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Abstract: In this article, we study the general equations of the dhalsp-lag (DPL) model and Lord-Shulman(LS) theory with
one relaxation time considering the influence of micro-péilzer-reinforced on the totally reformed 2D-half-spaceéhwgravity. The
obtained non-dimensional coupled field equations for the BXe solved using the harmonic wave analysis technique,Alte exact
expressions for some physical fields and tangential cotpgessare obtained under the effect of mechanical forcegdlee interface
of the fluid half space and the fiber-reinforced micro-pol@rimoelastic half space. The effect of micro-polarity om displacement
component, force stress, temperature distribution angetatial couple stress, in presence and absence of theygfialit effect, has
been depicted graphically.

Keywords: couple stress, gravity, micro-polar thermoelasticitinfierced composites, micro rotation.

1 Introduction fibre-reinforced anisotropic elastic media. Many authors
have described the elastic moduli for fibre-reinforced

The dynamical interaction between thermal andmaterials 6.7.8,9,10 Furthermore, In case of studying
y the response of materials to external stimuli,the

mechanlcal waves In fchermo-elastlc T”ed'“m. has.manX"nicropolar elastic model gives more realistic results than
important applications in modern physical engineering a he purely elastic theory. More significant developments

aeronautics,  astronautics, nuclear reactors aN%nd studies of the general theory of linear micropolar
h|gh-e_nergy partlclg accelerators. AISO wave prOp?ga.t'pr]elasticity are achieved by Eringenl11213] and
in a reinforced media plays a very interesting role in civil Nowacki [14,15,16] As solids ' undergo

e?g'gezrt'ig% ar;gﬂgigggys;?d N,l?;ﬁg:’ﬂ?;;g;dygr% W\?;’f%acro-deformations and micro-rotations can completely
propag T . . : Ycharacterized by the displacement vector u(x, t) and the
Important to se|smqlog|sts. Such studies give researcherl%tation vector (x, t), in case of classical elasticity; the

the ability to qbtaln val'uable knowledge abput rocks motion is characterized by the displacement vector only.
structure, elastic properties and the required infornmatio owacki [17], Eringen [L3.14,15,16,17] Tauchert [L§]

to detect minerals and fluids inside the earth. The modeDnd Nowacki’ and Olszak’ [1§]dévéloped the micropolar

of introducing a continuous self-reinforcement at everytheory to include thermal effects (see al@f,p1,27))

point of an elastic solid was first given by Belfied et al. g, <o of its dependence on the classical Fourier's law,
[1]. Later, Verma and Ranz] applied this model to the the classical theory of elasticity fails to describe the

rotation of fibre reinforced circular cylindrical tube. behavior of materials with internal structure. Lord and
Also,Verma B] discussed the magneto elastic shearwave%hulman (LS) 23 generalized the thermoelasticity

in self-reinforced bodies. Singhd] studied the wave theory with one relaxation time parameter

propagation in fibre-reinforced anisotropic media and( : .
: . . . single-phase-lag model) by postulating a new law of heat
proved that this decoupling cannot be achieved Iif theconduction instead of the classical Fourier’s law.Green

displacement potential is introduced. Sengupta and Nat : .
[5] discussed the problem of the surface waves in@md Lindsay (GL) 24] generalized the theory of
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thermoelasticity involving two thermal relaxation times. The heat conduction equation is

Many authors used these theories in their research 9 92

[25-26]. Considering interactions between photons andk(1+ 19— )Tij = (—+Tq —2> PCe T+
electrons on the microscopic level as retarding sources, ot ot ot
Tzou [27,28] has developed a new model known as the 7] 0?

