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Abstract: This paper aims to computationally study the effects of Niasiip on an unsteady hydromagnetic flow of a pressure driven
reactive, variable viscosity, electrically conductingrdhgrade fluid through a porous saturated medium with asgtrioal convective
boundary conditions. It is assumed that the chemical lieeti the flow system is exothermic and that the asymmetrivemtive
heat exchange with the surrounding medium at the surfadies/®Newtons law of cooling. The coupled nonlinear partidfierential
equations governing the flow and heat transfer are derivddalved numerically using a semi-implicit finite differenscheme. The
flow and heat transfer characteristics are analyzed gralbhiend discussed for different values of the parameterseeiaed in the
system. It is observed that the lower wall slip parametereiases the fluid velocity profiles. The upper wall slip par@mis seen to
retard the velocity profiles while it increases the fluid temgbure profiles. The wall slip parameters increase thefskiiion and the
Nusselt number. The wall slip parameters as well as theblaridscosity parameter, the viscous heating parametetrendumerical
exponenimreduce the thermal criticality values of the reaction patam

Keywords: Unsteady MHD flow, porous medium, third grade fluid, Navigp,stonvective heating, finite difference method

1 Introduction metal purification, etc. Se&3,4,5]. Some of the most
recent studies were undertaken #)7,8,9,10. Studies
Research interest in studies of phenomena connected withave also, to a greater extent, tended to focus on the flow
convective hydromagnetic fluid flow has gatheredOf fluids that exhibit non-Newtonian character. Fluids
momentum in recent times, and it is reasonable to pinSuch as drilling muds, hydrocarbon oils, polyglycols,
down the interest on the broad applications of the field inSynthetic esters, polyphenylethers, oil and greases, clay
science, engineering and technology. Hydromagnetic€oating and suspensions, paper products, food stuffs and
fluid flow studies were pioneered by Hartmatipfand ~ Slurries exhibit behavioural features that cannot be
following his ground breaking work the rheological €Xplained by the Navier-Stokes model1{12 13 14].
community has undertaken to investigate hydromagnetiéAmong the models that have been suggested in trying to
fluid flow and heat transfer in different geometries under€Xplain such non-Newtonian character are the fluids of
varied physical effects. The flow of electrically differential type exemplified by the fluids of third grade.
conducting viscous fluid between two parallel plates inDetailed studies of the mechanics of fluids of the
the presence of a transversely applied magnetic field hadifferential type are found in 15,16]. [17] studied
applications in many devices and processes such agonvection heat and mass transfer in a hydromagnetic
magnetohydrodynamic (MHD) power generators, MHD flow of'a second grade fluid past a sem!-lnf|n|te stretching
pumps, accelerators, aerodynamics heating, electostatfheet in the presence of thermal radiation and thermal
precipitation, polymer technology, petroleum industry, diffusion.
cooling of nuclear reactors, geothermal energy extraction
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Meanwhile in most studies the assumption of the The appropriate initial and boundary conditions are
no-slip boundary condition, namely the fluid velocity

relative to the solid is zero on the fluid-solid interface U(¥:0) =0, T(¥,0) = To, 5 ©)
[18], has become the norm. This is despite the fact that o u

the no-slip boundary condition is a hypothesis rather than Pou(0.1) = “(T)F(O’U

a condition deduced from any principle. It is owing to this oT B

fact that its validity has been debated in scientific _kF(O’t) =h[Ta—T(0,T)], (4)
literature [L9). Evidences of slip of a fluid on a solid y

surface were 'repo.rted by several authors, see for example, Bru(a,t) = [(T) @ (a,1),

