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Abstract: We design and analyse two numerical methods namely a fitted mesh and a fitted operator finite difference methods for
solving singularly perturbed Volterra integro-differential equations. The fitted mesh method we propose is constructed using a finite
difference operator to approximate the derivative part andsome suitably chosen quadrature rules for the integral part. To obtain a
parameter-uniform convergence, we use a piecewise-uniform mesh of Shishkin type. On the other hand, to construct the fitted operator
method, the Volterra integro-differential equation is discretised by introducing a fitting factor via the method of integral identity with
the use of exponential basis function along with interpolating quadrature rules [2]. The two methods are analysed for convergence and
stability. We show that the two methods are robust with respect to the perturbation parameter. Two numerical examples are solved to
show the applicability of the proposed schemes.
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1 Introduction

In this paper, we study the singularly perturbed Volterra
integro-differential problem (SPVIDE)

Lu: =εu′(t)+a(t)u(t)+
∫ t

0
K(t,s)u(s)ds= f (t), (1.1)

t ∈ I : = [0,1],

u(0) = γ0, (1.2)

whereγ0 is a given constant and the singular perturbation
parameterε is assumed to take arbitrary small values 0<
ε ≤ 1. The coefficienta(t) is a sufficiently smooth function
on I , such thata(t)≥α > 0. The functionsf (t) andK(t,s)
are sufficiently smooth onI andI × I respectively.

Puttingε = 0 in equation (1.1) we obtain the reduced
equation

a(t)u0(t)+
∫ t

0
K(t,s)u0(s)ds= f (t)

which is a Volterra integral equation of the second kind.
The singularly perturbed character of (1.1) occurs when
the properties of the solution withε 6= 0 are not in

accordance with those whenε = 0. This incompatibility
gives rise to an initial layer.

These problems often arise in various areas, for
instance, in models of population dynamics, epidemics,
diffusion with nonlinear surface dissipation, synchronous
control systems and nonlinear renewal processes, filament
stretching, polymer rheology, nonlinear radiation heat
transfer (see, e.g., [2,13] and references quoted).

It is known that, unless severe restrictions are made
on the step size of a discretisation, most of the classical
numerical methods are not fit to handle problems with a
small parameter multiplying the derivative. The
truncation error becomes unbounded as the perturbation
parameter gets small. To resolve this issue, two
approaches are often used in the framework of finite
difference methods. The first approach, usually named
fitted mesh finite difference methods, consists of an
upwinding scheme as a discretisation on a nonuniform
mesh. The second approach which forms the class of
fitted operator finite difference methods recourses to a
discrete operator involving either a fitting factor (of
exponential type for example) or a denominator function.
The above approaches have been used extensively to
solve singularly perturbed differential equations.
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However, very little effort in their use is observed for
singularly perturbed integro-differential equations.

Numerous works on numerical treatment of
Volterra/Fredholm integral equations have been recorded
in the literature over the past half century.

Kauthen [9] surveyed the existing litterature on
singularly perturbed Volterra integral and
integro-differential equations. He also analysed an
implicit Runge-Kutta method for singularly perturbed
Volterra integro-differential equation [7]. whilst in [8] the
same author studied the convergence of the extended
implicit Pouzet-Volterra-Runge-Kutta methods applied to
singularly perturbed systems of Volterra
integro-differential equations. An exponential fitted
scheme for a fixed perturbation parameterε is derived
and stability analyis of the scheme is discussed in [15].
The discretization of singularly perturbed Volterra
integro-differential equation and Volterra integral
equations by tension spline collocation methods in
tension spline spaces can be found in [6].

A general overview of several techniques to integrate
Volterra/Fredholm integral or integro-differential
equations can be found in [1,11,12,14,17]. In 2006
Bijura[5] demonstrated the existence of the initial layers
whose thickness is not of order of magnitudeO(ε),ε 7−→
0, and developed approximate solutions using the initial
layer theory In [16], Şevgin studied the convergence
properties of a difference scheme for singularly perturbed
Volterra integro-differential equations on a graded mesh.
Zhongdi and Lifeng [18] used the midpoint difference
operator along with trapezoidal integration on a piecewise
uniform Shishkin mesh to develop the numerical method
for (1.1)-(1.2). They discussed the convergence of the
method and showed that the proposed method is almost
second convergence. On the other hand, Amiraliyev and
Şevgin [2] presented an exponentially fitted finite
difference method to solve the same problem. The fitting
factor was intoduced via the method of integral identities
with the use of exponential basis functions and
interpolating quadrature rules with weight and remainder
terms in integral form. Their method was first order
accurate.