dual phase-lag model (DPL). The DPL model is more To Bij (EJFTQ ﬁ) tij 3)
convenient for studying and investigating the
micro-structural effect on heat transfer behavior when
macroscopic formulation is used. TzA&8[ supported the
physical meanings and applications of the DPL model by
considering experimental results. The modification of the
classical thermoelastic model proposed by Tz@9| [
depends on replacing Fourier law by approximate value L ! X
of the modified Fourier's law with two different times hg tf?t?rrem?;iz?gg:g%tlm% roc:‘ tggfasrgl?&'si;hﬁ]gegsg():/if?cf
(phase-lag of the heat flux and a phase-lag of temperaturg]eat at constant strain anfqpis the well known Krgneker
gradient ). Many authors3p,31,32] used the harmonic delta. 19,74(0 < To < Tq) are the phase-lag of
wave method with thermal relaxation times to study the emp.eraet}l’Jrg gradiegnt and. the phase-lgg of hgat flux
wave propagation between two interfaced thermoelastiéres ectively. wherrs — 0 . the governing equations are
medium. Abbas et al. 3B] applied the generalized P y. o= 9 9€q

thermoelasticity model proposed by dual phase lagreduced tothe LS theory.. .
(DPL), to study the thermoelastic interactions. in anlﬂ case of plane deformation, where displacement vector

infinite fiber-reinforced anisotropic medium with a ;Jhg ég’nvs’g,zuicg ;h?J;ilg:g?l);ig?lnb\éevﬁ%e_n ég’_o’ 93) .
circular hole. Hobiny and Abba84] used the eigenvalue q :
approach to analytically investigate the solution of a 0
fiber-reinforced anisotropic material under generalized o= AwUx+A2Vy — Pru(1+To=)(T —To),  (4)
magneto-thermoelastic theory. Studying the interactfon o

elastic waves with fluid loaded solids has been recognized 0

as a valuable means, since the reflected acoustic field Oy = A2V +Asath— Ba2(1+ To 5 )(T —To),  (5)
from a fluid solid interface has a wealth of information,
which reveals details of many characteristics of solids.
This kind of study is conducted for a wide variety of
solids extending from the simple isotropic semi-space to
the more complicated systems of multilayered anisotropiadxy = UL (Uy+V.x) — k@3, Oyx= Hi (Uy +V X) +-Kd3, Ozx= 07y =0.

where gijj are components of the stresg; are the
components of straimy and ut are the elastic constants,
a, B and(u_ — ut) are the reinforcement parameters, and
a = (a,ap,as) with a2+ a3 +a3 =1 . we choose the
fibre-directionaasa= (1,0,0) . TandT are the absolute
emperature and reference temperature respectikaty.

7]
Ozz=A12U X+ AVy — Ba3(1+ Tea)(T —To), (6)

media B5,36,37]. In this article we study the effect of (7
gravity field on a micropolar fibre-reinforced thermo- Where,

elastic medium subjected to mechanical force.Also use A1 =A+2(a+pr)+4(p — pr) +B

the harmonic wave analysis to obtain the physical A =A+a,Aoo=A+2ur

qguantities of the problem. Finally, introduce comparison Br1= (2A +3a +4u —2ur +B)ar+ (A +a)az ,

between the considered variables as calculated from the B
generalized thermoelasticity based on the influence of Boz = (22 +ajar+(A +2pr)a2

gravity,generalized Lord and Shulman (L-S)theory and andas , o are the linear thermal expansion coefficients.
the dual-phase-lag (DPL). Consider the Cartesian system of coordindtey, z) with origin

atz= 0. Let a normal force of magnitud@, acting along the
interface of fibre reinforced micropolar thermoelastic med
(medium 1) occupying the region € x < o and a non viscous
fluid (medium II) occupying the regionc < x < 0 as shown in
figure 1.

