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Abstract: This paper aims to computationally study the effects of Navier slip on an unsteady hydromagnetic flow of a pressure driven,
reactive, variable viscosity, electrically conducting third-grade fluid through a porous saturated medium with asymmetrical convective
boundary conditions. It is assumed that the chemical kinetics in the flow system is exothermic and that the asymmetric convective
heat exchange with the surrounding medium at the surfaces follows Newtons law of cooling. The coupled nonlinear partialdifferential
equations governing the flow and heat transfer are derived and solved numerically using a semi-implicit finite difference scheme. The
flow and heat transfer characteristics are analyzed graphically and discussed for different values of the parameters embedded in the
system. It is observed that the lower wall slip parameter increases the fluid velocity profiles. The upper wall slip parameter is seen to
retard the velocity profiles while it increases the fluid temperature profiles. The wall slip parameters increase the skinfriction and the
Nusselt number. The wall slip parameters as well as the variable viscosity parameter, the viscous heating parameter andthe numerical
exponentm reduce the thermal criticality values of the reaction parameter.
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1 Introduction

Research interest in studies of phenomena connected with
convective hydromagnetic fluid flow has gathered
momentum in recent times, and it is reasonable to pin
down the interest on the broad applications of the field in
science, engineering and technology. Hydromagnetic
fluid flow studies were pioneered by Hartmann[1], and
following his ground breaking work the rheological
community has undertaken to investigate hydromagnetic
fluid flow and heat transfer in different geometries under
varied physical effects. The flow of electrically
conducting viscous fluid between two parallel plates in
the presence of a transversely applied magnetic field has
applications in many devices and processes such as
magnetohydrodynamic (MHD) power generators, MHD
pumps, accelerators, aerodynamics heating, electrostatic
precipitation, polymer technology, petroleum industry,
cooling of nuclear reactors, geothermal energy extraction,

metal purification, etc. See [2,3,4,5]. Some of the most
recent studies were undertaken in [6,7,8,9,10]. Studies
have also, to a greater extent, tended to focus on the flow
of fluids that exhibit non-Newtonian character. Fluids
such as drilling muds, hydrocarbon oils, polyglycols,
synthetic esters, polyphenylethers, oil and greases, clay
coating and suspensions, paper products, food stuffs and
slurries exhibit behavioural features that cannot be
explained by the Navier-Stokes model [11,12,13,14].
Among the models that have been suggested in trying to
explain such non-Newtonian character are the fluids of
differential type exemplified by the fluids of third grade.
Detailed studies of the mechanics of fluids of the
differential type are found in [15,16]. [17] studied
convection heat and mass transfer in a hydromagnetic
flow of a second grade fluid past a semi-infinite stretching
sheet in the presence of thermal radiation and thermal
diffusion.
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Meanwhile in most studies the assumption of the
no-slip boundary condition, namely the fluid velocity
relative to the solid is zero on the fluid-solid interface
[18], has become the norm. This is despite the fact that
the no-slip boundary condition is a hypothesis rather than
a condition deduced from any principle. It is owing to this
fact that its validity has been debated in scientific
literature [19]. Evidences of slip of a fluid on a solid
surface were reported by several authors, see for example,
[20,21]. Studies involving flow and heat transfer in
channels with wall slip are important as they lead to the
improvement of design and operation of many industrial
and engineering devices.

This study is an investigation of the effects of Navier
slip on unsteady hydromagnetic flow of a reactive
variable viscosity, electrically conducting third-grade
fluid through a porous saturated medium with
asymmetrical convective boundary conditions. The rest of
the paper is organized as follows: in section 2,
mathematical model formulation is presented, the
solution process (a semi-implicit finite difference scheme)
is implemented in section 3, and numerical and graphical
results as well as their discussion are given in section 4.

2 Mathematical Formulation

An unsteady flow of an incompressible electrically
conducting, third-grade, variable viscosity, and reactive
fluid through a channel filled with a homogeneous and
isotropic porous medium is considered. It is assumed that
the flow is subjected to the influence of an externally
applied homogeneous magnetic field as depicted in
(Figure 1). The fluid has small electrical conductivity so
that the electromagnetic force produced has small
magnitude. The plate surfaces are subjected to
asymmetric convective heat exchange with the ambient
due to unequal heat transfer coefficients and the fluid
motion is induced by an applied axial pressure gradient.
We choose thex-axis parallel to the channel and they-axis
normal to it. Under the above assumptions, and neglecting
the reacting viscous fluid consumption, the governing
equations for the momentum and heat balance are
formulated as in [22,23,24,25,26], and can be written as;
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The appropriate initial and boundary conditions are
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whereT0 is the initial fluid temperature. The temperature
dependent viscosity(µ) can be expressed as

µ(T ) = µ0e−b(T−T0)
, (6)

whereb is a viscosity variation parameter andµ0 is the
initial fluid dynamic viscosity at temperatureT0. The
dimensionless form of Eqns. (1) to (6)are:
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Fig. 1: Problem geometry and coordinate system
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The skin friction
(

C f
)

at the channel walls is given by

C f =
ρα2τw

µ2
0

= e−αθ dw
dy

|y=0,1 (12)

whereτw = µ(T ) ∂u
∂y is the shear stress evaluated at the wall

y = 0,a. The other dimensionless quantity of interest is the
wall heat transfer rate(Nu) defined as

Nu =−
dθ
dy

(1, t). (13)

Eqns. (7)-(13) are solved using a semi-implicit finite
difference scheme.

