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1 Introduction

Recently, scientists and engineers have given utmost
attention to study the fractal calculus. According to
Mandlebrot, the set whose Hausdorff dimension strictly
exceeds the topological dimension is called a fractal set
[14]. The calculus on fractal set is exceedingly practical
and comprehensive in science and engineering for their
real world models. Many researchers used various
approaches to construct fractional calculus on fractal sets.
Yang [36] systematically analyzed the local fractional
functions on fractal space, which included local fractional
calculus. Later on Mo et. al. [17] introduced the
generalized convex function on fractal sets and
established the generalized Jensen’s inequality and
generalized Hermite-Hadamard inequality related to
generalized convex function. Wei et al. [35] introduced a
local fractional integral inequality on fractal space
comparable to Anderson’s inequality for comprehensive
convex functions. The generalized convex function on
fractal setsRα (0< α ≤ 1) can be stated as follows:

A function f : I = [a,b] ⊆ R → Rα is said to be
generalized convex function, if

f
(
(1− t)x+ ty

)
≤ (1− t)α f (x)+ tα f (y),

∀x,y∈ I , t ∈ [0,1].

In particular, a functionf : I = [a,b]⊂ R→ Rα is said to
be generalized convex function, if and only if,

f

(
a+b

2

)

≤
Γ (1+α)

(b−a)α aIb
(α) f (x) ≤

f (a)+ f (b)
2α , (1)

which is called generalized Hermite-Hadamard inequality
for generalized convex function.
Hermite-Hadamard inequalities are used to find the upper
and lower bounds of the mean value. For a novel
application of Hermite-Hadamard inequalities in the
proof of inequalitye<

(
1+ 1

n

)n+0.5
, see Khattri [11]. It is

known that the minimum of the differentiable convex
functions on the convex sets can be characterized by
variational inequalities, see, for example, Noor[19,20,21]
and the references therein.

It is well known that the harmonic means have
applications in electrical circuits. The total resistanceof a
set of parallel resistance is obtained by adding up the
reciprocals of the individual resistance values and then
considering the reciprocal of their total. For example ifR1
and R2 are the resistances of two parallel resistors, then
the total resistance is obtained by the formula
R= 1

1
R1

+ 1
R2

= R1R2
R1+R2

, which is half the harmonic mean.

These harmonic means also played a crucial in the
developments of parallel algorithms. For the novel
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applications of harmonic means in the stock market, see
Al-Azemi and Colin [1]. Noor [21] used the harmonic
means to construct a wide class of iterative methods for
solving the nonlinear equations. Noor and Noor [22,23]
peoved that the optimal conditions of the differentiable
harmonic functions can be expressed in term of
variational inequalities. Anderson et al. [2] considered the
harmonic functions and investigated various applications
of harmonic functions. Iscan [29] derived the
Hermite-Hadamard type inequality for the harmonic
functions. These integral inequalities are used to find the
upper and lower bounds. For recent developments and
other aspects of harmonic convex functions, see
[8,9,14-19] and the references therein.

It is clear that the generalized convex functions and
harmonic convex functions are two different classes of
convex functions. It is natural to unify these two different
classes. Inspired by these investigations, we introduce a
new class of generalized convex function, which is called
generalized harmonic convex function on fractal sets.
This new class of generalized harmonic convex functions
include generalized convex functions and harmonic
convex functions as special cases. We derive some fractal
Hermite-Hadamard inequalities for generalized harmonic
convex function. Some special cases are discussed which
can be obtained from main results. Results obtained in
this paper continue to hold for these cases. Interested
readers are encouraged to find the applications of these
convex functions in different areas of pure and applied
sciences.

2 Preliminaries

Recall the setRα of real line numbers and use
Gao-Yang-Kangs idea to describe the definitions of the
local fractional derivative and local fractional integral, see
[36].
For 0< α ≤ 1, we have the followingα-type set.

1.Zα : the α-type set of the integer is defined as the set
{0α ,±1α ,±2α , ...,±nα , ...}.

2.Qα : the α-type set of the rational numbers is defined
as the set{mα = (p/q)α : p∈ Z,q 6= 0}

3.Jα : theα-type set of the irrational numbers is defined
as the set{mα 6= (p/q)α : p∈ Z,q 6= 0}.