2 Formulation of the problem basic equations

The constitutive equations for a linear fibre-reinforced
elastic anisotropic medium with respect to the

; . . According to the generalized thermoelasticity , ignorin
reinforcement direction are: 9 9 y. g 9

gravity effect, the equations of motion are:

Oij = A &k Gj +2 kUt &) + a(8 am &m Oj + & & &k)+ o N
2(p — pir) (2 & &+ 2 B &) + B a am B & )~ p<ﬁ):0”vi7('71:17273)' ®
17} Also, the field equations of micropolar generalized theriastec
Bij (1+ 795)(1- —To)d;. @) medium are:
e ; ) 926,
The strains in terms of the displacemeuntsre: ]paTZl — (o B+ )i+
1
8;j :i(ui,j+uj,i). 2 yadi jj +Ka&ijr Ur j — 2K @i %)
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Fig. 1: Physical model and coordinate system.

my = a1 & + Yy, (10)
where k,a;,8 and y are the material constants, is

micro-inertia andmy is the couple stress tensor. A comma
followed by a suffix denotes material derivative and a
superposed dot denotes derivative with respect to time. The
equations of motion and stress components for an inviscid flu 9V

are:

2 f
Alup=p del (1)
f_yf f 5
Uij*)\ Ur,rap (12)

where,uif is the displacement vector componerﬁté, is the

bulk modulus ando® is fluid density,;\)—I = c% represents the
velocity of acoustic fluid wheres is the velocity of sound in
liquid.

From (4)-(7), we note that the third equation of motion in i)
identically satisfied and the first two equations with ratati
under the influence of gravitational field are:

9% A 02u+B d%v B d%u N ov
Plaz ) = Mige 29xdy | Lay? PO T
LS a\ aT
dy —Bu (1+ Gat) e (13)
0%v 0%v d%u d%v du
P (W) = P2y By TBIGe TPYG T
983 0\ oT
k-5 ~ P22 (1+ To 0t) ay (14)

whereBy =y ,Bo=a+A+p .
The field equations (9),(10) and (3) of micropolar geneealiz
thermoelastic medium become:

ov 0
WPoatk (G- 00) - ass=10% 8. as)
d¢3
mye =1 232, (16)

7] 9\ .
k <1+ rea> O°T = pCe (1+ rqaf) T+

<1+Tqat> (ﬁu + B2 ) 17)

In the following we introduce the non-dimensional variable
for convenience, where

! _ f_an Cny ¢ -2
X =cnNxy =cnyu =3, V= Byt =cnt,

"2 (T-To) / _
Ty =cnto.g = .6 = y{ip g = N,
[ nmj /o Gy
I'Th B 311PC1’0'I = Bupr’ (18)

/f 7
G ﬁll“T ’ ¢3 Bll¢3>

I,jfl,2,3.

Here,n = ch ,C2 = “% and? is the Laplace operator.
Therefore, the non-dimensional form of the governing eiquat
(15)-(17) becomes (drop the dashed for convenience):

<1+T %) %i+g% (19)
e Zj/\Z/ +ho ;);y +h Zi\Zl * haaig
B(14mog ) 5 -5 (20)
(1+T9£) (@—k@) = (£+qu—2) 0+
ot ox2 ~ 0y? at 92
<%+rqg—t22) (81% +£2%)7 1)
Posrar (G- 00) -mbe=anl R @2
mye—as 502, 23)
where
(ha1,hoa, hy by h) = —(AILAZ;?C?LBL ) B= gﬁ
£y = B To = PuP2lo . kPu
PCe(A +2u) PCe (A +2ur) yin?cs
a2:2y1r|;12c2’a = Jﬁ117a4 ylg (24)

Also, the dimensionless forms of equations (4)-(7) are:

d d
HT Oxx = A11Ux + A1oVy — Agp ( a6 dt) 0, (25)

— 17} 17}
Ut Oyy = AooVy + AroU x — BA2 ( T ) 6, (26)
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To obtain a non-zero solution of the system of equation (32)-

UT Oxy = HL(Uy+Vx) —Kd3,  Ozx= 0zy=0, (27) (35) the determinant
_ h;sD2—A;)  iah,D iah -QD
HT Oy = H(Uy + Vi) + ks, (28) (haaD” P2 N
iah,D hiD* — A —hD —ia
The dimensionless form of the equations of motion and stress A42D (hy iaAs 2 0 —(D? eQAg)
components of medium Il is: —iaay a,D (D% — Ag) 0

