Appl. Math. Inf. Sci.12, No. 2, 361-367 (2018) %N =¥\ 361

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/120210

Constructing New Solutions for Some Types of
Two-Mode Nonlinear Equations

Ola Yassin and Marwan Alquran*®

Department of Mathematics and Statistics, Jordan Uniweo$iScience and Technology, P.O. Box: 3030, Irbid, 221 d@ddn

Received: 15 Oct. 2017, Revised: 11 Dec. 2017, Accepted:e26 PD17
Published online: 1 Mar. 2018

Abstract: In this work we investigated further solutions of new fanvfynonlinear two-mode equations. We considered the twoemod
Sharma-Tasso-Olver (TMSTO) equation and two-mode foartler Burgers (TMBE-4th). These models describe the prafiay of
two different wave modes simultaneously. We used(tgG)-expansion method and obtained more new solutions.
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1 Introduction develop nonlinear dynamics during the last few decades.
The studies of nonlinear wave phenomena have taken

Two-mode nonlinear equations are second-order partial’©re than half a century to reproduce interesting and

differential equations (PDE) in time. They represent the €XCiting descriptions on their formation and propagation
propagation of two-wave modes in the same direction[14: One of their active contributions is the nonlinear
simultaneously]. This new type of equations have been Plasma theory which is considered as the most important
observed based on the fact that most of the nonlineaffontier for the fundamental understanding of proximal
equations are defined by first-order PDE in time. Theys'pa(’te 9f the . earth .and a_rich testing ground for
describe unidirectional waves where these equation@PPlication of innovative mathematical methods. Most
model one right-moving fok > 0. Such equations is the Mvestigated among the solitons in plasma are the
well-known KdV. Other equations model two ion-acoustic solitary waves/solitons. Other examples of

left-right-moving as in Boussinesq which is defined by thesg applications are th? one—dimensional gas .ﬂOW'
second-order PDE in time. Therefore, Korsunsky [ |ongitudinal wave propagation on a moving thread line,
developed this phenomena and he was able to identify ang"d €lectromagnetic transmission line.

derive two-mode KdV (TMKdV) as a nonlinear PDE of - . . .
second order in time. Further, different types of solitary-l;]he motlvatlor? of this work s to revisit tlhe.TMSJO and
wave solutions are obtained to this TMKdV & B,4,5,6, t Ff TMBE-4th to extract more new solutions by using
7,8,9]. (G'/G)-expansion  method 15,16,17,18. These

two-mode equations are defined respectively as

Recently, some two-modes nonlinear equations have been 9 9

established and studied. Wazwdd[[ obtained multiple 0 = uy —szuxx+/.l(a— — asd—){(u3+3uux)x}

kink solutions of the two-mode Sharma-Tasso-Olver t X

(TMSTO) equation and two-mode fourth-order Burgers p(= —Bsi)uxxx, (1)
(TMBE-4th) by using the simplified Hirotas method. In ot ox

[11,12,13], the simplified bilinear is used to study the and

two-mode coupled Burgers equation, the two-mode
coupled modified Korteweg-de Vries and the two-mode

17}
coupled Korteweg-de Vries. Bso-) oo

)
0 = Uy — LU+ Y Ey

(5 -

0 0
Many researchers have put their efforts into action to + V(E—asa—x){(u4+4uuxx+ Ul +3ug)x},  (2)
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whereu(x,t) is the field function and it represents the By result @) and implicit differentiation, one can derive
height of the water's free surface above a flat bottom,the following two formulas

—00 < xt < . The coefficientsa and B are the  \n _ 2Y3 4 BAY2 4+ (2u+ AQ)Y + A p (10)
non-linearity and the dispersion variables respectively " 4 3 9 2’

such thata| < 1, |8| < 1 andsis a positive integer that Y~ = —6Y"—12AY" — (7A°+8u)Y

is related to the phase velocities. — (A348Au)Y — (A2u+2u?). (112)

Combining equationssj, (7) and ©-11), it results in a
epolynomial of powers off. Then, collecting all terms of
same order ofY and equating to zero, yields a set of
algebraic equations fay, ay, ...,am, A, andy.

