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Abstract: In this article, we study the general equations of the dual-phase-lag (DPL) model and Lord-Shulman(LS) theory with
one relaxation time considering the influence of micro-polar fiber-reinforced on the totally reformed 2D-half-space with gravity. The
obtained non-dimensional coupled field equations for the DPL are solved using the harmonic wave analysis technique.Also, the exact
expressions for some physical fields and tangential couple stress are obtained under the effect of mechanical forces along the interface
of the fluid half space and the fiber-reinforced micro-polar thermoelastic half space. The effect of micro-polarity on the displacement
component, force stress, temperature distribution and tangential couple stress, in presence and absence of the gravity field effect, has
been depicted graphically.
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1 Introduction

The dynamical interaction between thermal and
mechanical waves in thermo-elastic medium has many
important applications in modern physical engineering as
aeronautics, astronautics, nuclear reactors and
high-energy particle accelerators. Also wave propagation
in a reinforced media plays a very interesting role in civil
engineering and geophysics. Moreover studying waves
propagation, reflection and transmission are very
important to seismologists. Such studies give researchers
the ability to obtain valuable knowledge about rocks
structure, elastic properties and the required information
to detect minerals and fluids inside the earth. The model
of introducing a continuous self-reinforcement at every
point of an elastic solid was first given by Belfied et al.
[1]. Later, Verma and Rana [2] applied this model to the
rotation of fibre reinforced circular cylindrical tube.
Also,Verma [3] discussed the magneto elastic shear waves
in self-reinforced bodies. Singh [4] studied the wave
propagation in fibre-reinforced anisotropic media and
proved that this decoupling cannot be achieved if the
displacement potential is introduced. Sengupta and Nath
[5] discussed the problem of the surface waves in

fibre-reinforced anisotropic elastic media. Many authors
have described the elastic moduli for fibre-reinforced
materials [6,7,8,9,10] Furthermore, In case of studying
the response of materials to external stimuli,the
micropolar elastic model gives more realistic results than
the purely elastic theory. More significant developments
and studies of the general theory of linear micropolar
elasticity are achieved by Eringen [11,12,13] and
Nowacki [14,15,16] As solids undergo
macro-deformations and micro-rotations can completely
characterized by the displacement vector u(x, t) and the
rotation vector (x, t), in case of classical elasticity; the
motion is characterized by the displacement vector only.
Nowacki [17], Eringen [13,14,15,16,17] Tauchert [18]
and Nowacki and Olszak [19]developed the micropolar
theory to include thermal effects (see also [20,21,22]).
Because of its dependence on the classical Fourier’s law,
the classical theory of elasticity fails to describe the
behavior of materials with internal structure. Lord and
Shulman (LS) [23] generalized the thermoelasticity
theory with one relaxation time parameter
(single-phase-lag model) by postulating a new law of heat
conduction instead of the classical Fourier’s law.Green
and Lindsay (GL) [24] generalized the theory of
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thermoelasticity involving two thermal relaxation times.
Many authors used these theories in their research
[25-26]. Considering interactions between photons and
electrons on the microscopic level as retarding sources,
Tzou [27,28] has developed a new model known as the
dual phase-lag model (DPL). The DPL model is more
convenient for studying and investigating the
micro-structural effect on heat transfer behavior when
macroscopic formulation is used. Tzou [28] supported the
physical meanings and applications of the DPL model by
considering experimental results. The modification of the
classical thermoelastic model proposed by Tzou [29]
depends on replacing Fourier law by approximate values
of the modified Fourier’s law with two different times
(phase-lag of the heat flux and a phase-lag of temperature
gradient ). Many authors [30,31,32] used the harmonic
wave method with thermal relaxation times to study the
wave propagation between two interfaced thermoelastic
medium. Abbas et al. [33] applied the generalized
thermoelasticity model proposed by dual phase lag
(DPL), to study the thermoelastic interactions in an
infinite fiber-reinforced anisotropic medium with a
circular hole. Hobiny and Abbas [34] used the eigenvalue
approach to analytically investigate the solution of a
fiber-reinforced anisotropic material under generalized
magneto-thermoelastic theory. Studying the interaction of
elastic waves with fluid loaded solids has been recognized
as a valuable means, since the reflected acoustic field
from a fluid solid interface has a wealth of information,
which reveals details of many characteristics of solids.
This kind of study is conducted for a wide variety of
solids extending from the simple isotropic semi-space to
the more complicated systems of multilayered anisotropic
media [35,36,37]. In this article we study the effect of
gravity field on a micropolar fibre-reinforced thermo-
elastic medium subjected to mechanical force.Also use
the harmonic wave analysis to obtain the physical
quantities of the problem. Finally, introduce comparison
between the considered variables as calculated from the
generalized thermoelasticity based on the influence of
gravity,generalized Lord and Shulman (L-S)theory and
the dual-phase-lag (DPL).

