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Abstract: In this paper, we developed a model of a retrial inventory system in which there exists two-stage service. The demanded
item is delivered to the customer after a random time of service. The interarrival times of customers, lead times, the retrial times and
service times are assumed to have independent exponential distribution. The joint probability distribution of the number of customers in
the system and the inventory level is obtained in the steady state case. Some important system performance measures and the long run
total expected cost rate are calculated. We numerically demonstrate the model and investigate the impact of different model-parameters
on the optimal decisions.
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1 Introduction

Several researchers have been studied inventory system
with retrial demands/retrial customers in recent years.
The researchers/practitioners have recognized the fact
that, the stock level is non-empty the demanded item is
directly delivered. But in the case of inventories
maintained with service facilities, the demanded item is
delivered to the customers only after some service time.
This forces the formation of queues in these models. This
necessitates the study of both inventory level and queue
length joint distributions. Study of such models is
beneficial to organizations who

i.provide service to customers by using items from a
stock.

ii.maintain stock of items each of which needs service
such as assembly or initialization or installation etc.,
before it is delivered to the customers.

Examples for the first type include firms engaged in
servicing consumer products such as cars, Computers and
Television etc., and for the second type include firms that
supply bikes which need assembly of its parts and that
computers which need installation of basic services.
Berman et al. [2] have considered an inventory

management system at a service facility which uses one
item of inventory for each service provided. They
assumed that both demand and service times are
deterministic and constant, as such queues can form only
during stock out periods. They determined optimal order
quantity that minimizes the total cost rate.
Berman and Kim [3] analyzed a queueing - inventory
system with Poisson arrivals, exponential service times
and zero lead times. The authors proved that the optimal
policy is never to order when the system is empty.
Berman and Sapna [4,5] studied various concept of
queueing - inventory system with service facility. Elango
[15] considered a Markovian inventory system with
instantaneous supply of orders at a service facility. The
service time is assumed to have exponential distribution
with parameter depending on the number of waiting
customers. Krishnamoorthy, A. et al [12] investigated a
survey on inventory models with positive service time.
The concept of inventory system with retrial demands
was introduced by Artalejo et al. [1]. The authours
analyzed inventory policies with positive lead-time and
retrial of customers who could not get service during their
earlier attempts to access the service station. Ushakumari
[16] considered a retrial inventory system with classical
retrial policy. Jeganathan et al. [6] studied a retrial
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inventory system with non-preemptive priority service.
Manuel, P. et al [7] studied a perishable inventory system
with service facilities and retrial customers.

The author Cohen, J.W. [13,14] consider a queueing
system with a two-stage service rule: The server served at
a normal service speed when the workload is less,
whereas the service speed increases when the workload is
high. Bekker and Boxma [9,10] developed in Queues
with adaptable service speed and also they have studied
an M/G/1 Queue with Adaptable Service Speed and
some special cases.

In the present paper, we consider the continuous
review retrial inventory system with single server served
at a two-stage service. If the inventory level is positive
and no customer in the system, any arriving primary
customer served immediately. When the server is busy or
the inventory level is zero and the waiting hall (finite size)
is not full, any arriving primary customer waits in the
waiting hall. Any arriving primary customer who finds
the waiting hall is full, enters into the orbit of finite size.
Exponentially distributed two-stage service by the single
server. The joint probability distribution of the inventory
level, the number of customers in the waiting hall and the
number of customers in the orbit is obtained in the steady
state case. Various system performance measures in the
steady state are derived and the long-run total expected
cost rate is calculated.

The rest of this paper is organized as follows. In
section 2, we describe the mathematical model and the
notations used in this paper are defined. Analysis of the
model and the steady state solution of the model are
proposed in section 3. Some key system performance
measures are derived in section 4. In section 5, the total
expected cost rate is calculated and we present some
numerical examples.