3 Numerical Solution

The semi-implicit finite difference scheme given in [27] is
adopted. As in [28,29], implicit terms are taken at the
intermediate time levelN + ξ where 0≤ ξ ≤ 1. The
discretization of the governing equations is based on a
linear Cartesian mesh and uniform grid on which finite
differences are taken. Both the second and first spatial

Fig. 2: Transient and steady state fluid velocity profiles

Fig. 3: Transient and steady state fluid temperature profiles

derivatives are approximated by second-order central
differences. The equations corresponding to the first and
last grid points are modified to incorporate the boundary
conditions. The semi-implicit scheme for the velocity
component reads
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Fig. 4: Three dimensional representation of velocity field

Fig. 5: Three dimensional representation of temperature field

Fig. 6: Blow up of fluid temperature for largeλ

Fig. 7: Effects of the porous medium shape parameter,S, on fluid
velocity profiles

Fig. 8: Effects of the porous medium shape parameter,S, on fluid
temperature profiles
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with µ = exp(−αθ ) andΓ = wy. The solution procedure
for w(N+1) thus reduces to inversion of tri-diagonal
matrices, which is an advantage over a full implicit
scheme. The semi-implicit integration scheme for the
temperature equation is similar to that for the velocity
component. Unmixed second partial derivatives of the
temperature are treated implicitly:
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wherer =
ξ△t
△y2 . The solution procedure again reduces to

inversion of tri-diagonal matrices. The schemes (15) and
(17) were checked for consistency. Forξ = 1 , these are
first order accurate in time but second-order accurate in
space. The schemes in [27] haveξ = 1

2 which improves
the accuracy in time to second order. We useξ = 1 here so
that we are free to choose larger time steps and still obtain
convergence to the steady solutions.

4 Results and Discussion

Figure 2 and figure 3 show transient increases in velocity
and temperature profiles respectively until steady state is
reached. Negative velocity profiles indicate flow reversal
at the wall due to velocity slip. The Biot number at the
lower wall Bi1 has been set less than the Biot number at
the upper wallBi2 . This implies that more heat flows into
the fluid from the ambient through the upper wall than the
lower wall and thus the fluid temperature near the upper
wall will always be higher than that near the lower wall.
This feature will be observed in all the temperature
figures. Three dimensional representations of the velocity
and temperature profiles are displayed in figure 4 and
figure 5 respectively.

Fig. 9: Effects of the Hartmann number,Ha, on fluid velocity
profiles

Fig. 10: Effects of the Hartmann number,Ha, on fluid
temperature profiles

Fig. 11: Effects of the lower wall slip parameter,n1, on fluid
velocity profiles
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Fig. 12: Effects of the upper wall slip parameter,n2, on fluid
velocity profiles

Fig. 13: Effects of the upper wall slip parameter,n2, on fluid
temperature profiles

Fig. 14: Effects of the reaction parameter,λ , on fluid temperature
profiles

Fig. 15: Effects of the Biot number,Bi2, on fluid temperature
profiles

Fig. 16: Effects of the Prandtl number,Pr, on fluid temperature
profiles

Fig. 17: Effects of the viscous heating parameter,Ω , on fluid
temperature profiles
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Fig. 18: Variation withλ andα of the wall shear stress,C f

Fig. 19: Variation withλ andγ of the wall shear stress,C f

Fig. 20: Variation withλ andHa of the wall shear stress,C f

4.1 Blow-up of solutions

It is of paramount importance to know a priori which
parameter value combinations help in maintaining stable
optimum fluid temperature. Some parameter combination
values, if un-monitored carefully, may lead to fluid

Fig. 21: Variation withλ andS of the wall shear stress,C f

Fig. 22: Variation withλ andn1 of the wall shear stress,C f

Fig. 23: Variation withλ andn2 of the wall shear stress,C f

temperature blow-up that may result in loss of life and
property damage. In particular the value of the
exothermic reaction parameterλ needs to be controlled as
values larger than 0.3 lead to blow up of fluid temperature
(figure 6).