We should point here that the above two equations ar
established in I0] and soliton solutions are obtained
under the conditiorm = 3 = 1. In this work, we obtain

new soliton solutions to the TMSTO for arbitrary values
of a and, while in the case of TMBE-4th we require a

; L It is known that the solution of equatio®)(is a linear
more general constraint whichds= 3.

combination of sinh and cosh or of sine and cosine,
respectively, ifA = A2 —4u > 0 or A < 0. Without lost
of generality, we consider the first case and therefore

G({) = <A sinn( Y24 4 B cos( Y24 )) e %
Consider the following nonlinear partial differential 2 2
equation: 12)
P(U,U’[,Ux,U{t,U)q,...):o, (3)

where u = u(x,t) is an unknown function,P is a 3 Two-mode Sharma-Tasso-Olver (TMSTO)
polynomial in u = u(x,t) and its various partial

derivatives, in which the highest order derivatives andThe TMSTO equation is given by:

nonlinear terms are involved. By the wave variable 0 0 3

{ = x— ct the PDE @) is then transformed to an ordinary 0= Ut — Sloc+ V(gp — sz )L (U7 + 3uti)x}
differential equation (ODE)

2 Survey of (G'/G)-expansion method

YT 5D Y (19

By using the wave variablé = x — ct, equation 13) is
then reduced in a simplified form to the ODE:

P(u,—cu/ U, c?u’, —cu”,U",...) =0, (4)

whereu = u({). We write the solution of the ODEJ as a

polynomial |n(G’/G) as follows ﬂ5, 16, 17, 18] (CZ —SZ)U— V(C+ GS)(U3—|—3UU/) o V(C+ Bs)u// -0 (14)
G By the proposed method, the solution of equatibf) {s
u(Z)zam(E)er..., (5) y the prop . quatibd (
u) =S a(=), 15
whereG = G({) is the solution of © i; ( G) (19)
G’ +AG +uG=0. ©6) then, we require the following two secondary equations
G/
The coefficientsg, ay, ..., am and the parameteds, u are () = afn(g)3m+ (16)

constants to be determined later, provided that~ O.
The positive integem can be determined by considering and G
the homogeneous balance between the highest order u’(Z) = m(m+ 1)am(—)m+2+ (17)
derivatives and nonlinear terms appearing in the OBE ( G
Considering the homogeneous balance betwgemdu’

Now, if we let in equation 14), based on16) and (L7), we require that
G 3m=m+ 2. Thusm= 1, and therefore we can rewrite
Y=Y({)= G’ @) equation 15) as
then by the help of§) we get G
u({) =a(—=)+ao=aiY +ao. (18)
. GG -G? G(-AG - uG)-— G2 G
Y = G2 = G2 By the analysis given in the preceding section, we reach to
the following main relations
=AY —p—Y? ® o
or, equivalentl WO = a(—V" =AY~ 1), (19)
ed Y W(Q) = a1(2Y3+ 30 Y2+ (2U+ADY +AK),  (20)
Y =-YZ-AY—p. 9 Q) = ajY® + 3agaiY?+ 3adayY + &, (21)
(@© 2018 NSP
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Substituting equationsl@)-(21) into equation 1{4) and
collecting all terms with the same power ¥%ftogether
and equating each coefficient of the resulted polynomial
to zero, yields a set of algebraic equationsdgra;,A,c
andy.

G.s3 3\ . 2 3 2
(E) = (Y®): 0= —2ajcy+ 3ajcy— ajcy+ 3assay

— ajsay—2asBy
G/

( = )% = (Y?): 0 = 3agaycy— 3agaicy+ 3apaisay

— Bapassay— 3a;cyA + 3aZcyA

+ Ba%SO!y)\ —3a8ByA Fig. 1: Kink solution of TMSTO derived from equatior2d)

/ whens=1 A=1 a=1 =3 y=1c=1 A=0B=1.
(%)1 = (YY) :0=ayc® — ays* — 3a3a;cy — 3adarsay N 2 ? ?
+ 3apascyA + 3apaisayA —ajcyA?
— aysByA? — 2a;cyu + 3ajcyu
+ 3afsayu — 2a1sByu
/
(S)0 = (v%):0— a0 - aud? ey - aleay
+ 3apay Cyp + 3a0a15a
— aiCyA U — a1 SByA . (22)
Solving the above system gives two solutions:

The first solution is:

M1 (A+B tanh[%})

y(x1) = v2 )y | |
B4 A tanh[(X_Ct)Az} Fig. 2: Kink solution of TMSTO derived from equatior2®
2.2 whens=3,A=3 a=1 =3 y=1c=3 A=—-3 B=

The second solution is:

Mo (A+B tanh[m})

1

3-

Up(x.t) = 2v2 (24) _
(B+A tanh[w}) 4 Two-mode fourth-order-Burgers equation
2v/2 (TMBE-4th order)
Where(3c+ 3sar — A1) Ay In this section we construct new solutions for TMBE-4th
= order:
' 4v/2(c+sa) 5 5
(3c+3sa +41)A3 0= Ut — Stoc+ V(5 — BS5 ) Uoon