[20,21]. Studies involving flow and heat transfer in 7}

channels with wall slip are important as they lead to the oT _

improvement of design and operation of many industrial —ka—y(a,t) =h[T(at)—Td. (5)

and engineering devices.
This Study is an |nvest|gat|on of the effects of Navier WhereTo is the initial fluid temperature The temperature

slip on unsteady hydromagnetic flow of a reactive dependent viscositffi) can be expressed as

variable viscosity, electrically conducting third-grade

fluid through a porous saturated medium with A(T) = poe 7o), (6)

asymmetrical convective boundary conditions. The rest of

the paper is organized as follows: in section 2,whereb is a viscosity variation parameter apg is the

mathematical model formulation is presented, theinitial fluid dynamic viscosity at temperatur®. The

solution process (a semi-implicit finite difference schme dimensionless form of Eqnsl)to (6)are:

is implemented in section 3, and numerical and graphical

2
results as well as their discussion are given in section 4. f?_‘:" — G- Ha?w— Swe 99 1 e—GG?_yVZV
g a0900wW o 33w 5 2w [ dw 57)
2 Mathematical Formulation a ayay Cavzat T VayE \ oy
96  9%6

+AQ

An unsteady flow of an incompressible electrically Pr—- o +A [(1+£6)mexp<1+egeﬂ
conducting, third-grade, variable viscosity, and reactiv
fluid through a channel filled with a homogeneous and +A0 (Ha2w+ Szwze_ae)

isotropic porous medium is considered. It is assumed that

the flow is subjected to the influence of an externally ow ) 0W 8
applied homogeneous magnetic field as depicted in ay y ay G
(Figure 1). The fluid has small electrical conductivity so

that the electromagnetic force produced has small W(¥,0) =0, 8(y,0)=0 9)
magnitude. The plate surfaces are subjected to _ o —aB(oy) OW

asymmetric convective heat exchange with the ambient w(0,1) = me a_y(o’t)’

due to unequal heat transfer coefficients and the fluid

motion is induced by an applied axial pressure gradient.a—(o,t) = —Bi1[62— 8(0,1)] (20)
We choose th&-axis parallel to the channel and th@xis y
normal to it. Under the above assumptions, and neglecting w(Lt) = n e—a@(lt)d (1,1)
the reacting viscous fluid consumption, the governing ’ ’
equations for the momentum and heat balance argg

formulated as in22,23,24,25,26], and can be written as; 55 —-(1,t) = —Bi2[6(L,t) — 64, (11)
du oP 0 du 3u
- (T = - where
P~ "ox gy {“ (M ay} MREFTFT
o 2
d2u (ou\* W(T)u ) _Yy ,_DbRlg . _ Hpa
op 2 ( ay) B o @ Y TR T
oo _ET-T) , EM-To) _ Bako
pCPE kd—yz + UB 9 - RT02 5 ea - RTOZ 5 - p2a4,
Jdu _ u\ 2 o . hia _. hoa
+ <ﬁ_7> <U(T)+ZB3<0_V> ) 6:E7 B|1:T7 BIZZT,
a(T)u hT
+IJ( ) +QCOA< ) e Fgl’ (2) Da:5’ |:>|f:I"lOCP7 E:@,
K a2 k E
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Fig. 1. Problem geometry and coordinate system Fig. 2: Transient and steady state fluid velocity profiles

X Ppa? oP
= -, P = —27 = —?7
a us X
1 oB3a? 7]
82:_7 Hazz—oa uzﬂa
Da Ho Ho ) o
0.0101
Q (Ul)m Lo t tHo 1G=1, Pr=10, h=0.1, 3=0.1, A=0.1, 0=0.1 ’
- T 2 4, ) = 2 . =1, rr=10, h=0.1, 6=0.1, A=U.1, 0=0.1,
hTo/  p*QAA"Co pa 000975, —0.1,81,= L,m=05,e=0.1,2=1,y o
) <h-|-0>m QEAa2CoeFr Lo 0.0084  =0.0001,S=1,Ha=1n=0.5n,=0.2 o
= _ —_— =, 1= =, E
ul TZRK Boa 0.007 )
T °
np — HO 0.006 1 a”
Bia o ] .
The skin fricti he ch |walls is given b 0.005 t=0.01 a’,
e skin friction(Cy) at the channel walls is given by | So0000 1=0.04
) 0.004 +++++  t=0.07 a®
Pa Ty __adw 1 OO0 t=0.09 +0
Cr = iz e agd—y|y=o,1 (12) 00034 OO0 =0.1 =°
0 ] me *
0.002 45 Be s o
wheret,, = H(T)g—; is the shear stress evaluated at the wall [RTT. mggﬁ:+ o
y=0,a. The other dimensionless quantity of interest is the %% Sogittaaiti it s it it e et tineg "“;;::::oy
wall heat transfer ratéNu) defined as _—— "