4.2 Parameter dependence of solution

The higher the value of the porous medium parameter,S,
the more complicated is the porous matrix and the more
difficulty it is for the fluid particles to penetrate the
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Fig. 24: Variation withλ andn1,n2 of the wall heat transfer rate,
Nu

Fig. 25: Variation withλ andα,γ ,Ha,S of the wall heat transfer
rate,Nu

medium. In this way fluid velocity is diminished as the
value ofS increases. Figure 7 illustrates this behavior. As
fluid velocity decreases, the viscous heating source terms
in the temperature equation are reduced, and this causes a
significant reduction in fluid temperature as depicted by
figure 8. As figure 9 and figure 10 show, the effects of the
Hartmann number,Ha , on velocity and temperature
profiles mirror those of the porous medium parameter.
Increasing the Hartmann number increases the damping
effect of the externally applied magnetic field, and this
damps the fluid flow.

From figure 11 and figure 12 we observe that the
lower wall slip parameter,n1 , increases the velocity of
the fluid whereas on the contrary, the upper wall slip
parameter,n2 , diminishes the fluid velocity. It is the
significant flow reversal at the upper wall due to velocity
slip that causes retardation of the fluid velocity. The flow
reversal at the upper wall causes rapid mixing of the fluid
particles that in turn increases friction and this friction

induces a temperature rise, (figure 13). The effect of the
Frank-Kamenetskii parameter,λ , is to increase the rate of
the exothermic chemical reaction. Asλ increases the
reaction rate increases and this inevitably causes the fluid
temperature to rise, as depicted by figure 14. In fact, as
the blow-up diagram (figure 6) shows, if this parameter is
not controlled, explosions that can be harmful and fatal
can occur.

An increase in the values of the Biot numbersBi1 and
Bi2 imply that heat flows by convection into the fluid
from the ambient surrounding the channel walls. IfBi1 is
fixed andBi2 increases as in figure 15, it implies more
heat flows into the fluid from the upper wall of the
channel by convection and the fluid temperature near the
upper wall increases. The model boundary conditions
indicate the ambient temperatureTa is higher than that of
the fluid inside the channel. Higher Prandtl numbers are
generally associated with a decrease in fluid thermal
conductivity. This is why figure 16 shows fluid
temperature decreasing with increasing Prandtl numbers.
The effects of the viscous heating parameter,Ω , (figure
17) on fluid temperature mirror those of the reaction
parameter (figure 14).

4.3 Skin friction and Nusselt number

The physical quantities of engineering importance are the
wall shear stress,C f , and the wall heat transfer rate,Nu .
Variation of the wall shear stress with the reaction
parameterλ and the variable viscosity parameter,α, the
non-Newtonian parameter,γ, the Hartmann number,Ha,
and the porous medium parameter,S, is displayed in
figures 18, 19, 20 and 21 respectively. Variation of the
wall shear stress withλ and the lower and upper wall slip
parametersn1 andn2 is shown in figure 22 and 23. The
figures are plotted up to the solution blow-up values of
the reaction parameter. It is observed that the variable
viscosity parameter, the non-Newtonian parameter, the
Hartmann number and the porous medium parameter
have a diminishing effect on the wall shear stress. The
wall slip parameters increase the wall shear stress.

Variation of the wall heat transfer rate with the
reaction parameterλ and the variable viscosity parameter,
α, the non-Newtonian parameter,γ, the Hartmann
number,Ha, and the porous medium parameter,S, is
displayed in figure 25. Variation of the wall heat transfer
rate withλ and the lower and upper wall slip parameters
n1 and n2 is shown in figure 24. The figures are also
plotted up to the solution blow-up values of the reaction
parameter. While it is clear from figure 24 that the upper
wall slip parameter increases the wall heat transfer rate,
the effects of the other parameters; the variable viscosity
parameter, the non-Newtonian parameter, the Hartmann
number, the porous medium parameter and the lower wall
slip parameter on the Nusselt number are not clearly
explained by the two figures. Table 1 is an attempt to
describe the effects of these parameters on the Nusselt
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number as well as to show computations of the thermal
criticality values ofλ , λc , as the parameters are varied. It
has already been referred to earlier in this article that the
need to control the reaction parameter is of crucial
importance.

Table 1 shows that the thermal criticality values of the
reaction parameter are increased by the porous medium
parameter, the Hartmann number, the non-Newtonian
parameter, the Biot number,Bi2, and the activation energy
parameter,ε. In other words, increasing the values of
these parameters delays blow-up of solution which is a
more desirable situation. On the other hand, the thermal
criticality values of the reaction parameter are reduced by
increasing the temperature dependent viscosity parameter,
α, the numerical exponent,m, the viscous heating
parameter,Ω , and the wall slip parametersn1 and n2.
These parameters correspondingly increase the wall heat
transfer rate and thus, accelerate solution blow-up.