4.Rα : theα-type set of the real line numbers is defined
as the setRα =Qα ∪Jα .

If aα , bα andcα belong to the setRα of real line numbers,
then

1.aα +bα andaαbα belongs to the setRα

2.aα +bα = bα +aα = (a+b)α = (b+a)α

3.aα +(bα + cα) = (aα +bα)+ cα

4.aαbα = bαaα = (ab)α = (ba)α

5.aα(bαcα) = (aαbα)cα

6.aα(bα + cα) = aαbα +aαcα

7.aα +0α = 0α +aα = aα andaα1α = 1αaα = aα

The definition of local fractional derivative and local
fractional integral may be given as:

Definition 1.[36]. The local fractional derivative of f(x)
of orderα at x= xo is defined by

f (α)(xo) =
dα

dxα f (x)

∣
∣
∣
∣
x=xo

= lim
x→xo

∆ α( f (x)− f (xo))

(x− xo)α ,

where∆ α ( f (x)− f (xo)) = Γ (1+α)( f (x)− f (xo)).

If there exists f(k+1)α(x) =

k+1 times
︷ ︸︸ ︷

Dα
x ...D

α
x f (x) for any x∈

I ⊆ R, then we denote f∈ D(k+1)α(I), where k= 0,1,2...

Definition 2.[36]. The local fractional integral of f(x) is
defined by

aIb
(α) f (x) =

1
Γ (1+α)

∫ b

a
f (t)(dt)α .

Lemma 1.[36].

dα

dxα xkα

=
Γ (1+ kα)

Γ (1+(k−1)α)
x(k−1)α

1
Γ (1+α)

∫ b

a
xkα (dt)α

=
Γ (1+ kα)

Γ (1+(k+1)α)
(b(k+1)α −a(k+1)α), k∈ R.

Definition 3.[33]. A set I ⊆ R \ {0} is said to be a
harmonic convex set, if

xy
tx+(1− t)y

∈ I , ∀x,y∈ I , t ∈ [0,1].

It has been shown that the minimum of a
differentiable harmonic convex functions on the harmonic
convex set can be characterized by a class of variational
inequalities, which is called the harmonic variational
inequality. This shows that the harmonic functions have
some properties which convex functions have. For recent
developments, see [21,22,23,30] and the references
therein. We now introduce the new concept of harmonic
convex functions.

Definition 4. A function f : I = [a,b] ⊆ R \ {0} → Rα is
said to be generalized harmonic convex function and(0<
α ≤ 1), if

f

(
xy

tx+(1− t)y

)

≤ (1− t)α f (x)+ tα f (y),

∀x,y∈ I , t ∈ [0,1]. (2)
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The functionf is said to be generalized harmonic concave
function, if -f is generalized harmonic convex function. If
t = 1

2, then2 reduces to

f

(
2xy
x+ y

)

≤
f (x)+ f (y)

2α ,

which is called the generalized Jensen harmonic convex
function.

If α = 1, then definition4 reduces to the definition of
harmonic convex function, see [10]. For the recent
development in harmonic convex functions, see [15,24,
25,26,27]

Definition 5.[15]. A function f : [a,b] ⊂ R \ {0} → R is
said to be harmonic symmetric with respect to2ab

a+b, if

f (x) = f

(
abx

(a+b)x−ab

)

∀x∈ [a,b].

Definition 6.[32]. Two functions f,g are said to be
similarly ordered ( f is g-monotone), if and only if,

〈 f (x)− f (y),g(x)−g(y)〉 ≥ 0, ∀x,y∈Rn.

One can show that the product of two similarly ordered
generalized harmonic convex functions is again a
generalized harmonic convex function.

3 Main Results

In this section, we derive generalized Hermite-Hadamard
type inequalities for generalized harmonic convex
functions.

Theorem 1.Let f : I = [a,b] ⊂ R \ {0} → Rα be
generalized harmonic convex function. If
f (x) ∈ aIb(α)[a,b], then

f

(
2ab
a+b

)

≤
(ab)α

(b−a)α

∫ b

a

f (x)
x2α (dx)α ≤

f (a)+ f (b)
2α ,

x∈ [a,b]. (3)

Proof.Let f be generalized harmonic convex function with
t = 1

2 in the inequality2, then

f

(
2xy
x+ y

)

≤
f (x)+ f (y)

2α , ∀x,y∈ I .