22t 9Af 2uf
o “axay B oz

(29) should vanish . Solving the system of equations (32)-(35) by
elimination we get the following system of ordinary diffatil
equations of the 8 order in the variable®* (x),u*(x) , v*(x)

ot ot o2t
= andg*(x):
o T axay S (30) ¢*(x)
where,ag = % (D8 —ED® + FD* — GD? + H{u" (x),v*(x), 8" (x), 3 (x)} = 0,
f (42)
where
3 Method of solution E_ ﬁ{_alhhlﬁhlhu(AﬁAﬁ) +Aghy +
To obtain the physical variablgs of thg considered problesn w h11A2+h1A4Q—a2h,2h;}, (43)
use the harmonic wave analysis techniques as follows: Let,
f 1 ’ " ’ - "
{label31[u,v, 6, qij,mj, ¢3,u V', a;ly.t) = F = m{azalh(hz +hy —hy) + Q(arh+ a2h,A4B + &2hyAs —
* k% * x ok f f f R
[ur,v, 87, 07j, i}, 43, U7V 0 | (explet +-iay). - (31) a’hyy — Ag — Aghy) — ash(As + h11As)hihi1AsAs +
Wherew is the complex time constarit= /—1 ; ais the wave (A3+Ag) (A2 +hy1+Aq + hy —a2hyhy) + A Ao, (44)

number in the y- direction and*,v*,6*, g, my;, ¢3,u*" v+

andcri’ff are the amplitudes of the field quantities. By the help of g — 1
equation (31) equations (19)-(23) becomes: hyhyy

2 - I " _ 2
hyiD? — AgJu* +iah,DV* +iahg5 = QDE*,  (32) Q@B (Ashy +Ashy) —ahuy +As +Asha) +
2 3 ! "
AAo(Ag +Ag) — athArAg + AgAs(Aghyy + Arhy +a®hohy) —

{a%ash((hy +hy — hp)Ag+Ag) —

[D? — AoV +iahyDu” —hDg; = iaBQO*,  (33) QBAAReA2 (45)
. 1 , _
A4DU* +iaAsv* = [D? — Az]6*, (34) H= W{.a%alh(AzAghz+.312A5QB) +
1h11
2
ayDV" —iaayu” + [D? - Ag]$” = 0, (35) Arhe(Aohs —a AQ) - (46)
Equation (43) can be written in the following form:
;= ia as¢3, (36)

e : (D? —k§)(D? — k3)(D? — k§) (D? — k) {u (x), V" (x), 6" (x), 95 (x)} = O,

* * * (47)
HT O = Ap1DU™ +iaA12v" — A22Q8", (87) where, k3(n = 1,2,3,4) are the roots of the characteristic

. _ equation
it Oyy = AgoDU” +iaA1v" — BA22QE", (38) K—EK+FKk GK+H=0 (48)

of the homogeneous equation (47). The bounded solutions of

HrOgy = p(iau”+Dv) —kd3,  0x=0;=0, (39)  gquation (48) can be written as:

N

HT o';x = i (iau” +Dv*) + k¢§7 Opx = O-Z*y =0. (40)

Where, U (x) = n:an(a’ w)expy—knx), (49)
Al:(’-’2'5‘|'113-27/°\2:(/‘)2-§-|’1228.27Q:1—5—(A)Tg7 4
Vk (X) = Mn(& w)exF(—an)v (50)
Q/:1+‘*’TWD:%7A3:&2+&>Q//Q7 njl
, / 0" (%) = 3 Mp(a w)exp—knx), (51)
A4 = wElQ /Q7A5 = (A)ng /Q7 n=1
’ 4
As = a’+ap +agw?, hy = hy + % h' =h;— % (41) $3(x) = Y My (8 w)exp—knx). (52)
n=1
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Where ,Mn, M;,, M, andMj, are specific functions depending
onaandw. Substituting from equations (51)-(53) into equations