2 Formulation of the problem basic equations

The constitutive equations for a linear fibre-reinforced
elastic anisotropic medium with respect to the
reinforcement directiona are:

σi j = λ ekk δi j +2 µT ei j +α(ak am ekm δi j +ai a j ekk)+

2(µL − µT)(ai ak ek j + a j ak eki)+β ak am ekm ai a j−

βi j (1+ τθ
∂
∂ t

)(T −T0)δi j . (1)

The strains in terms of the displacementsui are:

ei j =
1
2
(ui, j +u j ,i). (2)

The heat conduction equation is

k(1+ τθ
∂
∂ t

)Ti j =

(

∂
∂ t

+ τq
∂ 2

∂ t2

)

p CE T +

T0 βi j

(

∂
∂ t

+ τq
∂ 2

∂ t2

)

ui j , (3)

where σi j are components of the stress;ei j are the
components of strain,λ andµT are the elastic constants,
α, β and(µL −µT) are the reinforcement parameters, and
a ≡ (a1,a2,a3) with a2

1 + a2
2 + a2

3 = 1 . we choose the
fibre-directiona asa ≡ (1,0,0) . TandT0 are the absolute
temperature and reference temperature respectively.k is
the thermal conductivity of the sample,ρ is the density of
the fibre reinforced micropolar solid,CE is the specific
heat at constant strain andδi j is the well known Kroneker
delta. τθ ,τq(0 ≤ τθ < τq) are the phase-lag of
temperature gradient and the phase-lag of heat flux
respectively. whenτθ = 0 , the governing equations are
reduced to the LS theory.
In case of plane deformation, where displacement vector
ū= (u,v,0) and the micro-rotation vector̄ϕ = (0,0,ϕ3) ,
the constitutive equations (1)can be written as:

σxx = A11u,x+A12v,y−β11(1+ τθ
∂
∂ t

)(T −T0), (4)

σyy = A22v,y+A12ux−β22(1+ τθ
∂
∂ t

)(T −T0), (5)

σzz= A12u,x+λv,y−β33(1+ τθ
∂
∂ t

)(T −T0), (6)

σxy= µL(u,y+v,x)−kϕ3,σyx= µL(u,y+v,x)+kϕ3,σzx=σzy= 0.
(7)

where,
A11 = λ +2(α +µT)+4(µL −µT)+β

A12 = λ +α,A22 = λ +2µT

β11 = (2λ +3α +4µL −2µT +β )α1+(λ +α)α2 ,

β22 = (2λ +α)α1+(λ +2µT )α2

andα1 , α2 are the linear thermal expansion coefficients.
Consider the Cartesian system of coordinates(x,y,z) with origin
at z= 0. Let a normal force of magnitudeP1 acting along the
interface of fibre reinforced micropolar thermoelastic medium
(medium I) occupying the region 0≤ x < ∞ and a non viscous
fluid (medium II) occupying the region−∞ < x≤ 0 as shown in
figure 1.