Let x= ab
ta+(1−t)b andy= ab

(1−t)a+tb. Then

f

(
2ab
a+b

)

≤
1

2α

[

f

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)]

.

Thus, integrating the resulting inequality with respect tot
over[0,1], we obtain

1
Γ (1+α)

∫ 1

0
f

(
2ab
a+b

)

(dt)α

≤
1

2αΓ (1+α)

[∫ 1

0
f

(
ab

ta+(1− t)b

)

(dt)α

+

∫ 1

0
f

(
ab

(1− t)a+ tb

)

(dt)α
]

=
(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)
x2α (dx)α .

This implies

f

(
2ab
a+b

)

≤
(ab)α

(b−a)α

∫ b

a

f (x)
x2α (dx)α . (4)

Now f is a generalized harmonic convex function, then

f

(
ab

ta+(1− t)b

)

≤ (1− t)α f (a)+ tα f (b)

f

(
ab

(1− t)a+ tb

)

≤ tα f (a)+ (1− t)α f (b).

By adding these inequalities we have

f

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)

≤ (1− t)α f (a)+ tα f (b)+ tα f (a)+ (1− t)α f (b)

= f (a)+ f (b).

Then, integrating the resulting inequality with respect tot
over[0,1], we obtain

1
Γ (1+α)

[∫ 1

0
f

(
ab

ta+(1− t)b

)

(dt)α

+

∫ 1

0
f

(
ab

(1− t)a+ tb

)

(dt)α
]

=
1

Γ (1+α)

∫ 1

0
[ f (a)+ f (b)](dt)α .

It is easy to see that

1
Γ (1+α)

[∫ 1

0
f

(
ab

ta+(1− t)b

)

(dt)α

+

∫ 1

0
f

(
ab

(1− t)a+ tb

)

(dt)α
]

=
2α(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)
x2α (dx)α ,

and

1
Γ (1+α)

∫ 1

0
[ f (a)+ f (b)](dt)α =

f (a)+ f (b)
Γ (1+α)

.

So

(ab)α

(b−a)α

∫ b

a

f (x)
x2α (dx)α ≤

f (a)+ f (b)
2α . (5)

Combining4 and5, we obtain the required result.
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Theorem 2. Let f,g : I ⊂ R \ {0} → Rα be generalized

harmonic convex functions. If f g∈ I (α)
x [a,b], then

(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g( abx
(a+b)x−ab)

x2α (dx)α

≤ βαM(a,b)+
Γ (1+2α)

Γ (1+3α)
N(a,b),

where

M(a,b) = f (a)g(a)+ f (b)g(b), (6)

N(a,b) = f (a)g(b)+ f (b)g(a), (7)

βα =
1

Γ (1+α)

∫ 1

0
tα(1− t)α(dt)α

=
Γ (1+α)

Γ (1+2α)
−

Γ (1+2α)

Γ (1+3α)
. (8)

Proof.Let f ,g be generalized harmonic convex functions.
Then

(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g( abx
(a+b)x−ab)

x2α (dx)α

=
1

Γ (1+α)

∫ 1

0
f

(
ab

ta+(1− t)b

)

g

(
ab

(1− t)a+ tb

)

(dt)α

≤
1

Γ (1+α)

∫ 1

0
[(1− t)α f (a)+ tα f (b)]

×[tαg(a)+ (1− t)αg(b)](dt)α

= f (a)g(b)
1

Γ (1+α)

∫ 1

0
(1− t)2α(dt)α

+[ f (a)g(a)+ f (b)g(b)]
1

Γ (1+α)

∫ 1

0
tα(1− t)α(dt)α

+ f (b)g(a)
1

Γ (1+α)

∫ 1

0
t2α(dt)α

= βα [ f (a)g(a)+ f (b)g(b)]

+
Γ (1+2α)

Γ (1+3α)
[ f (a)g(b)+ f (b)g(a)]

= βαM(a,b)+
Γ (1+2α)

Γ (1+3α)
N(a,b),

which is the required result.⊓⊔

Theorem 3.Let f,g : I ⊂ R \ {0} → Rα be generalized

harmonic convex functions. If f g∈ I (α)
x [a,b], then

(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g(x)
x2α (dx)α

≤
Γ (1+2α)

Γ (1+3α)
M(a,b)+βαN(a,b),

where M(a,b), N(a,b) and βα are given by6, 7 and 8
respectively.