27 av2(ctsa) P 2

and + V(E — asa—x){(u4+ Auuy + 6U%Ux 4 3U3)x L, (26)

Ay = +v/c+say/c+ 9sa — 83
AZZ\/(CZ—SZ)(5C+9SU—4SB+3A1)

where a,3, and s are defined earlier. Parallel to the
analysis presented earlier, we use the wave variable
{ = x— ct to convert equation2) into the ODE

2
(c+sb)% 0 = (¢>—)u—y(c+ as)(u*+ 4uu” + 6ud + 3u?)
B \/ (62— ) (5c+ 9sar — 4B — 344) ~ Y(c+ BIU”. 27)
A; = 5 : (25)
(c+sB)%y The solution of 7) is
The provided figures represent Kink and singular-Kink of
the TMSTO derived from equatio238) for some assigned u) = - a (E/)i (28)
values of the free parameters involved in the solution. I; G’
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Also, we require the following equations

G/

(G
G/

u” () = m(m+1)(m+ 2)am(a)m+3+

u*(Q) = ap(=)"+ . (29)

(30)

Balancing the terms®* andu” in equation 27) with the
aid of equationsZ9) and @0), we find that 4n = m+ 3.
Thus m = 1, and accordingly, equation3%) can be
rewritten as:

/

UE) = aa(G) +a0=aY +ao (31)

Then we derive the following relations

U2(Q) = a3(YA+2AY3 + (A2 4+ p)Y2 +2A Y + p?) (32)
u”(Q) = ag(—6Y*— 1203 — (7424 8u)Y?

— (A4 8AN)Y — (A% +2u?)), (33)

u* = afY* + dagalY® + 6adalY? + 4adarY +ag. (34)

Substituting 82)-(34) in (27) and using the conditioa =
B, yields a set of algebraic equations &ras, 3,A, UL, y,C
ands.

G/
(6)4 = (Y*): 0= 6ajcy — 11a’cy+ 6aScy — ajcy
+ 6aysBy — 11afsBy -+ 6a3sBy — ajsBy
)3 = (Y3): 0= —8apascy + 12agascy — 4agascy
— 8agaysBy + 12a083sBy — 4aoa;sBy
+ 12a;cyA — 18a2cyA + 6ascyA
+ 12a;5ByA — 18a3sByA + 6a5SByA

G/
(G

and

(%)2 = (Y?): 0 = 6ada;cy — 6agaZcy + 6aZaisBy
— 12agascyA + 12a0a2cyA — 12a0a1SByA
+ 12a0a2sByA + 7TaicyA 2 — TascyA?
+ Ta1sByA2 — 7aisByA? + 8ajcyu
— 14aZcyu + 6ascyu + 8aysByu — 14a5sByu
+ 6a3sByu — 6agaisBy,

and

(=) Lo (v 0= ayc? — ays? — 4adascy — 4a3alsBy

+ 6adaicyA + 6aZaiSByA — dagaicyA?

— 4aga1SByA? + aicyA 3+ a1sByA S — 8agascyu
+ 12a0afcyp — 8apaysByp + 12a0a5sByu

+ 8ayCyA i — 10a2cyA p + 8aisByA u

— 10agsByA p,

G/

(G)° = (Y0):0=a0c® ~ aos’ — agey — afsBy
+ 6ada;cyp + 6aday By — 4aoaiCyA U
— 4agaySByA U+ aicyA?p + arsByAZp
+ 2ascyp® — 3acyu® + 2a,5Byu?

— ZaiByu’. (35)

Solving this obtained algebraic system, gives eight

solutions

(A+B)® (1+ tanh[%¢(2X+tA4)]>

u(xt) = ,  (36)

2 (B+A tanh[%cp(2x+m4)}>

(A+B)® (1+ tanh[:—ZL(D(x— %tﬂ5)]>

Up(x,t) = (37)

2 (B+A tanh[:—zlcb(x— %t&)})

1
(A—B)® ( 1—tanh[> ®(2x+tAg)]
uz(x,t) = ( 4 i )

, (38)
2 (B+A tanh[%(D(ZX—HAeﬂ)
1 1
(A—B)® ( 1—tanh[Z ®(x— ZtA7)]
U4(X,t) = ( - - )

(39)

2 (B+A tanh[%cb(x— %tAﬂ})

us(x,t) = %(3)\ +V3W)
(—BA +A®)

1 1
2 (B+A tanh[5 D(x+ 6—\/§tA8)]>
1

(—AX +B®) tanh[%®(x+ 6—\/§m8ﬂ

1 1 ’
2 <B+A tanh[§®(x+ 6—\/:—),'[A8)}>

(40)

