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Abstract: In a Segmentation-based approach, an image is segmented andits various regions are classified, unlike classifying the
individual pixels. This papers uses the ReNet architectureto extract the features of an object in an image. This ReNet architecture
replaces each convolutional layer(CNN) with four RNNs thatalso brings together lower-layer features from different directions. After
the extraction of feature the image is over segmented into superpixels first and then it is classified into individual superpixels. The
dependencies to the nearby superpixel labels shall be explored and exploited by Conditional Random Field statistical approach. Though
the time to segment and label the images is somewhat higher, the pixel accuracy is more when this technique is implementedin the two
datasets SIFT Flow and Stanford Background Dataset.
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1 Introduction

Scene labeling involves the scene understanding task
which assigns a label to each pixel. Full scene labeling
(FSL) or scene parsing is a process that involves labeling
of each pixel in a given scene with the category to which
the object belongs. The dependency of the pixel category
may include either relatively short-range information or
very long-range information or both.

Labeling demands contextual information because the
labels tend to be dependent across pixels. Further, every
image consists information that is required to label pixels
at several levels. Convolutional neural networks or
ConvNets are special kind of neural networks which
attempts to reduce the number of parameters required to
process large images by exploiting the locality of data in
images.

Convolutional Neural Networks (CNNs) are
implemented in various image recognition tasks including
image classification and object detection and have been
proved to be successful to a great extent. Classification
CNNs are smoothly transformed into Fully Convolutional
Networks (FCNs) by replacing fully-connected layers

with 1x1 Convolutional layers and this process involves
taking an image of arbitrary size of an object and
calculating a semantic label map.

Although FCNs have provided almost perfect results
in semantic segmentation, it also is subject to certain
limitations, especially in modeling the distant contextual
regions. But the crucial factor is that these distant
contextual regions play vital role in reasoning and
predicting contextual evidences in semantic
segmentation. Moreover, the receptive field of a neuron in
the Convolutional layer of FCNs generally corresponds to
a local area of an input image. For example, when the
middle area of an image is labeled, looking at the patterns
of the sea on top and a hill at the bottom of an image
leads to the exact prediction of the image of a ‘beach,’ but
the limited size of the local receptive fields hinders the
FCN in capturing such long-range dependence across
various local areas. Though the receptive field could be
adjusted to cover the whole image, the percentage of
success is only limited in the process of encoding
long-range context [1].

While ConvNet deals with only local information,
ReNet [2] spans across the whole image through
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negotiating with the lateral connections. These lateral
connections remove or resolve redundant features present
throughout the image and attempt to realize a more
compact feature representation of a given input image at
each and every layer. ReNet also allows small
displacement of features across multiple consecutive
patches. In order to improve the segmentation some
pre-processing methods are implemented. One of the
widely used method is superpixel to segment the image.

The superpixels [3] provide compact and perceptual
meaning to atomic regions of images. Each and every
pixel in a superpixel indicates the meaningful atomic
regions of the image of same object. While brought
together, these pixels form the original object and the
interaction between different objects, which is generally
hard, becomes easier with the help of Superpixel. For
Classifiers to get the accurate segmentation, Multiscale
Conditional Random Field is used. mCRF [4] framework
comprises three separate components, operating at three
different scales: a local classifier, regional features, and
global features.

In this context, three approaches are proposed in this
paper to produce the final labeling with improved
accuracy and better visual coherence: (i) maximizing the
overall likelihood that each segment will contain a single
object using the ReNet architecture, (ii) further
classification using superpixel assigning single class to
each of the superpixel, and (iii) applying multiscale
conditional random field over a set of superpixels for
accurate pixel classification through model joint
probabilities.

2 Related Work

An approach in Recurrent convolutional neural network
was proposed [5] that allows a large input context
whereas the capacity of the model is limited. This method
completely relies on recurrent architecture for
convolutional neural networks, in which a sequential
series of networks share the same set of parameters.
There are various advantages in this method including (i)
non-requirement of engineered features, as deep learning
architectures are used to train the discriminative filters
effectively in an end-to-end mode, (ii) the phase in which
prediction is done does not depend on label space
searching.