In this paper, we introduce two discretisations of
(1.1)-(1.2). Firstly, we use the upwinding scheme and a
combination of the right side rectangle and trapezoidal
rules on a piecewise uniform mesh of Shishkin type. We
refer to this method as the fitted mesh finite difference
method (FMFDM) for (1.1)-(1.2). Kudu et al. [10]
designed an implicit finite difference scheme on a
piecewise uniform mesh of Shishkin-type for solving a
singularly perturbed delay integro-differential equation.
However, he did not use the trapezoidal rule.

Secondly, based on the method of integral identities
and the use of exponential basis functions we compute a
fitting factor which is used to discretise the differential
part of (1.1)-(1.2). Then, a blend of some suitable
interpolating quadrature rules with weight and remainder
terms in the integral form are used for the integral part.

This approach is termed exponentially fitted operator
finite difference method (EFOFDM). A similar numerical
approach has been proposed by Amiralivey and Şevgin
[2].

Thus, the approach to construct difference problems
and analyze the error for approximate the solutions is
analogous to the ones from [2], [10] and [16] and based
upon some quadrature rules introduced by Amiraliyev
[3]. An extension and summary of these rules are given in
Amiraliyev and Mamedou [4].

The proposed methods are analysed for convergence
and stability and are shown to be first order accurate.

Before we proceed further, we present a lemma which
will be useful in the analysis of the methods introduced in
subsequent sections.

Lemma 11The solution u(t) of problem (1.1)-(1.2)
satisfies the estimate

|u(k)| ≤C(1+ ε−kexp(−αt/ε)) t ∈ I , 0≤ k≤ 3.
(1.3)

Prof. See [2]
The rest of the paper is structured as follows: The

fitted mesh method is given in Section 2. In 2.1, we
introduce the Shishkin mesh and describe the finite
difference scheme. The convergence properties of the
fitted mesh method is analysed in 2.2. Section 3, deals
with the exponential fitted operator method. In 3.1, the
difference scheme is developed on a uniform mesh. The
stability and convergence of the exponential fitted
operator is provided in 3.2. In 3.3, we carry out the error
analyis of the exponential scheme. Two test examples are
presented in Section 4. Some concluding remarks and
discussion are given in Section 5.

Notation
For a positiveN, we adopt the following notations. Let
ψN = {t0 = 0< t1 < t2 < t3 < ... < tN−1 < tN = 1},ψN =
ψN ∪ {t = 0}, be a partition of[0,1] and for eachi ≥ 1,
we set the mesh widthshi = ti − ti−1. Throughout the
paper, the notationg̃t,i = (gi − gi−1)/hi is used for any
mesh functiongi defined onψN andC denotes a generic
constant that is independent of the perturbation parameter
ε and of the mesh step-sizehi. To simplify the notation
we setgi = g(ti) for any functiong(t) and utilize the
maximum norm defined by ||g||∞ = max

[0,1]
|g(t)|.

Furthermore, for any discrete functiongi , we denote the
corresponding discrete norm by
||g||∞,ψN ≡ ||g||∞ = max

[0,1]
|gi |.

2 Method I: FMFDM

In this section we decribe the finite difference scheme and
introduce the piecewise uniform mesh. Next we present
some features of the scheme and lastly we present the
error analysis of the scheme. The approach we present
here was derived using a method based upon the finite
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difference operator for the first derivative on Shishkin
meshes along with the right side rectangle and repeated
trapezoidal quadrature rules.

2.1 The discretisation

A fitted mesh method for solving the SPVIDE (1.1)-(1.2)
is now outlined. OnψN a piecewise uniform mesh of
Shishkin type is constructed as follows: the domain
I = [0,1] is partitioned into two subdomains[0,λ ]∪ [λ ,1].
On each of the subdomains a uniform mesh withN/2
mesh intervals is established. The mesh transition point
satisfies

λ = min{1/2,α−1ε| lnε|}. (2.4)

In the rest of the paper, we assume thatλ = α−1ε| lnε| so
that the mesh is fine on[0,λ ] and coarse in[λ ,1]. Then our
mesh points are

ti =

{
−α−1ε ln

[
1− (1− ε)2i

N

]
, i = 0(1)N/2,

λ + 2(1−λ )
N (i − N

2 ), i = N/2+1(1)N.
(2.5)

To construct the fitted mesh scheme for solving (1.1)-
(1.2), we integrate (1.2) over the open interval(ti−1, ti)

εh−1
i

∫ ti

ti−1
u′(t)dt+h−1

i

∫ ti

ti−1
a(t)u(t)dt+

h−1
i

∫ ti

ti−1

{∫ t

0
K(t,s)u(s)ds

}
dt = h−1

i

∫ ti

ti−1
f (t)dt.