According to the generalized thermoelasticity , ignoring
gravity effect, the equations of motion are:

ρ
(

∂ 2ui

∂ t2

)

= σi j , j ,(i, j = 1,2,3). (8)

Also, the field equations of micropolar generalized thermoelastic
medium are:

jρ
∂ 2ϕi

∂ t2 = (α1+β1+ γ1)ϕ j, ji+

γ1ϕi, j j +k1εi jr ur, j −2kl ϕi . (9)
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Fig. 1: Physical model and coordinate system.

mil = α1ϕr,rδil + γϕl ,i , (10)

where kl ,αl ,βl and γl are the material constants,j is
micro-inertia andmil is the couple stress tensor. A comma
followed by a suffix denotes material derivative and a
superposed dot denotes derivative with respect to time. The
equations of motion and stress components for an inviscid fluid
are:

λ f uf
j, ji = ρ f ∂ 2uf

i

∂ t2 (11)

σ f
i j = λ f uf

r,rδi j , (12)

where,uf
i is the displacement vector components,λ f is the

bulk modulus andρ f is fluid density, λ f

ρ f = c2
f represents the

velocity of acoustic fluid wherecf is the velocity of sound in
liquid.
From (4)-(7), we note that the third equation of motion in (8)is
identically satisfied and the first two equations with rotation
under the influence of gravitational field are:

ρ
(

∂ 2u

∂ t2

)

= A11
∂ 2u

∂x2 +B2
∂ 2v

∂x∂y
+B1

∂ 2u

∂y2 +ρg
∂v
∂x

+

k
∂ϕ3

∂y
−β11

(

1+ τθ
∂
∂ t

)

∂T
∂x

, (13)

ρ
(

∂ 2v

∂ t2

)

= A22
∂ 2v

∂y2 +B2
∂ 2u

∂x∂y
+B1

∂ 2v

∂x2 −ρg
∂u
∂x

−

k
∂ϕ3

∂x
−β22

(

1+ τθ
∂
∂ t

)

∂T
∂y

, (14)

whereB1 = µL , B2 = α +λ +µL .
The field equations (9),(10) and (3) of micropolar generalized
thermoelastic medium become:

γl ∇2ϕ3+kl

(

∂v
∂x

− ∂u
∂y

)

−2kl ϕ3 = jρ
∂ 2ϕ3

∂ t2 , (15)

myz= γl
∂ϕ3

∂y
, (16)

k

(

1+ τθ
∂
∂ t

)

∇2T = ρCE

(

1+ τq
∂
∂ t

)

Ṫ+

(

1+ τq
∂
∂ t

)(

β11
∂u
∂x

+β22
∂v
∂y

)

. (17)

In the following we introduce the non-dimensional variables
for convenience, where











































x
′
= c1ηx,y

′
= c1ηy,u

′
= c1η

β11
u,v

′
= c1η

β11
v, t

′
= c2

1ηt,

τ ′
θ = c2

1ητθ ,g
′
= g

c3
1η ,θ = γ (T−T0)

λ+2µT
,τ ′

q = c2
1ητq,

m
′
i j =

ηmi j

β11ρc1
,σ ′

i j =
σi j

β11µT
,

σ
′ f
i j =

σ f
i j

β11µT
,ϕ3 = β11ϕ ′

3,

i, j = 1,2,3.

(18)

Here,η = ρCE
k , c2

1 =
λ+2µT

ρ and∇2 is the Laplace operator.
Therefore, the non-dimensional form of the governing equations
(15)-(17) becomes (drop the dashed for convenience):

∂ 2u

∂ t2 = h11
∂ 2u

∂x2 +h2
∂ 2v

∂x∂y
+h1

∂ 2u

∂y2 +h
∂ϕ3

∂y
−

(

1+ τθ
∂
∂ t

)

∂θ
∂x

+g
∂v
∂x

, (19)

∂ 2v
∂ t2 = h22

∂ 2v
∂y2 +h2

∂ 2u
∂x∂y

+h1
∂ 2v
∂x2 +h

∂ϕ3

∂x
+

β̄
(

1+ τθ
∂
∂ t

)

∂θ
∂y

−g
∂u
∂x

, (20)

(

1+ τθ
∂
∂ t

)(

∂ 2θ
∂x2 +

∂ 2θ
∂y2

)

=

(

∂
∂ t

+ τq
∂ 2

∂ 2

)

θ+
(

∂
∂ t

+ τq
∂ 2

∂ t2

)(

ε1
∂u
∂x

+ ε2
∂v
∂y

)

, (21)

∇2ϕ3+a1

(

∂v
∂x

− ∂u
∂y

)