0o 02 0.4 0.6 0.8 1

dé y
Nu——d—y(l,t). (13)

Eqgns. )-(13) are solved using a semi-implicit finite
difference scheme.

Fig. 3: Transient and steady state fluid temperature profiles

3 Numerical Solution

The semi-implicit finite difference scheme given 2] is

adopted. As in 28,29], implicit terms are taken at the derivatives are approximated by second-order central
intermediate time leveN + & where 0< & < 1. The  differences. The equations corresponding to the first and
discretization of the governing equations is based on dast grid points are modified to incorporate the boundary
linear Cartesian mesh and uniform grid on which finite conditions. The semi-implicit scheme for the velocity
differences are taken. Both the second and first spatiatomponent reads
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Fig. 7: Effects of the porous medium shape param&eon fluid
velocity profiles
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Fig. 8: Effects of the porous medium shape param&en fluid
temperature profiles
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Fig. 5: Three dimensional representation of temperature field ay2
N
4000 aw]™
0.8 ay ady
a Z 92
0.7 v —wN) | Z_\y(N+&) 14
0.6
In Egn. @4), it is understood that
0.51
N+1 N
O a0 (D< +1) _ ))
0.4 i
ot At
0.3
. The equation fowN+1) then becomes
02 —rlw(jﬁl)jtrzw(jﬁl) —rlw}'ﬂl) = MG+ (W dwy,y) ™
| —ab (N)
o1 0.1 02 03 - ast(E™ar)
A — AtSe N (1 g
— —AtHa?(1—&)wV) (15)

Fig. 6: Blow up of fluid temperature for largk A1) (e +6y[_2)(N)W<N)
W
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where 0.04 Ha=0,1,3,5

*44*444444444444***
+

000000000000000664,

=

1 2(N)
A7 [6+5At(u+6yr ) ]
-0.02 4

fp— (1+ Entu™ EAtHa2+2rl) ,

-0.04

with p = exp(—a8) andl" = wy. The solution procedure -0.06 1
for wiN+*D thus reduces to inversion of tri-diagonal ] BB 05016y
matrices, which is an advantage over a full implicit =0.0001,5=1n =0.5,m =0.2
scheme. The semi-implicit integration scheme for the -0 o 4
temperature equation is similar to that for the velocity ] o
component. Unmixed second partial derivatives of the o
temperature are treated implicitly: 014 o
Pr gIN+L _g(N)  92g(N+8) 2 (14 £0)mexp 0 (N) Fig. 9: Effects of the Hartmann numbet|a, on fluid velocity
At T 9y? 1+¢6 profiles
N
+AQ (Ha2W+82w2e*"’9>< )
ow aw)\ 2 (N) G=1, Pr=10, h=0.1, 5=0.000001, ¢=0.1, o
Yo ( ) +2V< ) (16) 0.014 Biy=0.1,Bi,=1,m=05,e=0.1,Q=17y
ay oy =0.0001,5= 1,1, =0.5,1,=0.2, o
0.012 A=0.1 +
The equation fo8 N+ thus becomes oor0 ]
18N (Pr2ng™ — raNY = o™ 4 At(1-£)alY -
(N)
+ AAL [(l+£9 (1+59>] 0.006

+ AQAt (Hatw+ Swle @8) ™ an 0.004
ow ow ®
AQAL 2 0002 4,
’ (t?y) ( T y(w) )