2 Model formulation

In this paper we consider a continuous review
inventory system with(s,Q) ordering policy. Under(s,Q)
the inventory is refilled to levelS whenever its content
reachess, an order forQ(= S− s) units is placed. Primary
customers arrive according to a Poisson phenomenon
λ (> 0). If no customers in the waiting hall and the
inventory level is positive then the arriving primary
customer is immediately taken for service by the server
and leaves the system after service of random duration. If
the server is busy or inventory level is zero, arriving
primary customer joins the waiting hall of finite sizeM.
The single server provided two-stage service based on a
waiting hall customer: The service ratesµ andµs(> µ),
when the waiting hall customer level isN or below and
the customer level exceedsN, respectively, which are
exponentially distributed. When the waiting hall is full,
any arriving primary customer enters into orbit of finite
size H and makes successive repeated attempts until he
finds the waiting hall is empty. The inter-retrial times

follow an exponential distribution with constant rateα.
An arriving primary customer who finds the waiting hall
and orbit are full is considered to be lost. The lead time is
exponentially distributed with parameterβ . We assume
that the inter-demand times between primary customer
demands, the lead times, retrial customer demand times
and service times are mutually independent random
variables.
Notations

[A]i j : The element/submatrix at(i, j)th position ofA.
0 : Zero matrix.
I : Identity matrix.
e : A column vector of 1′s of appropriate dimension.

δi j :

{

1, if i = j,
0, otherwise.

δ̄i j : 1− δi j

E1 : {0,1,2, . . . ,S}
E2 : {0,1,2, . . . ,N,N +1, . . . ,M}
E3 : {0,1,2, . . . ,H}
E : E1×E2×E3

3 Analysis

Let L(t), X(t) andY (t), respectively, denote the on hand
inventory level, the number of demands in the waiting
hall and the number of demands in the orbit at timet.
From the assumptions made on the input and output
processes, it can be shown that the triplet
{(L(t),X(t),Y (t)), t ≥ 0} is a continuous time Markov
chain with the state space given byE.

To determine the infinitesimal generator

A = (a((i,k,m)),(( j, l,n))), (i,k,m),( j, l,n) ∈ E

of this process we use the following arguments :

∗ Transitions due to primary arrival of customers :

–(i,k,m) → (i,k + 1,m) : the rate isλ , for 0 ≤ i ≤ S,
0≤ k ≤ M−1, 0≤ m ≤ H.

–(i,M,m) → (i,M,m+1) : the rate isλ , for 0≤ i ≤ S,
0≤ m ≤ H −1.

∗ Transitions due to retrial request of customers :

–(i,k,m)→ (i,k+1,m−1) : the rate isα, for 1≤ i ≤ S,
k = 0, 1≤ m ≤ H.

∗ Transitions due to first stage service completion in the
system:

–(i,k,m)→ (i−1,k−1,m) : the rate isµ , for 1≤ i ≤ S,
1≤ k ≤ N, 0≤ m ≤ H.

∗ Transitions due to second stage service completion in
the system:
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–(i,k,m)→ (i−1,k−1,m) : the rate isµs, for 1≤ i ≤ S,
N +1≤ k ≤ M, 0≤ m ≤ H.

∗ Transitions due to replenishments:

–(i,k,m) → (i+Q,k,m) : the rate isβ , for 0 ≤ i ≤ s,
0≤ k ≤ M, 0≤ m ≤ H.

∗ We observe that no transition other than the above is
possible.

Denoting
q=((q,0,0),(q,0,1),. . . ,(q,0,H),(q,1,0),(q,1,1),. . . ,(q,M,0),
(q,M,1),. . . ,(q,M,H)) for q = 0,1, . . . ,S. By ordering
states lexicographically, the infinitesimal generatorA can
be conveniently expressed in a block partitioned matrix
with entries