−a2ϕ3 = a3
∂ 2ϕ3

∂ t2 , (22)

myz= a4
∂ϕ3

∂y
, (23)

where

(h11,h22,h1,h2,h) =
(A11,A22,B1,B2,k)

ρc2
1

, β̄ =
β22

β11
,

ε1 =
β 2

11T0

ρCE(λ +2µT)
,ε2 =

β11β22T0

ρCE(λ +2µT )
,a1 =

k1β11

γ1η2c2
1

,

a2 = 2
k1

γ1η2c2
1

,a3 =
jρ2

1
γ1

,a4 =
γ1η2

ρ
. (24)

Also, the dimensionless forms of equations (4)-(7) are:

µTσxx = A11u,x+A12v,y−A22

(

∂
∂ t

+ τθ
∂
∂ t

)

θ , (25)

µTσyy = A22v,y+A12u,x− β̄A22

(

∂
∂ t

+ τθ
∂
∂ t

)

θ , (26)
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µTσxy = µL(u,y+v,x)−kϕ3, σzx= σzy= 0, (27)

µTσxy = µL(u,y+v,x)+kϕ3. (28)

The dimensionless form of the equations of motion and stress
components of medium II is:

∂ 2uf

∂x2 +
∂ 2vf

∂x∂y
= a5

∂ 2uf

∂ t2 , (29)

∂ 2vf

∂y2 +
∂ 2uf

∂x∂y
= a5

∂ 2vf

∂ t2 , (30)

where,a5 =
c2

1
c2

f
.

3 Method of solution

To obtain the physical variables of the considered problem we
use the harmonic wave analysis techniques as follows: Let,

{label31[u,v,θ ,σi j ,mi j ,ϕ3,u
f ,vf ,σ f

i j ](x,y, t) =

[u∗,v∗,θ ∗,σ∗
i j ,m

∗
i j ,ϕ∗

3 ,u
∗ f ,v∗ f ,σ∗ f

i j ](x)exp(ωt + iay). (31)

Whereω is the complex time constant,i =
√
−1 ; ais the wave

number in the y- direction andu∗,v∗,θ ∗,σ∗
i j ,m

∗
i j ,ϕ

∗
3 ,u

∗ f ,v∗ f

andσ∗ f
i j are the amplitudes of the field quantities. By the help of

equation (31) equations (19)-(23) becomes:

[h11D
2−A1]u

∗+ iah′2Dv∗+ iahϕ∗
3 = QDθ ∗, (32)

[h1D2−A2]v
∗+ iah′′2Du∗−hDϕ∗

3 = iaβ̄Qθ ∗, (33)

A4Du∗+ iaA5v∗ = [D2−A3]θ ∗, (34)

a1Dv∗− iaa1u∗+[D2−A6]ϕ∗ = 0, (35)

m∗
yz= ia a4ϕ∗

3 , (36)

µTσ∗
xx = A11Du∗+ iaA12v∗−A22Qθ ∗, (37)

µTσ∗
yy = A22Du∗+ iaA12v∗− β̄ A22Qθ ∗, (38)

µTσ∗
xy = µL(iau∗+Dv∗)−kϕ∗

3 , σ∗
zx= σ∗

zy= 0, (39)

µTσ∗
yx = µL(iau∗+Dv∗)+kϕ∗

3 , σ∗
zx= σ∗

zy= 0. (40)

Where,

A1 = ω2+h1a2,A2 = ω2+h22a2,Q= 1+ωτθ ,

Q
′
= 1+ωτq,D =

d
dx

,A3 = a2+ωQ
′
/Q,

A4 = ωε1Q
′
/Q,A5 = ωε2Q

′
/Q,

A6 = a2+a2+a3ω2,h
′
2 = h2+

g
ia
,h

′′
= h2−

g
ia
. (41)

To obtain a non-zero solution of the system of equation (32)-
(35) the determinant

∣

∣

∣

∣

∣

∣

∣

∣

(h11D2−A1) iah
′
2D iah −QD

iah”
2D (h1D2−A2) −hD −iaβ̄ Q

A4D iaA5 0 −(D2−A3)
−iaa1 a1D (D2−A6) 0

∣

∣

∣

∣

∣

∣

∣

∣

should vanish . Solving the system of equations (32)-(35) by
elimination we get the following system of ordinary differential
equations of the 8th order in the variablesθ ∗(x),u∗(x) , v∗(x)
andϕ∗(x):