(32)-(35), we get

MI/'](a> OJ) = HlnMn(37 w)> (53)
Mr,‘/l(a7 w) = H2n Mn(a> O)), (54)
M, (8, @) = HanMn(a, w), (55)
where
Ho — h11kg — a1k + aokn
in — ) 2 ; (56)
asky — aaks + a5
—Askn+iaAsHin
Hop = ——r— 210 57
2n k% — A3 B ( )
ai1knHin +iaA
Han = —— 1, (58)
ki —As
where

a1 = Athyg —iahy + AsQ, oz = (A1 —iahy)Ag +aRsBQ,

a3 = hy +iathy, ag = i (Ap + hiAg + AsBQ) + hpAs,
as = (a%AsBQ+ AxAg)
Thus, we have

V0= 3 HinMn(a w)ex—kn), (59)
n=1
4

0*(x) = '} HonMn(a, w)exp —knx), (60)
n=1
4

9300 = 3 HanMn(a, )exit—kn). (61)
n=1

Substitution of equations (49), (60) and (31) into equati(86)-
(41), we get the following relations

4

My(X) = Y HanMn(a w)expy—kaXx), (62)
n=1
4

Oxx(X) = % HsnMn(a, w)exp —knx), (63)
n=1

Oyy(X) = S HgnMn(a, w)expy—knx), (64)
n=1

O.;Z(X) = S HYnMn(a> O‘))exq_kﬂXL (65)
n=1
4

Tyy(X) = z HgnMn (a, w)exp(—knX), (66)
n=1

where (forn= 1,2, 3,4) we have:

Han = iaagHan, (67)

Hsp = (—Aq1kn +iaA12H1n — A22QHon) /T, (68)

Hen = (—Ag2kn +iaA12H1n — A22QHan) /i, (69)

Hn = (—Aq2kn + i2A12A Hin — A22QBHan) /i, (70)

Hgn = i (ia— knH1n) —kHan/pr, (71)
Hon = pt (ia— knHzn) 4+ kHan /it - (72)
Also, the variables of medium Il are expressed as:
. 6
09 = 5 Mn(a, @)exe—knd) (73)
n=
f &
V() = 3 My(a w)exp—knx), (74)
n=5

where, The parameteld,(n = 5,6) andM,(n = 5,6) depends
ona andw , andka(n = 5,6) are the roots of the characteristic
equation ofuf (x) :

(D* — AD? +B)u*f (x) = 0, (75)

where, A = 2a5w? — a2,
factorized as:

B = aZw®*. Equation (75) can be

(D?— k) (D? —K3)uf (x) = 0, (76)
Similarly, v*f (x) satisfies the equation:
(D*—AD? +B)V'f(x) = 0. (77)

The relation between the parametbfgandM,, is:

MI/’I(a7 w) = HlQ’an(a7 w)> n= 5>6 ) (78)
where iake
—ia
Hion = n=>5,6. 79
1= o a2 ) (79)

The stress components for inviscid fluid can be written in the
form

T (X) = iu Mn(a, w)exp —knx), (80)

where,0 =Af % andagy (x) = 0.

4 Special cases

1 As T19,7q(0 < 19 < Tgq) represents the phase-lag of
temperature gradient and the phase-lag of heat flux respbgti
whentaug = 0, equation (3) reduced to the equation of the LS
theory (the equations of the generalized thermoelastigiti
one relaxation time).

2. Neglecting gravity field, we obtain transformed components
of displacement, stress forces and temperature distoiburti a
non-Gravitational generalized thermoelastic medium.

3. Neglecting the micropolarity effedi.ek,a,B,y1,j — 0),
we obtain the transformed components of the physical qiesti
in fibre-reinforced thermoelastic solid medium.

(@© 2018 NSP
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Fig. 2: Variation of some physical quantities with distance under Fig. 3. The physical quantities with different values of
LS theory and DPL model whegi= 9.8m/sec. gravity(WOG and WG)with distance under DPL model.

4. When, iy = pt , we obtain transformed components of
displacement, stress forces and temperature distributioa
non-fibrereinforced  generalized  thermoelasticity — with
micropolar effect .