[A]i j =































































A2, j = i, i = s+1,s+2, . . . ,S

A1, j = i, i = 1,2, . . . ,s

A0, j = i, i = 0

B, j = i−1, i = 1,2, . . . ,S

C, j = i+Q, i = 0,1, . . . ,s

0, otherwise

where

[A2]i j =



















































































P1, j = i+1, i = 0

P2, j = i+1, i = 1,2, . . . ,M−1

P3, j = i, i = M

P4, j = i, i = 0

P5, j = i, i = 1,2, . . . ,N

P6, j = i, i = N +1,N +2, . . . ,M−1

0, otherwise

with

[P1]kl =



















λ , l = k, k = 0,1, . . . ,H

α, l = k−1, k = 1,2, . . . ,H

0, otherwise

[P2]kl =







λ , l = k, k = 0,1, . . . ,H

0, otherwise

[P3]kl =



































λ , l = k+1, k = 0,1, . . . ,H −1

−(λ +µs), l = k, k = 0,1, . . . ,H −1

−µs, l = k, k = H

0, otherwise

[P4]kl =



















−λ , l = k, k = 0

−(λ +α), l = k, k = 1,2, . . . ,H

0, otherwise

[P5]kl =







−(λ +µ), l = k, k = 0,1,2, . . . ,H

0, otherwise

[P6]kl =







−(λ +µs), l = k, k = 0,1,2, . . . ,H

0, otherwise

[A1]i j =



















































































P1, j = i+1, i = 0

P2, j = i+1, i = 1,2, . . . ,M−1

D3, j = i, i = M

D4, j = i, i = 0

D5, j = i, i = 1,2, . . . ,N

D6, j = i, i = N +1,N +2, . . . ,M−1

0, otherwise

with

[D3]kl =



































λ , l = k+1, k = 0,1, . . . ,H −1

−(λ +µs +β ), l = k, k = 0,1, . . . ,H −1

−(µs +β ), l = k, k = H

0, otherwise

[D4]kl =



















−(λ +β ), l = k, k = 0

−(λ +α +β ), l = k, k = 1,2, . . . ,H

0, otherwise

[D5]kl =







−(λ +µ +β ), l = k, k = 0,1,2, . . . ,H

0, otherwise

[D6]kl =







−(λ +µs +β ), l = k, k = 0,1,2, . . . ,H

0, otherwise
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[A0]i j =



















































P2, j = i+1, i = 0,1,2, . . . ,M−1

D4, j = i, i = 0

J3, j = i, i = M

J4, j = i, i = 0,1, . . . ,M−1

0, otherwise

with

[J3]kl =



































λ , l = k+1, k = 0,1, . . . ,H −1

−(λ +β ), l = k, k = 0,1, . . . ,H −1

−β , l = k, k = H

0, otherwise

[J4]kl =







−(λ +β ), l = k, k = 0,1,2, . . . ,H

0, otherwise

[B]i j =



















L1, j = i−1, i = 1,2, . . . ,N

L2, j = i−1, i = N +1,N +2, . . . ,M

0, otherwise

with

[L1]kl =







µ, l = k, k = 0,1, . . . ,H

0, otherwise

[L2]kl =







µs, l = k, k = 0,1, . . . ,H

0, otherwise

[C]i j =







C1, j = i, i = 0,1,2, . . . ,M

0, otherwise

[C1]kl =







β , l = k, k = 0,1, . . . ,H

0, otherwise

It can be noted that the matricesA2,A1,A0,B andC
are square matrices of order(M + 1)(H + 1) and
P1,P2,P3,P4,P5,P6,D3,D4,D5,D6,J3,J4,L1,L2 andC1 are
square matrices of order(H +1).

3.1 Steady State Analysis

It can be seen from the structure ofA that the
homogeneous Markov process{L(t),X(t),Y (t) : t ≥ 0}
on the finite state spaceE is irreducible, aperiodic and
persistent non-null. Hence the limiting distribution

Table 1: Total expected cost rate as a function ofS ands
s 11 12 13 14 15 16

S
72 7.43067 7.42069 7.41634 7.41713 7.42262 7.43241
73 7.42859 7.41862 7.41421 7.41486 7.42014 7.42965
74 7.42721 7.41725 7.41279 7.41332 7.41841 7.42767
75 7.42647 7.41655 7.41205 7.41248 7.41740 7.42643
76 7.42636 7.41648 7.41196 7.41230 7.41707 7.42589
77 7.42685 7.41702 7.41249 7.41275 7.41739 7.42601
78 7.42791 7.41814 7.41360 7.41381 7.41833 7.42677
79 7.42952 7.41982 7.41529 7.41544 7.41986 7.42814
80 7.43164 7.42202 7.41751 7.41763 7.42195 7.43008

Table 2: Total expected cost rate as a function ofS andM

M 14 15 16 17 18
S
62 6.86026 6.85860 6.85872 6.86131 6.86588
63 6.85890 6.85647 6.85600 6.85811 6.86230
64 6.85837 6.85522 6.85419 6.85586 6.85967
65 6.85865 6.85480 6.85323 6.85448 6.85795
66 6.85967 6.85516 6.85308 6.85393 6.85707
67 6.86141 6.85625 6.85369 6.85416 6.85698
68 6.86381 6.85805 6.85502 6.85513 6.85766