[D8−ED6+FD4−GD2+H]{u∗(x),v∗(x),θ ∗(x),ϕ∗
3(x)}= 0,

(42)
where

E =
1

h1h11
{−a1hh11+h1h11(A3+A6)+A1h1+

h11A2+h1A4Q−a2h
′
2h

′′
2}, (43)

F =
1

h1h11
{a2a1h(h

′
2+h1−h

′′
2)+Q(a1h+a2h

′
2A4β̄ +a2h

′′
2A5−

a2h11−A2−A6h1)−a1h(A1+h11A3)h1h11A3A6+

(A3+A6)(A2+h11+A1+h1−a2h
′
2h

′′
2)+A1A2, (44)

G =
1

h1h11
{a2a1h((h

′
2+h1−h

′′
2)A3+A2)−

a2Q(a1hβ̄ (A4h
′
2+A5h

′′
2)−a2h11+A1+A5h11)+

A1A2(A3+A6)−a1hA1A3+A3A6(A2h11+A1h1+a2h
′
2h

′′
2)−

Qβ̄A2A6A2}, (45)

H =
1

h1h11
{a2a1h(A2A3h

′
2+a2A5Qβ̄ )+

A1A6(A2A3−a2A4Q)}. (46)

Equation (43) can be written in the following form:

(D2−k2
1)(D

2−k2
2)(D

2−k2
3)(D

2−k2
4){u∗(x),v∗(x),θ ∗(x),ϕ∗

3(x)}= 0,
(47)

where, k2
n(n = 1,2,3,4) are the roots of the characteristic

equation
k8−Ek6+Fk−Gk2+H = 0 (48)

of the homogeneous equation (47). The bounded solutions of
equation (48) can be written as:

u∗(x) =
4

∑
n=1

Mn(a,ω)exp(−knx), (49)

v∗(x) =
4

∑
n=1

M
′
n(a,ω)exp(−knx), (50)

θ ∗(x) =
4

∑
n=1

M
′′
n(a,ω)exp(−knx), (51)

ϕ∗
3(x) =

4

∑
n=1

M
′′′
n (a,ω)exp(−knx). (52)
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Where ,Mn, M
′
n, M

′′
n andM

′′′
n are specific functions depending

ona andω. Substituting from equations (51)-(53) into equations
(32)-(35), we get

M
′
n(a,ω) = H1nMn(a,ω), (53)

M
′′
n(a,ω) = H2nMn(a,ω), (54)

M
′′′
n (a,ω) = H3nMn(a,ω), (55)

where

H1n =
h11k5

n−α1k3
n+α2kn

α3k4
n−α4k2

n+α5
, (56)

H2n =
−A4kn+ iαA5H1n

k2
n−A3

, (57)

H3n =
α1knH1n+ iαA1

k2
n−A5

, (58)

where

α1 = A1h11− iαh
′′
2+A4Q,α2 = (A1− iah

′′
2)A3+aA5β̄Q,

α3 = h
′
2+ iαh

′′
2,α4 = iα(A2+h1A3+A4β̄Q)+h

′
2A3,

α5 = (a2A5β̄Q+A2A3)

Thus, we have

v∗(x) =
4

∑
n=1

H1nMn(a,ω)exp(−knx), (59)

θ ∗(x) =
4

∑
n=1

H2nMn(a,ω)exp(−knx), (60)

ϕ∗
3(x) =

4

∑
n=1

H3nMn(a,ω)exp(−knx). (61)

Substitution of equations (49), (60) and (31) into equations (36)-
(41), we get the following relations

m∗
yz(x) =

4

∑
n=1

H4nMn(a,ω)exp(−knx), (62)

σ∗
xx(x) =

4

∑
n=1

H5nMn(a,ω)exp(−knx), (63)

σ∗
yy(x) =

4

∑
n=1

H6nMn(a,ω)exp(−knx), (64)

σ∗
zz(x) =

4

∑
n=1

H7nMn(a,ω)exp(−knx), (65)