A related architecture [6] was introduced with eight
learned layers in which five convolutional and three
fully-connected layers of the object are found. For faster
training, non-saturating neurons and an effective GPU
implementation are used in this method. In this method
only supervised pre-training is done to obtain required
computational power to increase the size of the network.

Combining local classifiers with probabilistic models
of label relationships was presented in problem of object
detection [4], which is a more general task of image
labeling. A basic difference between these existing earlier

models and this proposed model is the form of the
representation over labels. Capturing of label
relationships through a more conceptual graphical method
is one such model, which includes abstraction hierarchy
that consists scenes, objects, and features. The
distribution over labels shall be obtained based on
pairwise relationships between labels at different sites.

A new method for Full Scene Labeling or Scene
Parsing [7] was used in a Multiscale Convolutional
Network to extract dense feature vectors and a tree of
segments is computed from a graph of pixel
dissimilarities. In this method each node is encoded by a
spatial grid and a classifier is applied to produce a
histogram that measures the impurity of the segment. The
pixels are then individually labeled by a
minimally-impure node over it, a segment that best
explains the pixel’s class.

In a hierarchical segmentation tree, a technique [8]
was implemented to represent the image so that the
resulting energy combining unary and boundary terms
can still be optimized using graph cut (with all the
corresponding benefits of global optimality and
efficiency).

Another approach [3] was considered to detect the
object as a multi-label superpixel method for labeling
problem by minimizing an energy function. The data cost
term is used to capture appearance, smooth cost term for
encoding the spatial context and label cost term to favor
compact detection. The data cost is thus learned through a
convolutional neural network and the related parameters
in the labeling model are learned through a structural
SVM.

The use of deep learning techniques [9] was identified
to deal with scene labeling, where off-the-shelf features
of segments are recursively merged to assign a semantic
category label. In contrast, this technique uses the ReNet
architecture to parse the scene with a smoother class
annotation.

A deep learning strategy [10] was used for scene
parsing, i.e. to assign a class label to each pixel of an
image. This approach uses the deep convolutional
network for modeling the complex scene label structures,
relying on a supervised greedy learning strategy. This
strategy does not need hand crafted features. This is the
advantage over CRF method. Another two advantages are
(i) its inference does not involve searching the label space
but simply requires the forward evaluation of a function,
and (ii) discriminative training is performed efficiently
through Stochastic Gradient Descent (SGD), without the
need for estimating any normalization factor.

A hierarchical random field model [11] was
introduced, which allows integration of features
computed at different levels of the quantisation hierarchy.
MAP inference in this model can be performed efficiently
using powerful graph cut based move making algorithms.
This approach proposed a novel hierarchical CRF
formulation of object class segmentation that allows the
quantisations of image space by unifying multiple
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Fig. 1: System Architecture.

disparate, thus avoiding the necessity to make an
appropriate decision.

A hierarchical approach [12] was proposed for
labeling semantic objects and regions in scenes. This
approach used a decomposition of the image in order to
encode relational and spatial information. It bypassed a
global probabilistic model and instead directly trained a
hierarchical inference procedure inspired by the message
passing mechanics of some approximate inference
procedures in graphical models.

3 System Description

Scene Labeling system extracts relevant contextual
information from raw pixels by combining the following
preprocessing approaches:?? ReNet Architecture so as to
capture the global contexts as well as exhibiting its
property of efficient parallelization,?? Superpixel
Segmentation,?? Multiscale Conditional Random Field
is defined with reference to a set of superpixels. Here
using the ReNet architecture, features are extracted and
simultaneously superpixels are segmented and
consequently applying the Conditional Random Field the
pixels are classified accurately and later labeled. The
Architecture diagram of the proposed system is given in
Fig. 1.

3.1 ReNET Architecture

The Network architectures have various properties which
make them an optimal choice for sequence labeling: their
flexibility in their use of context information such as they
decided what to store and what not to store; their
flexibility in accepting various types of data and their
representations; and their flexibility in recognizing
sequential patterns in the presence of sequential
distortions.