Proof.Let f ,g be generalized harmonic convex functions.
Then

(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g(x)
x2α (dx)α

=
1

Γ (1+α)

∫ 1

0
f

(
ab

ta+(1− t)b

)

g

(
ab

ta+(1− t)b

)

(dt)α

≤
1

Γ (1+α)

∫ 1

0
[(1− t)α f (a)+ tα f (b)]

×[(1− t)αg(a)+ tαg(b)](dt)α

= f (a)g(a)
1

Γ (1+α)

∫ 1

0
(1− t)2α(dt)α

+[ f (a)g(b)+ f (b)g(a)]
1

Γ (1+α)

∫ 1

0
tα(1− t)α(dt)α

+ f (b)g(b)
1

Γ (1+α)

∫ 1

0
t2α(dt)α

=
Γ (1+2α)

Γ (1+3α)
[ f (a)g(a)+ f (b)g(b)]

+βα [ f (a)g(b)+ f (b)g(a)]

=
Γ (1+2α)

Γ (1+3α)
M(a,b)+βαN(a,b),

which is the required result.⊓⊔

Theorem 4. Let f,g : I ⊂ R \ {0} → Rα be generalized

harmonic convex functions. If f g∈ I (α)
x [a,b], then

2α

Γ (1+α)
f

(
2ab
a+b

)

g

(
2ab
a+b

)

−
(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)
x2α (dx)α

≤ βαM(a,b)+
Γ (1+2α)

Γ (1+3α)
N(a,b),

where M(a,b), N(a,b) and βα are given by6, 7 and 8
respectively.

Proof.Let f ,g be two generalized harmonic convex
functions, witht = 1

2. Then

f

(
2xy
x+ y

)

≤
f (x)+ f (y)

2α , ∀x,y∈ I .

g

(
2xy
x+ y

)

≤
g(x)+g(y)

2α , ∀x,y∈ I .

Let x= ab
ta+(1−t)b, andy= ab

(1−t)a+tb. Then

f

(
2ab
a+b

)

≤
1

2α

[

f

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)]

.

g

(
2ab
a+b

)

≤
1

2α

[

g

(
ab

ta+(1− t)b

)

+g

(
ab

(1− t)a+ tb

)]

.

Thus

f

(
2ab
a+b

)

g

(
2ab
a+b

)
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≤
1

4α

[

f

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)]

×

[

g

(
ab

ta+(1− t)b

)

+g

(
ab

(1− t)a+ tb

)]

=
1

4α

[

f

(
ab

ta+(1− t)b

)

g

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)

g

(
ab

(1− t)a+ tb

)

+ f

(
ab

ta+(1− t)b

)

g

(
ab

(1− t)a+ tb

)

+ f

(
ab

(1− t)a+ tb

)

g

(
ab

ta+(1− t)b

)]

≤
1

4α

{

f

(
ab

ta+(1− t)b

)

g

(
ab

ta+(1− t)b

)

+ f

(
ab

(1− t)a+ tb

)

g

(
ab

(1− t)a+ tb

)

+
[
(1− t)α f (a)+ tα f (b)

][
tαg(a)+ (1− t)αg(b)

]

+
[
tα f (a)+ (1− t)α f (b)

][
(1− t)αg(a)+ tαg(b)

]
}

.

Integrating over[0,1], we have

1
Γ (1+α)

f

(
2ab
a+b

)

g

(
2ab
a+b

)

≤
1

4α

{
1

Γ (1+α)

∫ 1

0
f

(
ab

ta+(1− t)b

)

×g

(
ab

ta+(1− t)b

)

(dt)α

+
1

Γ (1+α)

∫ 1

0
f

(
ab

(1− t)a+ tb

)

×g

(
ab

(1− t)a+ tb

)

(dt)α

+2α [ f (a)g(a)+ f (b)g(b)]
1

Γ (1+α)

∫ 1

0
tα(1− t)α(dt)α

+[ f (a)g(b)+ f (b)g(a)]

×
1

Γ (1+α)