σ∗
xy(x) =

4

∑
n=1

H8nMn(a,ω)exp(−knx), (66)

where (forn= 1,2,3,4) we have:

H4n = iaa4H3n, (67)

H5n = (−A11kn+ iaA12H1n−A22QH2n)/µT , (68)

H6n = (−A22kn+ iaA12H1n−A22QH2n)/µT , (69)

H7n = (−A12kn+ iaA12λH1n−A22Qβ̄H2n)/µT , (70)

H8n = µT(ia−knH1n)−kH3n/µT , (71)

H9n = µT(ia−knH1n)+kH3n/µT , . (72)

Also, the variables of medium II are expressed as:

u∗ f (x) =
6

∑
n=5

Mn(a,ω)exp(−knx), (73)

v∗ f (x) =
6

∑
n=5

M
′
n(a,ω)exp(−knlx), (74)

where, The parametersMn(n = 5,6) andM
′
n(n = 5,6) depends

on α andω , andkn(n= 5,6) are the roots of the characteristic
equation ofu∗ f (x) :

(D4−AD2+B)u∗ f (x) = 0, (75)

where, A = 2a5ω2 − a2, B = a2
5ω4. Equation (75) can be

factorized as:

(D2−k5)(D2−k2
6)u

∗ f (x) = 0, (76)

Similarly, v∗ f (x) satisfies the equation:

(D4−AD2+B)v∗ f (x) = 0. (77)

The relation between the parametersMnandM
′
n is:

M
′
n(a,ω) = H10nMn(a,ω), n= 5,6 , (78)

where

H10n =
−iakn

k2
n−a5ω2 , n= 5,6. (79)

The stress components for inviscid fluid can be written in the
form

σ∗ f
xx (x) =

6

∑
n=5

ℜMn(a,ω)exp(−knx), (80)

where,ℜ = λ f kn+iaH10n
µT

andσ∗ f
xx (x) = 0.

4 Special cases

1. As τθ ,τq(0 ≤ τθ < τq) represents the phase-lag of
temperature gradient and the phase-lag of heat flux respectively,
whentauθ = 0, equation (3) reduced to the equation of the LS
theory (the equations of the generalized thermoelasticitywith
one relaxation time).

2. Neglecting gravity field, we obtain transformed components
of displacement, stress forces and temperature distribution in a
non-Gravitational generalized thermoelastic medium.

3. Neglecting the micropolarity effect(i.e.kl ,αl ,βl ,γ1, j → 0),
we obtain the transformed components of the physical quantities
in fibre-reinforced thermoelastic solid medium.
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Fig. 2: Variation of some physical quantities with distance under
LS theory and DPL model wheng= 9.8m/sec2.

4. When, µl = µT , we obtain transformed components of
displacement, stress forces and temperature distributionin a
non-fibrereinforced generalized thermoelasticity with
micropolar effect .

5. In case ofµl = µT and neglecting the micropolarity effect
(i.e.kl ,αl ,βl ,γ1 → 0) we obtain the expressions for the
generalized thermoelastic solid.

5 Applications

The pressure punches across the surface of the semi-infinite
thermo-elastic and the non-viscous fluid half space are
time-dependent. In the physical problem, we should suppress
the positive exponential that are unbounded at infinity. The
constantsMn(n = 1,2,3,4,5,6) must be chosen such that the
boundary conditions at the surface of the solid-liquid interface
are:
1. The thermal boundary condition:

∂θ (x,y, t)
∂x

= 0, at x= 0 (81)

2. The magnitude of the tangential component of the stress at the
surface of the fibre- reinforced must be equal to the tangential
component of the stress for fluid:

σxy(x,y, t) = σ f
xy(x,y, t), at x= 0 (82)

3. The magnitude of the normal component of the stress vector
of the plate and the magnitude of the normal component of the

Fig. 3: The physical quantities with different values of
gravity(WOG and WG)with distance under DPL model.

Fig. 4: Some physical quantities with different values of Fibre-
einforced,micropolar and thermal parameters with distance y
under DPL model andg= 9.8m/sec2 .

c© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 2, 369-378 (2018) /www.naturalspublishing.com/Journals.asp 375

Fig. 5: Variation of some physical quantities with distance y with
different values of relaxation timeτθ andg= 9.8m/sec2.