Fig. 1: Convexity of the total cost for various combinations ofS
andM. λ = 9,α = 1,µ = 10,µs = 14, β = 1.3,ch = 0.04,cs =
3.8,cb = 0.004,cw = 1,co = 0.2,M = 12,H = 5

π (i, j,k) = lim
t→∞

Pr[L(t) = i,X(t) = j,Y (t) =

k|L(0),X(0),Y (0)]

exists. Let

Π = (Π (0),Π (1), . . . ,Π (S))

which is partitioned as follows:

Π (i) = (Π (i,0),Π (i,1),Π (i,2), . . . ,Π (i,N),Π (i,N+1), . . . ,Π (i,M)),

i = 0,1, . . . ,S
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Further the above vectors are also partitioned as follows:

Π (i, j) = (Π (i, j,0),Π (i, j,1), . . . ,Π (i, j,H)),

i = 0,1,2, . . . ,S, j = 0,1,2, . . . ,M

The vector of limiting probabilitiesΠ then satisfies

ΠA = 0 andΠe= 1. (1)

The first equation of the above yields the following set of
equations:

Π (i)A0+Π (i+1)B = 0, i = 0,

Π (i)A1+Π (i+1)B = 0, i = 1,2, . . . ,s,

Π (i)A2+Π (i+1)B = 0, i = s+1, . . . ,Q−1,

Π (0)C+Π (i)A2+Π (i+1)B = 0, i = Q, (∗)

Π (i−Q)C+Π (i)A2+Π (i+1)C = 0, i = Q+1, . . . ,S−1,

Π (i−Q)C+Π (i)A2 = 0, i = S

After lengthy simplifications, the above equations,
(except (*)), yield

Π (i) = Π (Q)Ωi, i = 0,1, . . . ,S.

where
Ωi =










































































(−1)Q−i(BA−1
2 )

(Q−(s+1))
(BA−1

1 )
s
(BA−1

0 ), i = 0,

(−1)Q−i(BA−1
2 )

(Q−(s+1))
(BA−1

1 )
((s+1)−i)

, i = 1, . . . ,s,

(−1)Q−i(BA−1
2 )

(Q−i)
, i = s+1, . . . ,Q−1,

I, i = Q,

S−i
∑
j=0

(−1)((2Q+1)−i)(BA−1
2 )((S+s)−(i+ j+1))

×(BA−1
1 )( j+1)(CA−1

2 ), i = Q+1, . . . ,S.

Π (Q) can be obtained by solving equation(∗)
andΠe= 1. That is,

Π (Q)
(

(−1)Q(BA−1
2 )

(Q−(s+1))
(BA−1

1 )
s
(BA−1

0 )C+A2+

s−1

∑
j=0

(−1)Q(BA−1
2 )(2(s−1)− j)(BA−1

1 )( j+1)(CA−1
2 )B

)

= 0,

and

4 System Performance Measures

In this section some performance measures of the system
under consideration in the steady state are derived.

4.1 Expected inventory level

Let Ei denote the mean inventory level in the steady state.
Then

Ei =
S

∑
i=1

M

∑
j=0

H

∑
k=0

i
[

π (i, j,k)
]

4.2 Expected reorder rate

Let Er denote the expected reorder rate in the steady state.
Then

Er =
H

∑
k=0

[

N

∑
j=1

µ
[

π (s+1, j,k)
]

+
M

∑
j=N+1

µs

[

π (s+1, j,k)
]

]

4.3 Expected blocked customers

Let Eb denote the expected blocked customers in the
steady state. Then

Eb =
S

∑
i=0

H−1

∑
k=0

λ
[

π (i,M,k)
]

Table 3: Effect of λ andµ on optimal values

µ 9.9 10.0 10.1 10.2 10.3
λ
8.9 75 13 75 13 76 14 76 14 76 14

7.36182 7.24200 7.12423 7.00902 6.89661
9.0 75 13 76 14 76 14 76 14 76 14

7.53310 7.41196 7.29276 7.17561 7.06100
9.1 76 13 76 13 76 13 76 14 76 14

7.70359 7.58168 7.46158 7.34313 7.22675
9.2 76 13 76 13 76 13 77 14 77 14

7.87276 7.75058 7.62988 7.51084 7.39304
9.3 76 13 76 13 76 13 77 13 77 14

8.04002 7.91803 7.79718 7.67788 7.55938

4.4 Expected number of customers in the
waiting hall

Let Ew denote the expected number of customers in the
waiting hall in the steady state. Then