Using the right side rectangle rule, we have

εũt,i +aiui +h−1
i (ti − ti−1)

∫ ti
0 K(ti ,s)u(s)ds+R(1)

i +R(2)
i = fi ,

(2.6)
where

R(1)
i =−h−1

i

∫ ti

ti−1

(t − ti−1)
d
dt

[a(t)u(t)− f (t)]dt, (2.7)

and

R(2)
i =−h−1

i

∫ ti

ti−1

(t − ti−1)
d
dt

[∫ t

0
K(t,s)u(s)ds

]
dt.

(2.8)
Moreover, applying the repeated trapezoidal

integration to the right-hand-side integral term in (2.6) we
get
∫ ti

0
K(ti ,s)u(s)dt =

hi

4
K(ti , ti)ui +

hi

4
K(ti , ti−1)ui−1

+
i−1

∑
j=1

h j

2
[K(ti , t j)u j +K(ti , t j−1)u j−1], (2.9)

where

R(3)
i =

i

∑
j=1

∫ t j

t j−1

(t j − s)
d
ds

[K(ti ,s)u(s)]ds. (2.10)

Clearly from (2.6) and (2.9) we have the following
expression foru(ti)

εũt,i +aiui +
hi

4
K(ti , ti)ui +

hi

4
K(ti , ti−1)ui−1

+K̃(t0, ...ti−1;u0, ...,ui−1)+Ri,= fi , i = 1(1)N,(2.11)

where

K̃(t0, ...ti−1;u0, ...,ui−1) =

{
0, i = 1,

∑i−1
j=1

h j
2 [K(ti , t j)u j +K(ti, t j−1)u j−1], i > 1,

and the discretization error is

Ri =−h−1
i

∫ ti

ti−1

(t − ti−1)
d
dt

[a(t)u(t)− f (t)]dt

−h−1
i

∫ ti

ti−1

(t − ti−1)
d
dt

[∫ t

0
K(t,s)u(s)ds

]
dt

+
i

∑
j=1

∫ t j

t j−1

(t j − s)
d
ds

[K(ti ,s)u(s)]ds (2.12)

Neglecting the remainder term in (2.11), we suggest the
following fitted mesh finite difference scheme to
approximate the solution of (1.1)-(1.2)

LNyi ≡ε ỹt,i +aiyi +
hi

4
K(ti , ti)yi +

hi

4
K(ti , ti−1)yi−1+

K̃(t0, ...ti−1;y0, ...,yi−1) = fi , i = 1(1)N, (2.13)

y0 =γ0, (2.14)

where

K̃(t0, ...ti−1;y0, ...,yi−1)=

{
0, i = 1,

∑i−1
j=1

hj
2 [K(ti , t j)y j+K(ti , t j−1)y j−1], i > 1.

The lower triangular system of linear equations (1.1)-(1.2)
takes the form

AU = F, (2.15)

where the various entries of the matrixA and components
of the column-vectorF are given by

Aii = rc
i , i = 1(1)N,

Ai,i−1 = r−i,i−1 i = 2(1)N,

Ai, j = r−i,i−1 i = 3(1)N; j = 1(1)i −1,

F1 = f1−

(
−

ε
h1

+
h1

4
KK1

)
y0 i = 1,

Fi = fi −

(
h1

2
KKi

)
y0 i = 2(1)N,






where
KK = Ki0,

rc
i =

(
ε
hi

)
+ai +

hi

4
Kii ,

r−i,i−1 =

(
−ε
hi

)
+

hi

4
Ki,i−1+

1
2

hi−1Ki,i−1,

r−i,i−1 =

(
h j +h j−1

2

)
Ki, j .





Here we refer to this scheme as FMFDM. The
discrete operator in the Fitted Mesh Finite Difference
Method, which we denote bylN, satisfies the following
lemmas [2].
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Lemma 21Let the difference operator

lNyi =Viyi −Wiyi−1, 1≤ i ≤ N, (2.16)

be given, whereVi > 0 andWi > 0. Then, for all mesh
functionΦi such thatΦ0 ≥ 0, lNΦi ≥ 0 for all i ≥ 1, we
haveΦi ≥ 0 for all 0≤ i ≤ N

Proof
Assume thatΦk ≤ 0 for somek satisfying 0≤ k ≤ N and
that Φk = min

0≤i≤N
Φi . Then we haveΦk −Φk−1 ≤ 0 and so

lNΦk ≡ ViΦk − WiΦk−1 < 0, which contradicts the
hypothesis of the lemma. HenceΦk ≥ 0 and for all i,
Φi ≥ 0, 1 ≤ i ≤ N. This discrete principal which
guarantees the uniqueness of the solution enables us to
prove the following lemma which provides the
boundedness of the the solution.