At . .
wherer = EA—yZ The solution procedure again reduces to

. . - . Fig. 10: Effects of the Hartmann numbetda, on fluid
inversion of tri-diagonal matrices. The schem&$§)(@nd  temperature profiles

(17) were checked for consistency. Fbr= 1 , these are
first order accurate in time but second-order accurate in

space. The schemes i27] have & = 1 which improves 00000200028080 000
the accuracy in time to second order. We &se 1 here so 00053 ++% _%9
that we are free to choose larger time steps and still obtair 2258s
convergence to the steady solutions. n=0,0.1,05,1
0 T T T
0.2 0.4 0.6

y

4 Results and Discussion

-0.005

Figure 2 and figure 3 show transient increases in velocity « G=1, Pelo h=(]).l,5=(;).51,S)L=g.i,?l=0.ll,y
. . . . 1, = 0.1, 61, =1,m=005,e=0.1,82=1,
and temperature profiles respectively until steady state it " 0000155 1. Ha- 1Ln, - 02

reached. Negative velocity profiles indicate flow reversal ']
at the wall due to velocity slip. The Biot number at the

lower wall Bi; has been set less than the Biot number at

the upper walBi, . This implies that more heat flows into

the fluid from the ambient through the upper wall than the Fig. 11: Effects of the lower wall slip parameteny, on fluid
lower wall and thus the fluid temperature near the upper, Velocity profiles '

wall will always be higher than that near the lower wall.

This feature will be observed in all the temperature

figures. Three dimensional representations of the velocity

and temperature profiles are displayed in figure 4 and

figure 5 respectively.

[}
B4
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01 . 02 03 temperature blow-up that may result in loss of life and
property damage. In particular the value of the
Fig. 20: Variation withA andHa of the wall shear stres€; exothermic reaction parametemeeds to be controlled as
values larger than.B lead to blow up of fluid temperature
(figure 6).

4.1 Blow-up of solutions

4.2 Parameter dependence of solution
It is of paramount importance to know a priori which
parameter value combinations help in maintaining stableThe higher the value of the porous medium param&er,
optimum fluid temperature. Some parameter combinatiorthe more complicated is the porous matrix and the more
values, if un-monitored carefully, may lead to fluid difficulty it is for the fluid particles to penetrate the
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* induces a temperature rise, (figure 13). The effect of the
087 G=1, Pr=10, h=0.1, 3=0.000001, 0=0.1, Frank-Kamenetskii parametey, is to increase the rate of
07 B =0LB, = Lm=05e20.1.8 = Ly . the exothermic chemical reaction. A% increases the
—O.OOOI,S—I,Ha—l,nZ—O.Z,7»—0.1 . . . . .
. reaction rate increases and this inevitably causes the fluid
067 s temperature to rise, as depicted by figure 14. In fact, as
0.5 + the blow-up diagram (figure 6) shows, if this parameter is
N L p not controlled, explosions that can be harmful and fatal
L3 can occur.
0.3 i An increase in the values of the Biot numb@is and
024 i Bi, imply that heat flows by convection into the fluid
o =0,01051 from the ambient surrounding the channel wallsBilf is
017 i+, =001,01, 03,05 fixed andBi, increases as in figure 15, it implies more
0 . . , heat flows into the fluid from the upper wall of the
0 01 N 02 03 channel by convection and the fluid temperature near the

upper wall increases. The model boundary conditions
Fig. 24: Variation withA andny, n, of the wall heat transfer rate, indicate the ambient temperaturgis higher than that of
Nu the fluid inside the channel. Higher Prandtl numbers are
generally associated with a decrease in fluid thermal
conductivity. This is why figure 16 shows fluid
temperature decreasing with increasing Prandtl numbers.
G=1, Pr=10, h=0.1, =0.000001, Ha=1, The effects of the viscous heating parameger, (figure
064  BaTOLBL=Lm=05e=010=1y 17) on fluid temperature mirror those of the reaction
=0.0001,S=1,nl=0.5,n2=0.2,k=0.1 parameter (ﬁgure 14)

0.7

0.59

0.4

N 4.3 Sin friction and Nusselt number
034 ~ 4=0,0.1,0.5,1
EEEE&%,I{%,Z’S“ The physical quantities of engineering importance are the
021 000s=0,123 wall shear stres€s, and the wall heat transfer ratdy .