The significant parameters those define the
architecture of the ReNet include, the number of ReNet
layers (NRE), their corresponding receptive field sizes
(wp× hp) and feature dimensionality(dRE), the number
of fully-connected layers(NFC) and their corresponding
numbers(dFC) and types( fFC) of hidden units [2].

When the CNN proves to be successful, especially, in
computer vision, Recurrent Neural Networks (RNN) have

been chosen by many in order to model sequential data,
such as text and sound. The recurrent layers relatively
consider the totality of the image while extracting the
features of the specific location within the whole image.
Whereas the CNN considers only the local context
window in the process of extracting the feature of the
image [2].

In the process of RNN, the lowest layer of the model
moves over the input image, and in the same manner the
subsequent layers operate on extracted representations
from the layer below to form a hierarchical representation
of the input.

3.1.1 Comparison of Renet and Convolutional Neural
Networks

At each and every layer, both the ReNet and CNN apply
the same set of filters to all patches of the input image or
of the features those map with lower layer [2]. ReNet
retrieves the information through lateral connections that
cover the entire image, whereas the CNN uses only local
information from the image. The lateral connections must
help in extracting a more compact feature representation
of the input image in each and every layer, which shall be
achieved by the lateral connections either by removing or
resolving repeated features at various locations of the
whole image. This allows ReNet to resolve small
displacements of features through multiple consecutive
patches.

Max-pooling, which is used in CNN, proves to be
problematic when building a convolutional auto encoder
whose decoder is an inverse of CNN, because the max
operator in CNN is not invertible. The ReNet is an
end-to-end network with smooth and differentiable
features, thus making it suitable for using it as a decoder
in the auto encoder or in any of its probabilistic
variants [7].

Notwithstanding the above, each layer of the ReNet is
considered as an alternative of convolution + pooling
layer, in which the pooling layer is replaced by the lateral
connections, and as a result the convolution is done
without any overlapping. Similarly, another variant of the
usual CNN without any pooling also exist in an approach
which uses convolution with a larger step to compensate
the lack of reduction of dimension by pooling at each
layer. However, this approach is different from the ReNet
as each feature activation at a layer is done with reference
to a subset of the input image but not with the whole input
image.

3.1.2 Disadvantage of ReNET

The main disadvantage of ReNet is that it does not easily
parallelize, because of the sequential nature of the
recurrent neural network (RNN). On the other hand, CNN
is highly parallelizable because its computing activation
at each layer is highly independent [2].
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Fig. 2: A One Layer RENET.

3.1.3 Architecture of ReNet

In the ReNet architecture as shown in Fig.1, X = {xi, j}
denotes the input image or the feature map from the lower
layer, whereX ∈ Rw × h× c with w indicates width,h
indicates height, andc indicates the number of channels
or the feature dimensionality, respectively [2].
Considering the receptive field (or patch) size ofwp× hp,
the input imageX is split into a set ofI × J, which is
non-overlapping, patchesP = {pi, j}, where I = w/wp,
J = h/hp and pi, j ∈ Rwp×hp×c are the(i, j)th patch of the
input image. The horizontal index isi and j is the vertical
index.

First, the image is vertically swept with the two RNNs,
where one RNN is working in a bottom-up approach and
the other is working in a top-down apporach. Each RNN
is taken as an input one patch at a time which is flattened
and updates its hidden state, working along each columnj
of the split input imageX [2].

V F
i, j = fV FW D(Z

F
i, j−1, pi, j), for j = 1, . . . ,J (1)

V R
i, j = fV REV (Z

R
i, j+1, pi, j), for j = J, . . . ,1. (2)

After this vertical, bidirectional sweep, combining of
the intermediate hidden statesvF

i, j andvR
i, j at each location

(i, j) is done to get a composite feature mapV = {vi, j}, j =
1, . . . ,J, i= 1, . . . , i, wherevi, j ∈R2d andd are the numbers
of recurrent units. Eachvi, j now indicates the activation of
a feature detector at the location(i, j) with regard to all the
patches in thejth column of the original input (pi, j for all
i) [2].