∫ 1

0
(t2α +(1− t)2α)(dt)α

}

=
1

2α

{
(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g(x)
x2α (dx)α

+βα [ f (a)g(a)+ f (b)g(b)]

+
Γ (1+2α)

Γ (1+3α)
[ f (a)g(b)+ f (b)g(a)]

}

=
1

2α

{
(ab)α

(b−a)α
1

Γ (1+α)

∫ b

a

f (x)g(x)
x2α (dx)α

+βαM(a,b)+
Γ (1+2α)

Γ (1+3α)
N(a,b)

}

,

which is the required result.⊓⊔

Theorem 5. Let f,g : I ⊂ R \ {0} → Rα be generalized

harmonic convex functions. If f g∈ I (α)
x [a,b], then

1
(Γ (1+α))3

∫ b

a

∫ b

a

∫ 1

0
f

(
xy

tx+(1− t)y

)

×g

(
xy

tx+(1− t)y

)

(dt)α(dy)α(dx)α

≤
2αΓ (1+2α)

Γ (1+3α)

(b−a)α

(Γ (1+α))2

∫ b

a
f (x)g(x)(dx)α

+
(b−a)2αx2α

2α(Γ (1+α))2(ab)2α βα
[
M(a,b)+N(a,b)

]
,

where M(a,b), N(a,b) and βα are given by6, 7 and 8
respectively.

Proof. Let f ,g be two generalized harmonic convex
functions onI . Then

f

(
xy

tx+(1− t)y

)

≤ (1− t)α f (x)+ tα f (y),

g

(
xy

tx+(1− t)y

)

≤ (1− t)αg(x)+ tαg(y).

Thus

f

(
xy

tx+(1− t)y

)

g

(
xy

tx+(1− t)y

)

≤
[
(1− t)α f (x)+ tα f (y)

][
(1− t)αg(x)+ tαg(y)

]

= (1− t)2α f (x)g(x)+ tα(1− t)α[ f (x)g(y)+g(x) f (y)
]

+t2α f (y)g(y).

Integrating both sides of the above inequality over[0,1],
we have

1
Γ (1+α)

∫ 1

0
f

(
xy

tx+(1− t)y

)

g

(
xy

tx+(1− t)y

)

(dt)α

≤
1

Γ (1+α)
f (x)g(x)

∫ 1

0
(1− t)2α(dt)α

+
1

Γ (1+α)
f (y)g(y)

∫ 1

0
t2α(dt)α

+
1

Γ (1+α)

[
f (x)g(y)+g(x) f (y)

]
∫ 1

0
tα(1− t)α(dt)α

=
Γ (1+2α)

Γ (1+3α)

[
f (x)g(x)+ f (y)g(y)

]
+βα

[
f (x)g(y)+g(x) f (y)

]

Now, integrating over[a,b], we have

1
(Γ (1+α))3

∫ b

a

∫ b

a

∫ 1

0
f

(
xy

tx+(1− t)y

)

×g

(
xy

tx+(1− t)y

)

(dt)α(dy)α(dx)α

≤
Γ (1+2α)

Γ (1+3α)

1
(Γ (1+α))2

[∫ b

a

∫ b

a
f (x)g(x)(dy)α (dx)α

+
∫ b

a

∫ b

a
f (y)g(y)(dy)α (dx)α

]
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+
1

(Γ (1+α))2 βα

[∫ b

a

∫ b

a
f (x)g(y)(dy)α (dx)α

+
∫ b

a

∫ b

a
g(x) f (y)(dy)α (dx)α

]

=
Γ (1+2α)

Γ (1+3α)

(b−a)α

(Γ (1+α))2

[∫ b

a
f (x)g(x)(dx)α

+

∫ b

a
f (y)g(y)(dy)α

]

+
1

(Γ (1+α))2 βα

[∫ b

a
f (x)(dx)α

∫ b

a
g(y)(dy)α

+

∫ b

a
g(x)(dx)α

∫ b

a
f (y)(dy)α

]

=
2αΓ (1+2α)

Γ (1+3α)

(b−a)α

(Γ (1+α))2

∫ b

a
f (x)g(x)(dx)α

+
(b−a)2αx2α

2α(Γ (1+α))2(ab)2α βα
[
( f (a)+ f (b)(g(a)+g(b)

]

=
2αΓ (1+2α)

Γ (1+3α)