5 Conclusion

In this study, the effects of the Navier slip and other flow
parameters on unsteady MHD reactive flow of a
third-grade fluid through a porous saturated medium with
asymmetric convective boundary conditions are
investigated. It is concluded that the porous medium
parameter and the Hartmann number retard the fluid
velocity and temperature profiles. The lower wall slip
parameter increases the fluid velocity profiles. The upper
wall slip parameter diminishes the fluid velocity profiles
and increases the fluid temperature. The skin friction is
observed to be diminished by the porous medium
parameter, the Hartmann number, the variable viscosity
parameter and the non-Newtonian parameter. It is
however, increased by the wall slip parameters. The wall
slip parameters are also observed to increase the wall heat
transfer rate and to reduce the thermal criticality values of
the reaction parameter,λ . The temperature dependent
viscosity parameter, the viscous heating parameter and
the numerical exponentm ∈ {−2,0,0.5} are also seen to
play the same role.

Nomenclature
a - Channel width(m)
B0 - Electromagnetic induction (tesla)
A - Rate constant
Bi - Biot number
cP - Specific heat at constat pressure(Jkg−1K−1)
Da - Darcy number
E - Activation energy(J)
G - Pressure gradient parameter
h - Boltzmann’s constant(JK−1)
h1,h2 - Heat transfer coefficients at the lower and upper
plates, respectively(Wm−3K−1)
Ha - Hartmann number
k - Thermal conductivity(W m−1K−1)

Table 1: Thermal criticality values ofλ for different parameter
values

S Ha α γ Bi2 m ε Ω n1 n2 Nu λc
0 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.877 0.296
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.849 0.296
2 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.843 0.297
3 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.858 0.299
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.849 0.296
1 3 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.854 0.299
1 4 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.861 0.297
1 1 0 0.1 1 0.5 0.1 1 0.5 0.2 0.917 0.297
1 1 0.5 0.1 1 0.5 0.1 1 0.5 0.2 0.854 0.295
1 1 1 0.1 1 0.5 0.1 1 0.5 0.2 0.874 0.293
1 1 0.1 0 1 0.5 0.1 1 0.5 0.2 0.875 0.296
1 1 0.1 0.2 1 0.5 0.1 1 0.5 0.2 0.889 0.297
1 1 0.1 0.3 1 0.5 0.1 1 0.5 0.2 0.871 0.297
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.849 0.296
1 1 0.1 0.1 2 0.5 0.1 1 0.5 0.2 0.840 0.400
1 1 0.1 0.1 3 0.5 0.1 1 0.5 0.2 0.693 0.400
1 1 0.1 0.1 1 -2 0.1 1 0.5 0.2 0.907 0.400
1 1 0.1 0.1 1 0 0.1 1 0.5 0.2 0.919 0.316
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.849 0.296
1 1 0.1 0.1 1 0.5 0 1 0.5 0.2 0.728 0.275
1 1 0.1 0.1 1 0.5 0.2 1 0.5 0.2 1.106 0.325
1 1 0.1 0.1 1 0.5 0.3 1 0.5 0.2 1.720 0.367
1 1 0.1 0.1 1 0.5 0.1 2 0.5 0.2 0.896 0.288
1 1 0.1 0.1 1 0.5 0.1 3 0.5 0.2 0.977 0.280
1 1 0.1 0.1 1 0.5 0.1 1 0.1 0.2 0.859 0.299
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.2 0.849 0.296
1 1 0.1 0.1 1 0.5 0.1 1 1 0.2 0.874 0.295
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.1 0.899 0.299
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.3 0.896 0.294
1 1 0.1 0.1 1 0.5 0.1 1 0.5 0.5 0.959 0.277

K - Porous medium permeability(m2)
l - Planck’s number(Js)
m ∈ {−2,0,05} - Numerical exponents for sensitised,
Arrhenius and bimolecular kinetics, respectively
n1,n2 - Lower and upper wall slip parameters,
respectively
P - Modified pressure(Pa)
P - Pressure(Pa)
Pr - Prandtl number
Q - Heat of reaction(W m−3K−1)
R - Universal gas constant(Jmol−1K−1)
S - Porous medium shape parameter
T - Temperature(K)
Ta - Ambient temperature(K)
u - Dimensionless velocity component in thex-direction
(ms−1)
Greek symbols
α - Variable viscosity parameter
α1,β3 - Material coefficients
β0,β1 - Lower and upper wall dimensional slip
parameters
γ - Non-Newtonian parameter
δ - Material parameter
ε - Activation energy parameter
θa - Ambient temperature parameter
µ - Fluid dynamic viscosity(Pas)
λ - Frank-Kamenetskii parameter
ρ - Fluid density(kgm3)
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σ - Fluid electrical conductivity(mhom−1)
υ - Vibration frequency(Hz)
Ω - Viscous heating parameter
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