Thus obtained feature mapV is swept over
horizontally with two RNNs( fHFW D and fHREV ). In a
similar way as it was done with the vertical sweep, these

RNNs work along each row ofV producing the output
feature mapH = {hi, j}, where hi, j ∈ R2d. Now, each
vectorhi, j symbolizes and represents the features of the
original image patchpi, j in the context of the whole
image.

In Fig. 2 the blue and green dots on the input
image/feature map represent the steps off ↓ and f ↑

respectively. By concatenating the resulting feature maps,
the f→ (yellow dots) andf← (red dots) are subsequently
swept. Finally the resulting feature maps are concatenated
in order to produce the output of ReNet layer which is
depicted as a blue heatmap in the Fig.2.

Hereϕ denotes the image map function of the input
imageX to the output feature mapH as stated in Fig.2.
Clearly, the multipleϕ ’s are stacked to make the ReNet
deeper in order to capture increasingly complex features
of the input image. After applying a number of recurrent
layers to an input image, the activation at the last
recurrent layer may be flattened and fed into a
differentiable classifier.

3.2 Superpixel Segmentation

The ideal superpixel partition for detection depends on
the minimum number of superpixels so as to increase the
efficiency in inference so that each superpixel does not
span in multiple objects [3]. Pre-segmentation using
superpixels extracts features and categories from each and
every segment and also from other combinations of
neighboring segments [7]. Predicting the features and
categories of each pixel independently from the
neighboring segments leads to noisy predictions [7].
Hence a simple cleaning up is required by exploiting local
regions of same color intensities that are assigned a single
label. Then classifying each image by location,
aggregating these predictions in each superpixel, and
computing the average class distribution within the
superpixel are done.

Computation of superpixels is proposed by the
following method [3], in order to produce an over
segmentation of the image. In this method, the pixelwise
distributionsdk at superpixelk are predicted from the
feature vectors Fusing a two-layer neural network [3]:

yi = w2 tanh(w1Fi + b1), (3)

di,a =
eyi,a

∑b∈classese
yi,b

(4)

Lcat= ∑
i∈pixels

∑
a∈classes

di,a ln(di,a), (5)

di,a = 1/s(k)∑di,a (6)

wheredi is the ground truth distribution at locationi, and
s(k) serves as the surface of the componentk. Matrices W1
and W2 are trainable parameters of the classifier. Using of
a two layer neural network allows the system to capture
non-linear relationships between the features at different
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Fig. 3: Superpixel Segmentation.

Fig. 4: Before and After Superpixel Segmentation.

scales. In this case, the final labeling for each component
k is given by [3]

lk = arg max
a∈classes

dk,a (7)

Fig. 3 represents Eq. (7) for Superpixel Segmentation.
Fig. 4 explains the process of segmentation before and

after applying Superpixel Segmentaion.

3.3 Multiscale Conditional Random Field
(mCRF)

Standard CRFs employ two forms of feature
functions [4], which are defined in a 2D image as follows:
(i) state feature functions,f (li,X , i), of the label at a sitei
and the observed image; and (ii) transition feature
functionsf (li, l j ,X , i), of the image and labels at sitei and
a neighboring sitej in the image. Label features usually
encode specific patterns within the subset of label
variables. The label feature is a form of potential function
that encodes the specific constraints between the labels
and image within the same region.

Figs.5 and 6, describe the regional label feature with
a pattern of water pixels, whereas the global label feature
describes sky pixels at the top, the man pixels in the
middle, and water pixels at the bottom of the image. The
global features, thus can operate at a coarser resolution,
specifying common value for a patch of sites in the given
label field.

Along with each label feature a binary hidden variable
acts as a switch for that feature. For the purpose of
identifying the pattern of labels a parametrized
Conditional Probability Table (CPT) is used to encode the
features within the region. This CPT provides a
multinomial probability distribution over the values of the

Fig. 5: Before mCRF.

Fig. 6: Description of Region label feature.

labels in each and every site. The label variables are
conditionally independent to the corresponding hidden
variable and vice versa.