(b−a)α

(Γ (1+α))2

∫ b

a
f (x)g(x)(dx)α

+
(b−a)2αx2α

2α(Γ (1+α))2(ab)2α βα
[
M(a,b)+N(a,b)

]
,

which is the required result.⊓⊔

Theorem 6. Let f,g : I ⊂ R \ {0} → Rα be generalized

harmonic convex functions. If f g∈ I (α)
x [a,b], then

1
Γ (1+α)2

∫ b

a

∫ 1

0
f

(
x
[

2ab
a+b

]

tx+(1− t)
[

2ab
a+b

]

)

×g

(
x
[ 2ab

a+b

]

tx+(1− t)
[ 2ab

a+b

]

)

(dt)α(dx)α

≤
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f (x)g(x)(dx)α

+
Γ (1+2α)

4αΓ (1+3α)

(b−a)α

Γ (1+α)
[M(a,b)+N(a,b)]

+
(b−a)αx2α

2αΓ (1+α)(ab)α βα
[
M(a,b)+N(a,b)

]
,

where M(a,b), N(a,b) and βα are given by6, 7 and 8
respectively.

Proof. Let f ,g be two generalized harmonic convex
functions onI . Then

f

(
x
[

2ab
a+b

]

tx+(1− t)
[

2ab
a+b

]

)

≤ (1− t)α f (x)+ tα f

(
2ab
a+b

)

,

∀x,
2ab
a+b

∈ I , t ∈ [0,1].

g

(
x
[

2ab
a+b

]

tx+(1− t)
[

2ab
a+b

]

)

≤ (1− t)αg(x)+ tαg

(
2ab
a+b

)

,

∀x,
2ab
a+b

∈ I , t ∈ [0,1].

Thus

f

(
x
[

2ab
a+b

]

tx+(1− t)
[

2ab
a+b

]

)

g

(
x
[

2ab
a+b

]

tx+(1− t)
[

2ab
a+b

]

)

≤

[

(1− t)α f (x)+ tα f

(
2ab
a+b

)]

×

[

(1− t)αg(x)+ tαg

(
2ab
a+b

)]

= (1− t)2α f (x)g(x)

+tα(1− t)α
[

f (x)g

(
2ab
a+b

)

+g(x) f

(
2ab
a+b

)]

+t2α f

(
2ab
a+b

)

g

(
2ab
a+b

)

.

Integrating over[0,1], we have

1
Γ (1+α)

∫ 1

0
f

(
x
[ 2ab

a+b

]

tx+(1− t)
[ 2ab

a+b

]

)

×g

(
x
[ 2ab

a+b

]

tx+(1− t)
[ 2ab

a+b

]

)

(dt)α

≤
1

Γ (1+α)
f (x)g(x)

∫ 1

0
(1− t)2α(dt)α

+
1

Γ (1+α)
f

(
2ab
a+b

)

g

(
2ab
a+b

)∫ 1

0
t2α(dt)α

+
1

Γ (1+α)

[

f (x)g

(
2ab
a+b

)

+
1

Γ (1+α)
g(x) f

(
2ab

a+b

)]∫ 1

0
tα(1− t)α(dt)α

=
Γ (1+2α)

Γ (1+3α)

[

f (x)g(x)+ f

(
2ab
a+b

)

g

(
2ab
a+b

)]

+βα

[

f (x)g

(
2ab
a+b

)

+g(x) f

(
2ab
a+b

)]

.

Now, integrating over[a,b], we have

1
Γ (1+α)2

∫ b

a

∫ 1

0
f

(
x
[

2ab
a+b

]

tx+(1− t)
[ 2ab

a+b

]

)

×g

(
x
[ 2ab

a+b

]

tx+(1− t)
[ 2ab

a+b

]

)

(dt)α(dx)α

≤
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f (x)g(x)(dx)α

+
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f

(
2ab
a+b

)

g

(
2ab
a+b

)

(dx)α

+
1

Γ (1+α)
βα

[

g

(
2ab
a+b

)∫ b

a
f (x)(dx)α

+ f

(
2ab
a+b

)∫ b

a
g(x)(dx)α

]

≤
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f (x)g(x)(dx)α
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+
Γ (1+2α)

Γ (1+3α)

(b−a)α

Γ (1+α)
f

(
2ab
a+b

)

g

(
2ab
a+b

)