Fig. 6: Variation of some physical quantities with distance y with
different values of relaxation timeτq andg= 9.8m/sec2.

stress vector for the fluid must be equal:

σxx(x,y, t) = σ f
xx(x,y, t)−P1, at x= 0 (83)

whereP1is the magnitude of the applied mechanical force.4. The
magnitude of the stress components of the plate and the liquid
must be equal.

σyy(x,y, t) = σ f
yy(x,y, t), at x= 0 (84)

Fig. 7: Variation of the temperature distribution T, displacement
distribution u , v and stress force distributionσxx in 3D with
distancex,y andg= 9.8m/sec2 under DPL theory .

Fig. 8: Variation of the tangential coupled stressmyz, stress force
distributionσxy,σyy and micro-rotationφ3 in3D with distancex,y
andg= 9.8m/sec2 under DPL theory.
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5. The vertical velocity component of the fibre-reinforced must
be equal to that of the liquid.

v̇(x,y, t) = v̇f (x,y, t), at x= 0. (85)

6. The magnitude of the tangential component of the couple
stress at the surface must vanish.

myz(x,y, t) = 0 atx= 0. (86)

Using the boundary conditions (82)-(87), we get:

4

∑
n=1

H2nknMn(a,ω) = 0, (87)

4

∑
n=1

H8nMn(a,ω) = 0, (88)

4

∑
n=1

H5nMn(a,ω)−
6

∑
n=5

ℜnMn(a,ω) =−P1, (89)

4

∑
n=1

H6nMn(a,ω)−
6

∑
n=5

ℜnMn(a,ω) = 0, (90)

4

∑
n=1

HlnMn(a,ω)−
6

∑
n=5

H10Mn(a,ω) = 0, (91)

4

∑
n=1

H4nMn(a,ω) = 0. (92)

Using the inverse matrix method we can solve the system of
algebraic equations (87)-(92) and get the values of the constants
Mn,n = 1,2,3,4,5,6. Hence, the expressions of displacements,
temperature distribution and the other physical quantities of the
plate at the interface of fibre reinforced micropolar
thermoelastic half space as well as the fluid half space quantities
under the influence of gravity field can be obtained.

6 Numerical results

To illustrate the analytical procedure of the problem and illustrate
the effect of gravity field on wave propagation at the interface
between fiber-reinforcement and Liquid, we shall introducesome
numerical example for which computational results are given[4].
(i) Fibre reinforced micropolar parameters

λ = 9.4x109N/m2,µT = 1.89x10N/m2,µL = 2.45x109N/m2,

α =−1.28x109N/m2,β = 0.32x109N/m2,ρ = 7800kg/m3,

kL = 1011N/m2,µ = 3.86x1011N/m2, j = 0.2x1011m2,

γl = 0.779x10−1N.

(ii) Thermal parameters for the medium:

T0 = 293K,CE = 383.1 j/kg,τθ = 0.02s,τq = 0.03s,

k = 1.7×102Nsec−1,ω = ω0+ iξ ,ω0 = 2,

ξ = 1,a= 1,αt = 7.4033×10−7k−1

(iii)Fluid parameters:Consider water (as Newtonian fluid):
The physical constants for water are:

λ f = 2.14×109N/m2,ρ f = 103kg/m3

All calculations are carried out at timet = 0.008 and mechanical
force pressure with magnitudeP1.0 . The numerical technique is
used to obtain the values of the real part of the thermal
temperatureT , the displacement componentsu and v , the
tangential coupled stressmyz , the micro-rotationφ3 , the
stressesσxx ,σyy and σxy distribution for the problem in
dimensionless forms:

6.1 Comparison between LS theory and DPL
model

The first group of figure (2): shows the predicted curves of the
two different theories of thermoelasticity wheng = 9.8m/sec2.
In this figure, the solid lines represent the solution in the LS
theory, and the dashed lines represent the solution derivedusing
the DPL model. The physical field quantities temperature,
displacement components, tangential coupled stress,
micro-rotation and stress components depend not only on space
x and timet but also on the thermal relaxation timeτθ andτq . It
is noticed when the relaxation time is included in the heat
equation the obtained results are different from those whenthe
relaxation time is not included (phase-lag of temperature
gradientτθ ). This clarifies the difference between
thermoelasticity theory with one relaxation time (LS) and DPL
model.