5. In case ofy = ur and neglecting the micropolarity effect
(i.,ek,a,B,1n — 0) we obtain the expressions for the
generalized thermoelastic solid.

5 Applications

The pressure punches across the surface of the semi-infinit
thermo-elastic and the non-viscous fluid half space are
time-dependent. In the physical problem, we should sugpres
the positive exponential that are unbounded at infinity. The
constantsMy(n = 1,2,3,4,5,6) must be chosen such that the ™=
boundary conditions at the surface of the solid-liquid rifatee
are:

1. The thermal boundary condition:

Fig. 4. Some physical quantities with different values of Fibre-
20(x,y,t) einforced,micropolar and thermal parameters with distanc
o O at x=0 (81)  under DPL model and = 9.8m/se¢ .

2. The magnitude of the tangential component of the stres®at th
surface of the fibre- reinforced must be equal to the tanglenti
component of the stress for fluid:

C"Xy(X7 yvt) = Uxfy(X: yt) at x= O (82)

3. The magnitude of the normal component of the stress vector
of the plate and the magnitude of the normal component of the

(@© 2018 NSP
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Fig. 5: Variation of some physical quantities with distance y with %
different values of relaxation timgy andg = 9.8m/se<,2.
Fig. 7: Variation of the temperature distribution T, displacement
distribution u , v and stress force distributi@any in 3D with
10 distancex,y andg = 9.8m/se@ under DPL theory .

tq:D,CH

Txx

Fig. 6: Variation of some physical quantities with distance y with
different values of relaxation time, andg = 9.8m/seé.

Fig. 8: Variation of the tangential coupled stresg, stress force
distributionoyy, oyy and micro-rotatiors in3D with distancex,y

stress vector for the fluid must be equal: andg = 9.8m/se¢ under DPL theory.

OulXYit) = Ox(x,Y,t) —P1, at x=0 (83)
wherePyis the magnitude of the applied mechanical forcelhe
magnitude of the stress components of the plate and thelliqui
must be equal.

Uyy(xs yt) = U);y(xs y7t)? at x=0 (84)
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5. The vertical velocity component of the fibre-reinforced inus
be equal to that of the liquid.

vy t) =vi(xyt), at x=0. (85)

6. The magnitude of the tangential component of the couple

stress at the surface must vanish.

my(x,y,t) =0 atx=0. (86)
Using the boundary conditions (82)-(87), we get:
4
3 HankaM(a, @) =0, (87)
n=1
4
HSnMn(a7 OJ) =0, (88)
n=1
4 6
HSnMn(a7 (/.)) - z DnMn(a7 (/.)) = _Pl7 (89)
n=1 n=5
4 6
z HGnMn(37 w) - ZSDI’]MFI(& w) = 07 (90)
n=1 n=
4 6
Z HInMn(3-7 (A)) - ZSHloMn(a7 (A)) = 07 (91)
n=1 n=
4
(92)

z H4n|\/|n(a.7 (I.)) = 0
n=1

Using the inverse matrix method we can solve the system o

algebraic equations (87)-(92) and get the values of thetantss

temperature distribution and the other physical quastibiethe
plate at the interface of fibre reinforced micropolar
thermoelastic half space as well as the fluid half space dgigsnt
under the influence of gravity field can be obtained.

6 Numerical results

To illustrate the analytical procedure of the problem ahdstrate
the effect of gravity field on wave propagation at the integfa
between fiber-reinforcement and Liquid, we shall introdsmee
numerical example for which computational results arerjiée
(i) Fibre reinforced micropolar parameters

A = 9.4x10°N/n?, it = 1.89AON /n?, . = 2.45x10°N /P,

a = —1.2810°N/n?, B = 0.3%10°N/n?, p = 780Ckg/m>,

k. = 10"IN/m?, u = 3.86x10M N/, j = 0.2x10Mn?,

¥ =0.77%10 IN.
(ii) Thermal parameters for the medium:

To = 293, Cg = 3831j/kg, Tg = 0.025, Tq = 0.03s,

k=17x10PNsect w=wp+i&,wp=2,

§=1la=10 =7.4033x 10 'k !