Ug(X,t) = %(3)\ +V3W)
(—BA +A®)

2 (B+A tanh[% D (x— 6_\1/§m9)])

(—AX +B®) tanh[%da(x— ——

+
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1
u7(xt) = 5 (3A — V3W) us (X,
0.2 ——
(=BA +A®)
- 1 1 02 04 06 08 10
2( B+Atanh|=®(x— —=tA ' ' ' '
< +Atan [2 (X 6\/§ 10)]) _oal
1 1
(—AX +B®) tanh[ = ®(x— —=tAy0)] -0.4¢
2 6v/3
+ 1 1 , (42) -06
2| B+A tanh[—CD(x— —tAlo)} ) » )
2 6v/3 Fig. 3: Influence of the phase velocities parameten the field
function obtained inZ3) forx=1t=1, a =03, B = %, c=
1 05 A=0,B=1 A=05 y=1land0<s< 1.
Us(x.t) = (34 —V3W) Y
(—=BA +A®)
+ 1 1 oD
2(B+Atanh[Z®(x— —=tA e
< P05 ]> o1dl —
1 1 ' —
—AA +B®) tanh|Z ®(x— —=tA 0.17
( : [2 ( 6v/3 1) 0.16
+ 1 1 » (43) 0.15}
2(B+Atanh[§d>(x— G—ﬂtﬂll)}> 0.147’
where 02 04 06 08 10"
Ay = —y®° + /452 + AsByd3 + y2(A2 — 4p)3, Fig. 4: Influence of the phase velocities parameten the field
N Y \/ By v H function obtained inZ3) forx=1,t=1, s=0.25 3 = %, c=
Ns — Y3 + \/432+4SBV¢3+ V(A2 — 43, 05 A=0,B=1,A=05y=1land0<s<1.
fe = y&© + \/45? — Ay @3+ y2(A2 - 4p)?,
3
A7 = —y® + \/452 — 4By D3+ y2(A% — 4p)3, 2.By increasing the non-linearity parameterthe field
3 s 212 5 function increases. See Figure 4.
Ag = YW~ + \/10&2— 12v/3sByWs — y2(A2 — 4p)3, 3.By increasing the dispersion paramegrthe field
(44) function decreases. See Figure 5.
Do = —yW¥3+ /1082 — 12/3sByWS — 12(A2— 4p)?,
up(x,t)
Aro = Y9 — /1085 1 12/3sByW3 — 12(A2— 4p)?, 0.2
0.18
Dyp = yWR+ \/10852+12f333yw3— Y2(A2 = 4p)3, o1d
@ =AZ-4y, 0.14f
w:\/—)\2+4IJ. L L L L L ﬁ
02 04 06 08 10
. . . Fig. 5: Influence of the phase velocities parameten the field
5_ Appllcat_lons. Effect of a, B and son the function obtained inZ3) forx=1,t =1, s=0.25 a =03, c=
field function of TMSTO 05 A=0,B=1 A =05 y=1and0<s< 1.

In this part, we study graphically the effect of the phase

velocity s, the non-linearity parametelr and the

dispersion parameteff on the behavior of the field

function u(x,t) for the TMSTO equation. By fixing the .
values of the other coefficients and parameters involved i Conclusion

(23), we reached to the following findings. i ) )
In this paper we studied the solution of two-mode

1.By increasing the phase velocities parameiethe  nonlinear models. ThéG'/G)-expansion method is used
field function decreases. See Figure 3. and we obtained more new soliton solutions to the
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TMSTO for arbitrary values ofr andf3, while in the case [12] Syam M., Jaradat H.M., Alquran M., A study on the

of TMBE-4th we require a more general condition which two-mode coupled modified Korteweg-de Vries using the

isa=p. simplified bilinear and the trigonometric-function metkod
Nonlinear Dynamics90(2) (2017) 1363-1371.

As future work, we aim to establish more two-mode [13] Jaradat H.M., Syam M., Alquran M., A two-mode coupled
nonlinear equations and search for its solitary wave Korteweg-c_ie Vries:_ muItipIe-so!iton solutions and other
solutions using different ansatze methods such as; _exactsolutionsNonlinear Dynamics90(1) (2017) 371-377.

sine-cosine method, first integral method, sech-tanH14]Alquran M., Jaradat H.M., Syam M., A modified approach

method and rational trigonometric function methd®,[ for a reliable stydy of new nonlir}ear equation: two-mode
20,21,22,23. Korteweg-de Vries-Burgers equatioNonlinear Dynamics

91(3) (2018) 1619-1626.
[15] Qawasmeh A., Alguran M., Reliable study of some
new fifth-order nonlinear equations by means(&f/G)-
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