Ew =
S

∑
i=0

M

∑
j=1

H

∑
k=0

j
[

π (i, j,k)
]
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Table 4: Effect of λ andµs on optimal values

µs 13.5 13.6 13.7 13.8 13.9
λ
8.9 75 13 75 13 75 13 75 13 75 13

7.29498 7.28408 7.27334 7.26275 7.25230
9.0 75 13 76 13 76 13 76 13 76 13

7.46649 7.45528 7.44423 7.43333 7.42257
9.1 76 13 76 13 76 13 76 13 76 13

7.63741 7.62597 7.61468 7.60354 7.59254
9.2 76 13 76 13 76 13 76 13 76 13

7.80276 7.79563 7.78415 7.77281 7.76163
9.3 76 13 76 13 76 13 77 13 77 13

7.97545 7.96367 7.95204 7.94056 7.92922

Table 5: Effect of α andµ on optimal values

µ 9.9 10.0 10.1 10.2 10.3
α
0.8 75 13 76 13 76 13 76 14 76 14

7.58614 7.46536 7.34632 7.22874 7.11343
0.9 75 13 76 13 76 14 76 14 76 14

7.55789 7.43682 7.31757 7.20013 7.08513
1.0 75 13 76 13 76 14 76 14 76 14

7.53310 7.41196 7.29276 7.17561 7.06100
1.1 76 13 76 13 76 14 76 14 76 14

7.51125 7.39019 7.27120 7.15441 7.04025
1.2 76 13 76 13 76 14 76 14 76 14

7.49190 7.37101 7.25235 7.13595 7.02224

Table 6: Effect of α andµs on optimal values

µs 13.5 13.6 13.7 13.8 13.9
α
0.8 75 13 75 13 75 13 75 13 76 13

7.51893 7.50795 7.49710 7.48639 7.47582
0.9 75 13 75 13 76 13 76 13 76 13

7.49098 7.47987 7.46891 7.45807 7.44738
1.0 75 13 76 13 76 13 76 13 76 13

7.46649 7.45528 7.44423 7.43333 7.42257
1.1 76 13 76 13 76 13 76 13 76 13

7.44491 7.43366 7.42256 7.41162 7.40083
1.2 76 13 76 13 76 13 76 13 76 13

7.42582 7.41455 7.40343 7.39247 7.38167

4.5 Expected number of customers in the orbit

Let Eo denote the expected number of customers in the
orbit in the steady state. Then

Eo =
S

∑
i=0

M

∑
j=0

H

∑
k=1

k
[

π (i, j,k)
]