(iii)Fluid parameters:Consider water (as Newtonian fluid):
The physical constants for water are:

A =214x1°N/n? pf = 103kg/m®

All calculations are carried out at tirne- 0.008 and mechanical
force pressure with magnituBgy . The numerical technique is
used to obtain the values of the real part of the thermal
temperatureT , the displacement componeatand v , the
tangential coupled stresg, , the micro-rotatiops , the
stressegyx ,0yy and oyy distribution for the problem in
dimensionless forms:

6.1 Comparison between LS theory and DPL
model

The first group of figure (2): shows the predicted curves of the
two different theories of thermoelasticity when= 9.8m/sec.

In this figure, the solid lines represent the solution in tHi# L
theory, and the dashed lines represent the solution deuisied

the DPL model. The physical field quantities temperature,
displacement components, tangential coupled stress,
micro-rotation and stress components depend not only ccespa
x and timet but also on the thermal relaxation timg andry . It

'js noticed when the relaxation time is included in the heat
equation the obtained results are different from those when
relaxation time is not included (phase-lag of temperature
gradientg ). This clarifies the difference between
thermoelasticity theory with one relaxation time (LS) anBLD
model.

6.2 Influence of gravitational field:

For two thermal relaxation times1p andry ) considering two
different gravity values g = 0.0(WOG-solid line) and

g = 9.8m/seé (WG- dashed line). The results in the second
group of figure (3) show the variations of some physical
variables with distance .1t is found that the presence ofityra

has caused both decreasing and increasing effects on the
displacement and stress distributions. On the other hand,
temperature, tangential coupled stresg, and micro-rotation
distributions are significantly increased due gravity etffe

6.3 Effect of fibre reinforced micropolar
parameters and thermal parameters:

The third group in figure (4),represents the effects of fibre
reinforced micropolar and thermal parameters ,under DPL
model with the effect of gravitational field, has significaffect

on all physical fields where the variations for some physical
fields are shown graphically taken into consideration the
following:
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(i) Fibre-Reinforced Micropolar Thermo elastic Solid (FR®) 7 Perspective

by solid line.

(i) Micropolar Thermoelastic Solid (MTS) by dashed-daghe The physical quantities, depend not only on spaead timet

line but also on the thermal relaxation tinig and 1q. The thermal

(i) Fibre-Reinforced Thermoelastic Solid (FRTS) by relaxation times have significant effect on all field quaesit
dashed-dot line 1. The values of the field quantities decrease as the horizontal
(iv) Thermoelastic Solid (TS) with dot-dot line. distance increases, continuously and approach to zerirityin

From this group, we notice that, all field quantities incesaas  So the anisotropy and micropolarity have significant effemi
distance decreases. The field quantities in most cases increasesll physical quantities of the problem, these results agvite

at the beginning and start to decrease and reach zero value #e physical behavior of fibre materials as a polycrystalsnlid.
infinity as the distancgincreases. These trends obey elasticand 2. The used method is applicable to a wide range of
thermoelastic properties of the solid under investigatitm thermodynamics and thermoelasticity problems.

addition, all waves propagation lines begin to coincide mvtie 3. The Gravity filed has significant effect on all physical
horizontal distance is increased to reach the reference quantities of the problem as their amplitudes decrease with
temperature of the solid. These results are in completegravity change.

agreement. with the physical behavior of fibore materials as a 4. The elastic waves between the two faces depend on the

polycrystalline solid. nature of the applied force as well as the type of boundary
conditions.

5. The obtained results of this article are of great interest fo

6.4 Effect of relaxation times parameters: material science and designers of new materials researcher

Moreover, the study of relaxation time and gravity phenoomen

) ) ~are useful to improve the conditions of oil extractions and
In this group, figures (5) and (6) shows the effect of relti  qjjjing,

times on some physical quantities with the effect of graiateal
field. This parameters have a significant effect on all ptafsic

fields.
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