According to the CRF, the predictions of the features
are to be combined multiplicatively. Firstly, it is not
required to specify the label of every site within the same
region. The combination of uniform values within the
same region does not yield any significant results. Hence
it is called ‘don’t care’ prediction and it is used to predict
features of particular site in the region. Secondly, the
label of any site may be sharper than any of the
component distributions. In this case, if two multinomial
share a particular value, then that product will be
significantly hiked based on the value. As a result, the
unconfident predictions accomplish confident labeling.

Here mCRF [4] framework comprises three separate
components, operating at three different scales: a local
classifier, regional features, and global features.

3.3.1 Local Classifier

Local Classifier is used to classify the information at only
the local level. The local classifier [4] produces a
distribution over label variableli independently at each
site i, provided the filter outputsxi are within an image
patch centered on pixeli [4]:

Pc(L | X ,λ ) = πc(li | xiλ ) (8)

whereλ denotes the classifier parameter.
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3.3.2 Regional Label Features

The Regional Label Features [13] denote the local
geometric relationship between objects, including edges,
corners or T-junctions. They specify the actual objects
those are involved and avoid certain impossible
combinations including a ground-above-sky border.

Let r index the regions,a index the different regional
features within each region, andj = {1, . . . , j} index the
label nodes (i.e. sites) within regionr. The parameterwa, j
connecting hidden regional variablefr,a and label nodelr, j
specifies the preferences for the possible label value oflr, j.
Hencewa, j is indicated as a vector with|L| elements. The
label variablelr, j is also represented as a vector with|L|
elements, in which thevth element is 1, and the other is
0 whenlr, j = v. As a result, the probabilistic model that
describes regional label features comprises the following
joint distribution [4]:

PR(L, f ) ∝ exp
{

∑
r,a

fr,aW T
a ir

}

(9)

where f = { fr,a} represents the binary hidden regional
variables, wa = [wa,1, . . . ,wa,J,αa],
Ir = [lr,1, . . . , lr,J,1], andαa represents a bias term. Here
the sitesI are indexed by(r; j), as the sitei corresponds
to the nodej in region r which is based on the relative
position of that region in the image.

3.3.3 Global Label Features

The domain of a Coarse-resolution global feature is the
label field of the whole image. These global features [8]
configure the undirected links between the label variables
and the hidden global variables. Letb index the global
label patterns encoded in the parameters{ub} and
g = {gb} be the binary hidden global variables. The label
field is divided into different patches in order to make
these variables represent coarse aspects of the label field.
These patches are non-overlapping patches
pmm ∈ {1, . . . ,M}, and for each hidden global variable
gb, its connections with the label nodes within patchpm
are assigned a single parameter vectorub pm. These tied
parameters successfully specify the similar distribution
for each label node within the patch and it also reduces
the number of free parameters. Similar to the regional
component, the global label feature model also has a joint
distribution [8] and the Fig. 7 represents the model
architecture of mCRF.

Pg(L,g) ∝ exp
{

∑
b

gbuT
b L

}

. (10)

3.3.4 Combining the Components

This approach presents a model that consists of regional
and global features. The present structure of this model

Fig. 7: Architecture of Multiscale Conditional Random
Field.

permits efficient training and inference. Apart from that,
these label features form a redundant requirements of label
predictions that can be combined multiplicatively. Based
on these reasons, the features encode simple, geometric
relationships that exist between specific label classes. The
multiplicatively combined probability distribution overthe
label field has a simple closed form [4]

P(L | x;θ ) = 1/zπcpγ
c(li | xi,λ )x (11)

Xπr,a[1+exp(wT
a lr)]Xπb[1+exp(uT

b L)] (12)

whereθ = {λ ,{wa},{ub},γ} is the set of parameters in
the model.

3.3.5 Features of MCRF

The regional and global label features used by the local
classifier do not have any access to image statistics. This
results in the assumption that in this model the context is
independent of any local evidence. It will be interesting to
train features that have access to local image statistics.
The label features, in this model, are defined at two
different scales. There is a continuity from local to global
context in mCRF in reality. One solution is to spread out
features over different scales and this may be doubtful to
be the optimal solution. If label features are automatically
learnt over the optimal scales from the labeled data, this
may yield a better representation of context in the given
image. If two different scales are fixed it might enhance
the model’s ability to classify objects which occurs
consistently in a small scale, for example, a mouse or a
keyboard. Through this approach the relationship between
the object class and the features is revealed. With the
increase of the object classes the process of capturing the
feature also increase proportionately. Hence the features
presents the geometric relationship among the object
classes.