+
(b−a)αx2α

Γ (1+α)(ab)α βα

[(
g(a)+g(b)

2α

)(
f (a)+ f (b)

2α

)

+

(
f (a)+ f (b)

2α

)(
g(a)+g(b)

2α

)]

≤
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f (x)g(x)(dx)α

+
Γ (1+2α)

Γ (1+3α)

(b−a)α

Γ (1+α)

[(
f (a)+ f (b)

2α

)(
g(a)+g(b)

2α

)]

+
2α(b−a)αx2α

Γ (1+α)(ab)α βα

[(
g(a)+g(b)

2α

)(
f (a)+ f (b)

2α

)]

=
Γ (1+2α)

Γ (1+3α)

1
Γ (1+α)

∫ b

a
f (x)g(x)(dx)α

+
Γ (1+2α)

4αΓ (1+3α)

(b−a)α

Γ (1+α)
[M(a,b)+N(a,b)]

+
(b−a)αx2α

2αΓ (1+α)(ab)α βα
[
M(a,b)+N(a,b)

]
,

which is the required result.⊓⊔

Theorem 7. Let f,g : I ⊂ R \ {0} → Rα be similarly
ordered generalized harmonic convex functions. If

f g∈ I (α)
x [a,b], then

1
Γ (1+α)2

∫ b

a

∫ 1

0
f

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

×g

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

(dt)α(dx)α

≤
1

Γ (1+2α)

∫ b

a
f (x)g(x)(dx)α

+
(b−a)α

4αΓ (1+2α)
[M(a,b)+N(a,b)],

where M(a,b), N(a,b) and βα are given by6, 7 and 8
respectively.

Proof. Let f ,g be two similarly ordered generalized
harmonic convex functions onI . Then

f

(
x
[ 2ab

a+b

]

tx+(1− t)[ 2ab
a+b]

)

≤ (1− t)α f (x)+ tα f

(
2ab
a+b

)

,

∀x,
2ab
a+b

∈ I , t ∈ [0,1].

g

(
x
[ 2ab

a+b

]

tx+(1− t)[ 2ab
a+b]

)

≤ (1− t)αg(x)+ tαg

(
2ab
a+b

)

,

∀x,
2ab
a+b

∈ I , t ∈ [0,1].

Thus, we have

f

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

g

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

≤ (1− t)α f (x)g(x)+ tα f

(
2ab
a+b

)

g

(
2ab
a+b

)

.

Integrating over[0,1], we have

1
Γ (1+α)

∫ 1

0
f

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

×g

(
x
[ 2ab

a+b

]

tx+(1− t)[ 2ab
a+b]

)

(dt)α

≤
1

Γ (1+α)
f (x)g(x)

∫ 1

0
(1− t)α(dt)α

+
1

Γ (1+α)
f

(
2ab

a+b

)

g

(
2ab
a+b

)∫ 1

0
tα(dt)α

=
Γ (1+α)

Γ (1+2α)

[

f (x)g(x)+ f

(
2ab
a+b

)

g

(
2ab
a+b

)]

.

Now, integrating over[a,b], we have

1
Γ (1+α)2

∫ b

a

∫ 1

0
f

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

×g

(
x
[

2ab
a+b

]

tx+(1− t)[ 2ab
a+b]

)

(dt)α(dx)α

≤
1

Γ (1+2α)

∫ b

a
f (x)g(x)(dx)α

+
1

Γ (1+2α)

∫ b

a
f

(
2ab
a+b

)

g

(
2ab
a+b

)

(dx)α

≤
1

Γ (1+2α)

∫ b

a
f (x)g(x)(dx)α

+
(b−a)α

4αΓ (1+2α)
[ f (a)+ f (b)][g(a)+g(b)]

=
1

Γ (1+2α)

∫ b

a
f (x)g(x)(dx)α

+
(b−a)α

4αΓ (1+2α)
[M(a,b)+N(a,b)],

which is the required result.⊓⊔

4 Conclusion.

In this paper, we have introduced and investigated a new
class of convex functions, which is called the general
harmonic convex functions. Several new
Hermite-Hadamard type inequalities are derived. Results
obtained in this paper represent significant contribution in
this field. It is expected that results obtained in this paper
may stimulate further research.
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