Table 7: Effect of µ andµs on optimal values

µs 13.5 13.6 13.7 13.8 13.9
µ
9.9 75 13 75 13 75 13 75 13 75 13

7.58836 7.57701 7.56582 7.55477 7.54367
10.0 75 13 76 13 76 13 76 13 76 13

7.46649 7.45528 7.44423 7.43333 7.42257
10.1 76 13 76 13 76 14 76 14 76 14

7.34653 7.33551 7.32464 7.31387 7.30324
10.2 76 14 76 14 76 14 76 14 76 14

7.22839 7.21754 7.20683 7.19628 7.18587
10.3 76 14 76 14 76 14 76 14 76 14

7.12259 7.10197 7.09150 7.08119 7.07102

Table 8: Effect of µ andβ on optimal values

β 1.1 1.2 1.3 1.4 1.5
µ
9.9 79 15 77 14 75 13 74 13 73 12

7.63405 7.58066 7.53310 7.49019 7.45041
10.0 79 15 77 14 76 13 74 13 73 12

7.51412 7.46007 7.41196 7.436813 7.32806
10.1 79 15 77 14 76 14 74 13 73 12

7.39629 7.34160 7.29276 7.24828 7.20794
10.2 80 16 78 15 76 14 74 13 73 12

7.28061 7.22527 7.17561 7.13083 7.09022
10.3 80 16 78 15 76 14 75 13 73 12

7.16693 7.11105 7.06100 7.01588 6.97507

Table 9: Effect of µs andβ on optimal values

β 1.1 1.2 1.3 1.4 1.5
µs

13.5 79 15 77 14 76 13 74 13 73 12
7.56777 7.51417 7.46649 7.42322 7.38340

13.6 79 15 77 14 76 13 74 13 73 12
7.55674 7.50306 7.45528 7.41191 7.37204

13.7 79 15 77 14 76 13 74 13 73 12
7.54587 7.49209 7.44423 7.40074 7.36083

13.8 79 15 77 14 76 13 74 13 73 12
7.53514 7.48127 7.43333 7.38973 7.34976

13.9 79 15 77 14 76 13 74 13 73 12
7.52456 7.47060 7.42257 7.37886 7.33884

4.6 Probability of arriving customer is lost

Let El denote the probability of arriving customer is lost
in the steady state. Then

El =
S

∑
i=0

[

π (i,M,H)
]
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Table 10: Effect of cs andch on optimal values

ch 7.78 7.79 7.80 7.81 7.82
cs

0.038 77 14 77 14 77 14 77 14 77 14
7.33149 7.33272 7.33395 7.33518 7.33641

0.039 77 14 77 14 77 14 77 14 77 14
7.37089 7.37212 7.37335 7.37458 7.37581

0.040 76 13 76 13 76 13 76 13 76 13
7.40950 7.41073 7.41196 7.41319 7.41442

0.041 76 13 75 13 75 13 75 13 75 13
7.44750 7.44875 7.45000 7.45125 7.45250

0.042 74 13 74 13 74 13 74 13 74 13
7.48515 7.48642 7.48769 7.48896 7.49023

Table 11: Effect of cb andcw on optimal values

cw 0.98 0.99 1.00 1.01 1.02
cb
0.003 76 13 76 13 76 13 76 13 76 14

7.32369 7.36778 7.41187 7.45597 7.49992
0.004 76 13 76 13 76 13 76 13 76 14

7.32377 7.36786 7.41196 7.45605 7.50001
0.005 76 13 76 13 76 13 76 13 76 14

7.32385 7.36795 7.41204 7.45613 7.50009
0.006 76 13 76 13 76 13 76 13 76 14

7.32394 7.36803 7.41212 7.45622 7.50017
0.007 76 13 76 13 76 13 76 13 76 14

7.32402 7.36811 7.41221 7.45630 7.50025

Table 12: Effect of cb andco on optimal values

co 0.18 0.19 0.20 0.21 0.22
cb
0.003 75 13 76 13 76 13 76 14 76 14

7.36131 7.38661 7.41187 7.43698 7.46174
0.004 75 13 76 13 76 13 76 14 76 14

7.36139 7.38670 7.41196 7.43706 7.46182
0.005 75 13 76 13 76 13 76 14 76 14

7.36147 7.38678 7.41204 7.43714 7.46191
0.006 75 13 76 13 76 13 76 14 76 14

7.36156 7.38086 7.41212 7.43723 7.46199
0.007 75 13 76 13 76 13 76 14 76 14

7.36164 7.38694 7.41221 7.43731 7.46207

4.7 Overall rate of retrials

Let Eor denote the overall rate of retrials in the steady state.
Then

Eor =
S

∑
i=0

M

∑
j=0

H

∑
k=1

α
[

π (i, j,k)
]

Table 13: Effect of cw andco on optimal values

co 0.18 0.19 0.20 0.21 0.22
cw

0.98 75 13 75 13 76 13 76 13 76 14
7.27313 7.29846 7.32377 7.34903 7.37412

0.99 75 13 76 13 76 13 76 13 76 14
7.31726 7.34259 7.36786 7.39313 7.41797

1.00 76 13 76 13 76 13 76 14 76 14
7.36139 7.38670 7.41196 7.43706 7.46182

1.01 76 13 76 13 76 13 76 14 76 14
7.40552 7.43079 7.45605 7.48092 7.50568

1.02 76 13 76 13 76 14 76 14 76 14
7.44962 7.47488 7.50001 7.52477 7.54953

4.8 The successful retrial rate

Let Esr denote the successful retrial rate in the steady state.
Then

Esr =
S

∑
i=1

H

∑
k=1

α
[

π (i,0,k)
]

4.9 The fraction of successful rate of retrial

Let E f r denote the fraction of successful retrial rate in the
steady state. Then

E f r =
Esr

Eor

5 Cost Analysis

To compute the total expected cost per unit time (total
expected cost rate), the following costs, are considered.