3.4 Experimental Result

The proposed method is tested on two different fully
labeled datasets: the Stanford Background and the SIFT
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Fig. 8: Experimental output of the proposed approach.

Flow Dataset [13]. The Stanford dataset has 715 images
from rural and urban scenes comprising 8 classes. The
scenes have approximately 320× 240 pixels. The SIFT
Flow is a larger dataset which consists of 2688 images
with 256×256 pixels and 33 semantic labels.

All these networks were trained by sampling patches
which are surrounded by a pixel which is chosen
randomly from a randomly chosen image from the
training image set. There are two different approaches
followed to find out the accuracy of the image. They are
(i) Pixel-wise accuracy (ii) Class-wise accuracy.
Pixel-wise accuracy indicates the ratio of pixels which are
correctly predicted, while class-wise IoU indicates the

Intersection of Union of pixels averaged over all the 150
semantic categories. However, in scene labeling
(especially in datasets with large number of classes),
classes which are much more frequent than others (e.g.
the class ‘sky’ is much more frequent than ‘moon’) have
more impact on this measure.

Some random images from Stanford and Sift Flow
dataset are tested with this approach as in Fig.8. First, the
feature of the whole image is extracted exploiting the
ReNet, which in turn, is pre-segmented using Superpixels
and multiscale Conditional Random Field. The purpose of
pre-segmentation is to identify and explore whether some
pixels belong to one group or not. In the pre-segmentation
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Table 1: Accuracy Comparison.

Methods Explanation Pixel Accuracy (%) Comp Time (S)

Region based Model 17-Dimensional Color and Texture Features, 9 Grid locations
around thePixel and the image row,Region Segmentation [14]

76.4 10–600

SuperParsing Global, Shape, Location, Texture/Sift, Color, Appearance,
MRF [15]

77.5 10–300

Stacked Hierarchical
Labeling

Gist, Pyramid Histogram of Oriented Gradients, Color
Histogram Cielab, Relative relocation, Hierarchical region
representation.

76.9 12

Relationship
Prediction Model

Color, Texture, Shape, Percentage pixels above horizontal,
Region-based Segmentation [16]

79.4 < 600

Learning Hierarchical
Features

Laplacian Pyramid, Superpixels/CRF/ Tree Segmentation,
Data augmentation

78.8 0.6

Our Approach ReNet Architecture + Superpixels + MultiscaleCRF 80.2 11

layer, the average score of a pixel is computed, which in
turn is assigned to each and every pixel belonging to the
same group. In Fig.8, the experimental output of the
proposed approach for the random images for both data
set are given.

Table1 explicate the results based on the comparison
between the proposed and other existing approaches with
reference to pixel accuracy and computation time. When
comparing all the methods with our approach the pixel
accuracy is high but the computation time is little bit
higher. It is because of the preprocessing methods which
is applied before labeling.

4 Conclusion

This paper uses the ReNet architecture and
pre-segmentation methods which include Superpixels and
Multiscale Conditional Random Field to improve the
Scene labeling strategy. The results of the experiment
prove that the proposed method provides higher
pixel-accuracy when compared with other methods.
Using the simpler architecture without any
pre-segmentation techniques leads to lesser computing
time per image. This proposed approach uses
pre-segmentaion methods, which in turn increases the
computing time per image, but at the same time, it
improves the accuracy when compared to other existing
methods. This framework has proved to be a successful
method to detect the objects in natural scenes, more
effectively in analyzing the images and comparing their
presence. As a future scope, the method can be modified
without using these additional steps at the same time
reducing the running time. Moreover this paper deals with
some of the random images of the Sift Flow and Stanford
dataset only. In future it can be extended to full dataset
and for the datasets which contain more images like
Barcelona Dataset.
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