Variation of the wall shear stress with the reaction
parametel and the variable viscosity parameter, the
0 ; ; . non-Newtonian parametey, the Hartmann numbeHa,
N ‘ * and the porous medium paramet&;, is displayed in
figures 18, 19, 20 and 21 respectively. Variation of the
Fig. 25: Variation withA anda, y,Ha, Sof the wall heat transfer ~ wall shear stress with and the lower and upper wall slip
rate,Nu parameters; andny is shown in figure 22 and 23. The
figures are plotted up to the solution blow-up values of
the reaction parameter. It is observed that the variable
viscosity parameter, the non-Newtonian parameter, the
medium. In this way fluid velocity is diminished as the Hartmann number and the porous medium parameter
value ofSincreases. Figure 7 illustrates this behavior. Ashave a diminishing effect on the wall shear stress. The
fluid velocity decreases, the viscous heating source termwall slip parameters increase the wall shear stress.
in the temperature equation are reduced, and this causes a Variation of the wall heat transfer rate with the
significant reduction in fluid temperature as depicted byreaction paramete¥ and the variable viscosity parameter,
figure 8. As figure 9 and figure 10 show, the effects of thea, the non-Newtonian parametey, the Hartmann
Hartmann numberHa , on velocity and temperature number,Ha, and the porous medium paramet§,is
profiles mirror those of the porous medium parameter.displayed in figure 25. Variation of the wall heat transfer
Increasing the Hartmann number increases the dampingate withA and the lower and upper wall slip parameters
effect of the externally applied magnetic field, and thisn; and n, is shown in figure 24. The figures are also
damps the fluid flow. plotted up to the solution blow-up values of the reaction
From figure 11 and figure 12 we observe that theparameter. While it is clear from figure 24 that the upper
lower wall slip parametem; , increases the velocity of wall slip parameter increases the wall heat transfer rate,
the fluid whereas on the contrary, the upper wall slipthe effects of the other parameters; the variable viscosity
parametern, , diminishes the fluid velocity. It is the parameter, the non-Newtonian parameter, the Hartmann
significant flow reversal at the upper wall due to velocity number, the porous medium parameter and the lower wall
slip that causes retardation of the fluid velocity. The flow slip parameter on the Nusselt number are not clearly
reversal at the upper wall causes rapid mixing of the fluidexplained by the two figures. Table 1 is an attempt to
particles that in turn increases friction and this friction describe the effects of these parameters on the Nusselt

0.14
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number as well as to show computations of the thermal@ble 1: Thermal criticality values o for different parameter
criticality values ofA , Ac , as the parameters are varied. It Values
has already been referred to earlier in this article that the