ch : The inventory holding cost per unit item per unit
time

cs : Setup cost per order

cb : Cost per blocking customer

cw : Waiting time cost of a customer per unit time

co : Waiting time cost of a orbiting customer per unit
time

The long run total expected cost rate is given by

TC(S,s,M,H) = chEi + csEr + cbEb + cwEw + coEo
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SubstitutingE ’s into the above equation, we obtain

TC(S,s,M,H) = ch

S

∑
i=1

M

∑
j=0

H

∑
k=0

i
[

π (i, j,k)
]

+

cs

H

∑
k=0

[

N

∑
j=1

µ
[

π (s+1, j,k)
]

+
M

∑
j=N+1

µs

[

π (s+1, j,k)
]

]

+

cb

S

∑
i=0

H−1

∑
k=0

λ
[

π (i,M,k)
]

+ cw

S

∑
i=0

M

∑
j=1

H

∑
k=0

j
[

π (i, j,k)
]

+

co

S

∑
i=0

M

∑
j=0

H

∑
k=1

k
[

π (i, j,k)
]

5.1 Numerical Examples

In this section, we discuss some numerical examples that
reveal the possible convexity of the total expected cost
rate. The convexity of the functionTC(S,s,M,H) we
have explored the behaviour of this function by
considering it as functions of any two variables by fixing
the others are constants.

Table 1 gives the total expected cost rate for various
combinations ofS ands. It can be seen that the minimum
expected cost per unit time of 7.41196 is achieved at
TC(S∗,s∗,12,5) here S∗ = 76 and s∗ = 13 by fixing
parameters and costs asλ = 9, α = 1, µ = 10, µs = 14,
β = 1.3 and cs = 0.04, ch = 7.8, cb = 0.004, cw = 1,
co = 0.2 respectively. Convexity of the total cost for
various combinations ofS ands is given in figure 1.

Table 2 gives the total expected cost rate for various
combinations of S and M. It can be seen that the
minimum expected cost per unit time of 6.85308 is
achieved atTC(S∗,13,M∗,5) hereS∗ = 66 andM∗ = 16
by fixing parameters and costs asλ = 9, α = 1, µ = 10,
µs = 14, β = 1.3 andcs = 0.04, ch = 3.8, cb = 0.004,
cw = 1, co = 0.2 respectively. In tables 1 and 2, the
minimum total expected cost rate for each row is
underlined and that for each column is shown in bold.
Example 1: Now we perform a sensitivity investigation
to the optimal values(S∗,s∗) and the total expected cost
rate based on changes in the system parameters. The
numerical results are shown in tables 3-9 for various
system parametersλ , α, µ , µs, β (by considering the cost
valuescs = 0.04, ch = 7.8, cb = 0.004,cw = 1, co = 0.2
respectively). We observe the following monotonic
behavior of(S∗,s∗)

1.The total expected cost rate increases whenλ
increases and the total expected cost rate decreases
whenα,µ ,µs andβ increase.

2.The optimal valuesS∗ monotonically increases when
λ ,α,µ and µs increase. We also note thatS∗

monotonically decreases whenβ increases.
3.The optimal valuess∗ monotonically increases when

µ andµs increase. We also note thats∗ monotonically
decreases whenλ andβ increase.

Example 2: In this example, numerical results are shown
in tables 10-13 for various cost valuescs, ch, cb, cw, co
(by considering the parametersλ = 9, α = 1, µ = 10,
µs = 14, β = 1.3 respectively). We observe the following
monotonic behavior of(S∗,s∗)

1.The total expected cost rate increases when each ofcs,
ch, cb, cw andco increase.

2.As is to be expected, the optimal valuesS∗ and s∗

monotonically increase whencw and co increase.
Also, we notice that asS∗ and s∗ monotonically
decrease whencs increases.

6 Conclusion

In this article, we analyzed a continuous review stochastic
retrial queueing-inventory system with Poisson inputs,
(s,Q) replenishment policy and two stage service. The
interarrival times of customers, lead times, the retrial
times and service times are assumed to have independent
exponential distribution. The joint probability distribution
of the number of customers in the system and the
inventory level is obtained in the steady state case.
Various system performance measures and the long-run
total expected cost rate are derived. The authors are
working in the direction of MAP (Markovian arrival
process) arrivals and service times follow
PH-distributions.
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