6.2 Influence of gravitational field:

For two thermal relaxation times (τθ andτq ) considering two
different gravity values g = 0.0(WOG-solid line) and
g = 9.8m/sec2 (WG- dashed line). The results in the second
group of figure (3) show the variations of some physical
variables with distance .It is found that the presence of gravity
has caused both decreasing and increasing effects on the
displacement and stress distributions. On the other hand,
temperature, tangential coupled stressmxy, and micro-rotation
distributions are significantly increased due gravity effect.

6.3 Effect of fibre reinforced micropolar
parameters and thermal parameters:

The third group in figure (4),represents the effects of fibre
reinforced micropolar and thermal parameters ,under DPL
model with the effect of gravitational field, has significanteffect
on all physical fields where the variations for some physical
fields are shown graphically taken into consideration the
following:
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(i) Fibre-Reinforced Micropolar Thermo elastic Solid (FRMTS)
by solid line.
(ii) Micropolar Thermoelastic Solid (MTS) by dashed-dashed
line
(iii) Fibre-Reinforced Thermoelastic Solid (FRTS) by
dashed-dot line
(iv) Thermoelastic Solid (TS) with dot-dot line.
From this group, we notice that, all field quantities increases as
distancex decreases. The field quantities in most cases increases
at the beginning and start to decrease and reach zero value at
infinity as the distancexincreases. These trends obey elastic and
thermoelastic properties of the solid under investigation. In
addition, all waves propagation lines begin to coincide when the
horizontal distancex is increased to reach the reference
temperature of the solid. These results are in complete
agreement. with the physical behavior of fibre materials as a
polycrystalline solid.

6.4 Effect of relaxation times parameters:

In this group, figures (5) and (6) shows the effect of relaxation
times on some physical quantities with the effect of gravitational
field. This parameters have a significant effect on all physical
fields.

6.5 Effect of all parameters in 3D-plots:

Figures(7,8),show the 3D distribution of the temperatureT ,
displacements(u,v),stressesσi j ,the tangential coupled stress and
the micro-rotation distributions with respect tox andy under the
influence of gravity with DPL model. Moreover the fiber
reinforced, micropolar and thermal parameters are found.We
notice that:

As variable varies from zero to infinity, all values increases
from their initial values and then decreases to have zero value at
infinity.
With any relatively small increase in y- direction all physical
field quantities decreases
The temperature, displacement, micro-rotation and shear stress
component start from zero and decrease with the smaller values
of x-axis and return to increase to tend zero as x tends to infinity.
The normal stress component having zero value at the
beginning, increases with the smaller values of x-axis then
decreases and increases periodically to have zero value as x
tends to infinity.
The elastic wave propagation between two interface in 3D
overlapping and damping when and increases to reach the
equilibrium state for the particles.

These figures are very important to study the dependence of
the physical fields on the vertical component of distance. The
surfaces obtained are highly depending on the vertical distance
from origin, most physical quantities are moving in wave
propagation.this phenomenon has more applications in modern
physical engineering as aeronautics, astronautics, nuclear
reactors and high-energy particle accelerators.

7 Perspective

The physical quantities, depend not only on spacex and timet
but also on the thermal relaxation timeτθ andτq. The thermal
relaxation times have significant effect on all field quantities.

1. The values of the field quantities decrease as the horizontal
distance increases, continuously and approach to zero at infinity.
So the anisotropy and micropolarity have significant effects on
all physical quantities of the problem, these results agreewith
the physical behavior of fibre materials as a polycrystalline solid.

2. The used method is applicable to a wide range of
thermodynamics and thermoelasticity problems.

3. The Gravity filed has significant effect on all physical
quantities of the problem as their amplitudes decrease with
gravity change.

4. The elastic waves between the two faces depend on the
nature of the applied force as well as the type of boundary
conditions.

5. The obtained results of this article are of great interest for
material science and designers of new materials researchers.
Moreover, the study of relaxation time and gravity phenomenon
are useful to improve the conditions of oil extractions and
drilling.
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