- ! ; S Ha a y Bp m ¢ Q m m Nu Ac
need to control the reaction parameter is of crucial o 1 01 01 1 05 01 1 05 02 0877 029
importance. 1 1 01 01 1 05 01 1 05 02 0849 0.296
L 2 1 01 01 1 05 01 1 05 02 0843 0.297
Te_tble 1 shows that thg thermal criticality values of the 3 1 01 01 1 05 01 1 05 02 0858 0299
reaction parameter are increased by the porous mediumi 1 01 01 1 05 01 1 05 02 0849 0.29
parameter, the Hartmann number, the non-Newtonian 1 i gi 8-1 i g-g 81 1 8-2 8-2 8-22‘11 8-23?
parameter, the Biot numbesi,, e}nd the activationenergy ;7 5 o7 1 05 01 1 05 02 0917 0207
parameterg. In other words, increasing the values of 1 1 05 01 1 05 01 1 05 02 0854 0295
these parameters delays blow-up of solution whichisa 1 1 1 01 1 05 01 1 05 02 0874 0293
: Lo 1 1 01 0 1 05 01 1 05 02 0875 029%
more desirable situation. On the other hand, the thermal ;7 7 o, 1 02 01 1 o5 02 0889 0297
criticality values of the reaction parameter arereducedby 1 1 01 03 1 05 01 1 05 02 0871 0297
increasing the temperature dependent viscosity parametert 1 01 01 1 05 01 1 05 02 0849 0.29
a, the numerical exponentm, the viscous heating * 1 o1 01 2 05 01 1 05 02 0840 0400
; 1 01 01 3 05 01 1 05 02 0693 0400
parametef?, and the wall slip parametens; and n,. 1 1 01 01 1 -2 01 1 05 02 0907 0400
These parameters correspondingly increase the wall heatt 1 01 01 1 0 01 1 05 02 0919 0316
i ; 1 1 01 01 1 05 01 1 05 02 0849 0.296
transfer rate and thus, accelerate solution blow-up. 1 1 0l 01 1 05 0 1 o5 02 0798 0278
1 1 01 01 1 05 02 1 05 02 1106 0.325
1 1 0.1 0.1 1 05 03 1 05 02 1720 0.367
; 1 1 01 01 1 05 01 2 05 02 089 0.288
5 Conclusion 1 1 01 01 1 05 01 3 05 02 0977 0.280
i , , 1 1 01 01 1 05 01 1 01 02 085 0.299
In this study, the effects of the Navier slip and otherflow 1 1 01 01 1 05 01 1 05 02 0849 0296
parameters on unsteady MHD reactive flow of a 1 1 gi 81 i g-g 81 1 015 %21 %-ggg g%gg
thlrd-grade fluid through a porous saturated mgdlum with 7 7 01 01 1 05 01 1 05 03 0896 0294
asymmetric convective boundary conditions are 1 1 01 01 1 05 01 1 05 05 0959 0.277

investigated. It is concluded that the porous medium
parameter and the Hartmann number retard the fluid
velocity and temperature profiles. The lower wall slip
parameter increases the fluid velocity profiles. The upper
wall slip parameter diminishes the fluid velocity profiles K - Porous medium permeabilityr?)
and increases the fluid temperature. The skin friction isl - Planck’s numbe(Js)
observed to be diminished by the porous mediumm € {—2,0,05} - Numerical exponents for sensitised,
parameter, the Hartmann number, the variable viscosityArrhenius and bimolecular kinetics, respectively
parameter and the non-Newtonian parameter. It isng,n, - Lower and upper wall slip parameters,
however, increased by the wall slip parameters. The walrespectively
slip parameters are also observed to increase the wall he&- Modified pressur¢Pa)
transfer rate and to reduce the thermal criticality values o P - PressuréPa)
the reaction parametehA. The temperature dependent Pr - Prandtl number
viscosity parameter, the viscous heating parameter an@ - Heat of reactiofWm—3K 1)
the numerical exponemh € {—2,0,0.5} are also seen to R- Universal gas constandmol ~*K 1)
play the same role. S- Porous medium shape parameter
T - TemperaturéK)
Ta - Ambient temperaturék)

Nomenclature u - Dimensionless velocity component in tkedirection
a- Channel width(m) (ms™1)
By - Electromagnetic induction (tesla) Greek symbols
A - Rate constant o - Variable viscosity parameter
Bi - Biot number o1, B3 - Material coefficients
cp - Specific heat at constat pressidkg K1) Bo.B1 - Lower and upper wall dimensional slip
Da - Darcy number parameters
E - Activation energy(J) y - Non-Newtonian parameter
G - Pressure gradient parameter 0 - Material parameter
h - Boltzmann’s constartJK 1) € - Activation energy parameter
hy,hy - Heat transfer coefficients at the lower and upper6, - Ambient temperature parameter
plates, respectivelgpvm—3K 1) u - Fluid dynamic viscosityPas)
Ha - Hartmann number A - Frank-Kamenetskii parameter
k - Thermal conductivitfWm~1K 1) p - Fluid density(kgm®)
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