cγ −4a3
0a1sβ γ

+ 6a2
0a1cγλ +6a2

0a1sβ γλ −4a0a1cγλ 2

− 4a0a1sβ γλ 2+ a1cγλ 3+ a1sβ γλ 3−8a0a1cγµ
+ 12a0a2

1cγµ −8a0a1sβ γµ +12a0a2
1sβ γµ

+ 8a1cγλ µ −10a2
1cγλ µ +8a1sβ γλ µ

− 10a2
1sβ γλ µ ,

(G′

G

)0
= (Y 0) : 0= a0c2− a0s2− a4

0cγ − a4
0sβ γ

+ 6a2
0a1cγµ +6a2

0a1sβ γµ −4a0a1cγλ µ
− 4a0a1sβ γλ µ + a1cγλ 2µ + a1sβ γλ 2µ
+ 2a1cγµ2−3a2

1cγµ2+2a1sβ γµ2

− 3a2
1sβ γµ2. (35)

Solving this obtained algebraic system, gives eight
solutions

u1(x, t) =
(A+B)Φ

(

1+ tanh
[1
4

Φ(2x+ t∆4)
]

)

2

(

B+A tanh
[1
4

Φ(2x+ t∆4)
]

) , (36)

u2(x, t) =
(A+B)Φ

(

1+ tanh
[1
2

Φ(x− 1
2

t∆5)
]

)

2

(

B+A tanh
[1
2

Φ(x− 1
2

t∆5)
]

) , (37)

u3(x, t) =
(A−B)Φ

(

1− tanh
[1
4

Φ(2x+ t∆6)
]

)

2

(

B+A tanh
[1
4

Φ(2x+ t∆6)
]

) , (38)

u4(x, t) =
(A−B)Φ

(

1− tanh
[1
2

Φ(x− 1
2

t∆7)
]

)

2

(

B+A tanh
[1
2

Φ(x− 1
2

t∆7)
]

) , (39)

u5(x, t) =
1
6
(3λ +

√
3Ψ)

+
(−Bλ +AΦ)

2

(

B+A tanh
[1
2

Φ(x+
1

6
√

3
t∆8)

]

)

+

(−Aλ +BΦ) tanh
[1
2

Φ(x+
1

6
√

3
t∆8)

]

2

(

B+A tanh
[1
2

Φ(x+
1

6
√

3
t∆8)

]

) , (40)

u6(x, t) =
1
6
(3λ +

√
3Ψ)

+
(−Bλ +AΦ)

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆9)

]

)

+

(−Aλ +BΦ) tanh
[1
2

Φ(x− 1

6
√

3
t∆9)

]

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆9)

]

) , (41)
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u7(x, t) =
1
6
(3λ −

√
3Ψ)

+
(−Bλ +AΦ)

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆10)

]

)

+

(−Aλ +BΦ) tanh
[1
2

Φ(x− 1

6
√

3
t∆10)

]

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆10)

]

) , (42)

u8(x, t) =
1
6
(3λ −

√
3Ψ)

+
(−Bλ +AΦ)

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆11)

]

)

+

(−Aλ +BΦ) tanh
[1
2

Φ(x− 1

6
√

3
t∆11)

]

2

(

B+A tanh
[1
2

Φ(x− 1

6
√

3
t∆11)

]

) , (43)

where

∆4 = −γΦ3+
√

4s2+4sβ γΦ3+ γ2(λ 2−4µ)3,

∆5 = γΦ3+
√

4s2+4sβ γΦ3+ γ2(λ 2−4µ)3,

∆6 = γΦ3+
√

4s2−4sβ γΦ3+ γ2(λ 2−4µ)3,

∆7 = −γΦ3+
√

4s2−4sβ γΦ3+ γ2(λ 2−4µ)3,

∆8 = γΨ3+

√

108s2−12
√

3sβ γΨ3− γ2(λ 2−4µ)3,

(44)

∆9 = −γΨ3+

√

108s2−12
√

3sβ γΨ3− γ2(λ 2−4µ)3,

∆10 = γΨ3−
√

108s2+12
√

3sβ γΨ 3− γ2(λ 2−4µ)3,

∆11 = γΨ3+

√

108s2+12
√

3sβ γΨ 3− γ2(λ 2−4µ)3,

Φ =
√

λ 2−4µ,
Ψ =

√

−λ 2+4µ.

5 Applications: Effect of α, β and s on the
field function of TMSTO

In this part, we study graphically the effect of the phase
velocity s, the non-linearity parameterα and the
dispersion parameterβ on the behavior of the field
function u(x, t) for the TMSTO equation. By fixing the
values of the other coefficients and parameters involved in
(23), we reached to the following findings.

1.By increasing the phase velocities parameters, the
field function decreases. See Figure 3.

0.2 0.4 0.6 0.8 1.0
s

-0.6

-0.4

-0.2

0.2

u1Hx,tL

Fig. 3: Influence of the phase velocities parameters on the field
function obtained in (23) for x = 1, t = 1, α = 0.3, β = 1

4 , c =
0.5, A = 0, B = 1, λ = 0.5, γ = 1 and 0< s < 1.

0.2 0.4 0.6 0.8 1.0
Α

0.14

0.15

0.16

0.17

0.18

u1Hx,tL

Fig. 4: Influence of the phase velocities parameters on the field
function obtained in (23) for x = 1, t = 1, s = 0.25, β = 1

4 , c =
0.5, A = 0, B = 1, λ = 0.5, γ = 1 and 0< s < 1.

2.By increasing the non-linearity parameterα, the field
function increases. See Figure 4.

3.By increasing the dispersion parameterβ , the field
function decreases. See Figure 5.

0.2 0.4 0.6 0.8 1.0
Β

0.14

0.16

0.18

0.20
u1Hx,tL

Fig. 5: Influence of the phase velocities parameters on the field
function obtained in (23) for x = 1, t = 1, s= 0.25, α = 0.3, c =
0.5, A = 0, B = 1, λ = 0.5, γ = 1 and 0< s < 1.

6 Conclusion

In this paper we studied the solution of two-mode
nonlinear models. The(G′/G)-expansion method is used
and we obtained more new soliton solutions to the
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TMSTO for arbitrary values ofα andβ , while in the case
of TMBE-4th we require a more general condition which
is α = β .

As future work, we aim to establish more two-mode
nonlinear equations and search for its solitary wave
solutions using different ansatze methods such as:
sine-cosine method, first integral method, sech-tanh
method and rational trigonometric function method [19,
20,21,22,23].
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