Lemma 22Let lNyi be difined as in (2.16). If Vi −Wi ≥
α > 0, then for the solution of the difference initial value
problem

lNyi = Fi , i ≥ 1,

y0 = µ

the following inequality holds

||y||∞ ≤ |µ |+α−1 max
0≤i≤N

|Fi | (2.17)

Proof
Consider two mesh functions which we define by

Πi = |β |+α−1 max
0≤i≤N

|Φi |± yi (2.18)

It is easy to see that
Π ≥ 0

and taht fori ≥ 1,

lNΠi = Ai
[
|µ |+

1
α

max
0≤i≤N

|Fi |+(±yi)
]

−Bi
[
|µ |+

1
α

max
0≤i≤N

|Fi−1± yi−1|
]

= (Ai −Bi)|µ |+
1
α
[Ai max

0≤i≤N
|Fi|−Bi max

0≤i≤N
|Fi−1|]±Fi

≥ (Ai −Bi)|µ |+
1
α
[Ai max

0≤i≤N
|Fi|−Bi max

0≤i≤N
|Fi|]±Fi

≥ (Ai −Bi)|µ |+
Ai −Bi

α
max

0≤i≤N
|Fi |±Fi ≥ 0

≥ 0.

Applying the dicrete maximum principle (Lemma21) we
can conclude thatΠi ≥ 0, ∀i thus

||y||∞ ≤ |β |+α−1 max
0≤i≤N

|Fi |

which is the required result.

Lemma 23Assume that

α +
hi

4
Kii ≥ α∗ > 0, i = 1(1)N. (2.19)

Then for the difference operator

lNvi = ε ṽt,i +aivi +
hi

4
Kii vi (2.20)

whereKii = K(ti , ti) we have

||vi ||∞ ≤ |v0|+α max
0≤i≤N

|lNvi | (2.21)

Proof
The difference expression (2.20) can be rewritten as

lNyi ≡Viyi −Wiyi−1. (2.22)

where

Vi =
ε
hi

+ai +
hi

2
K(ti , ti)> 0,

and

Wi =
ε
hi

> 0,

since

Vi −Wi = ai +
hi

2
K(ti , ti)> 0 by (2.19),

and (2.21) follows in virtue of (2.17).

Lemma 24(Stability for the difference problem
(2.13)-(2.14)). Let the difference operatorlNyi be given
by (2.20). Then for the difference problem (2.13)-(2.14)
we get

lNyi ≤C
i

∑
j=1

h j |y j−1|+ || f ||∞, 1≤ i ≤ N. (2.23)

Proof
From (2.13) we have

|lNyi | ≤ | fi |+

∣∣∣∣∣
i−1

∑
j=1

h j

2
K(ti , t j)y j

∣∣∣∣∣+
∣∣∣∣∣

i

∑
j=1

h j

2
K(ti , t j−1)y j−1

∣∣∣∣∣ .

Taking into account the fact that the kernel is bounded, this
clearly leads to (2.23).

Lemma 25Let (2.19) be satisfied, then for the solution of
the difference scheme (2.13)-(2.14) we have the following
estimate

|yi | ≤ (α−1
∗ || f ||∞ + |A|)exp(α−1

∗ Cti), 1≤ i ≤ N. (2.24)

See Lemma 4.4 of [2]

2.2 Error analysis of the FMFDM

Let τi = yi − ui, 0 ≤ i ≤ N, whereyi is the solution of
(2.13)-(2.14) andui the solution of (1.1)-(1.2) at the mesh
point ti . Then for the error functionτi , we have

LNτi =ετt̃,i +[aiyi −aiui ]+
hi

4
[K(ti , ti)yi −K(ti , ti)ui ]+

hi

4
[K(ti , ti−1)yi−1−K(ti , ti−1)ui−1]+ K̃ +Ri i = 1(1)N,

(2.25)

τ0 =0, (2.26)
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where the remainder termRi is given by (2.12) and

K̃ =





0, for i = 1,

∑i
j=1

h j
2 {[K(ti , t j)y j −K(ti, t j)u j ],

+[K(ti , t j−1)y j−1−K(ti, t j−1)u j−1]} for i > 1.

Lemma 26Under the requirements of Lemma11, for the
remainder termRi of the scheme (2.13)-(2.14) the
following inequality

||Ri ||∞,ψN ≤CN−1 (2.27)

holds.

Proof
We rewrite the remainder term in the form

Ri = R(1)
i +R(2)

i +R(3)
i ,

whereR(1)
i ,R(2)

i andR(3)
i are respectively given by (2.7),

(2.8) and (2.10). From (2.7), taking into consideration the
hypothesis of Lemma11on an arbitrary mesh we get

|R(1)
i | ≤ C{hi +

∫ ti

ti−1

|u′(t)|dt}, i = 1(1)N,

≤ C{hi +
1
ε

∫ ti

ti−1

exp(−αt/ε)dt}, i = 1(1)N. (2.28)

For (2.8), using Leibnitz rule and (1.3) we obtain

|R(2)
i | ≤ h−1

i

∫ ti

ti−1

(t − ti−1)

∣∣∣∣
∂
∂ t

∫ t

0
K(t,s)u(s)ds

∣∣∣∣dt,

≤ h−1
i

∫ ti

ti−1

(t − ti−1)|K(t, t)||u(t)|dt

−h−1
i

∫ ti

ti−1

(t − ti−1)

∣∣∣∣
∫ t

0

∂
∂ t

K(t,s)u(s)ds

∣∣∣∣dt

≤ Chi, i = 1(1)N. (2.29)

Lastly from (2.10),

|R(3)
i | =

∣∣∣
i

∑
j=1

∫ t j

t j−1

(t j − s)
d
ds

[K(ti ,s)u(s)]ds
∣∣∣

≤
∣∣∣

i

∑
j=1

∫ t j

t j−1

(t j − s)
∂
∂ t

K(ti ,s)u(s)ds
∣∣∣

+
∣∣∣

i

∑
j=1

∫ t j

t j−1

(t j − s)K(ti ,s)u(s)ds
∣∣∣,

≤ Chi

[∫ ti

0
|u(s)|ds+

∫ ti

0
|u′(s)|ds

]

Further, since, by (1.3)
∫ ti

0
|u′(s)|dt ≤C we have

|R(3)
i | ≤Chi i = 1(1)N, (2.30)

In each of the subdomains[0,λ ] and[λ ,1], we estimate
the remainderRi as following.

In the subdomain[0,λ ], considering the estimate11
we have from (2.28) that

|R(−1)
i | ≤C

[
hi+α−1

(
exp
(
−

αti−1

ε

)
+exp

(
−

αti
ε

))]
, (2.31)

i = 1(1)N.

and,

hi = −α−1ε ln

[
1− (1− ε)

2i
N

]

+α−1ε ln

[
1− (1− ε)

(2(i −1))
N

]

≤ 2α−1(ε −1)N−1.

But also,

exp(−αti−1/ε)+exp(−αti/ε) = 2(1− ε)N−1.

It follows from (2.31) that

|R(−1)
i | ≤CN−1, i = 1(1)N/2. (2.32)

For (2.29) and (2.30) we get the following approximation

|R(2)
i | ≤CN−1, i = 1(1)N/2. (2.33)

|R(3)
i | ≤CN−1, i = 1(1)N/2. (2.34)

As a result, from (2.32)-(2.34) for the subdomain[0,λ ] we
obtain the estimate

|Ri | ≤CN−1, i = 1(1)N/2. (2.35)

Next, consider[λ ,1] and recall [16] that
u′(t)≤C or ε−1 exp(−αt/ε)≤ 1 which implies that

|R(1)
i | ≤Ch, i = N/2+1(1)N. (2.36)

In the similar manner as above, we obtain

|R(1)
i | ≤CN−1, i = N/2+1(1)N. (2.37)

|R(2)
i | ≤CN−1, i = N/2+1(1)N, (2.38)

|R(3)
i | ≤CN−1, i = N/2+1(1)N. (2.39)

From (2.37)-(2.39) for the subdomain[λ ,1] we obtain

|Ri | ≤CN−1 i = N/2+1(1)N. (2.40)

And this completes the proof.

Lemma 27Let (2.19) be satisfied, then the solutionτi of
the problem (2.25)-(2.26) satisfies

||τi ||∞,ψN ≤ max
0≤i≤N

|Ri |. (2.41)

Proof
The proof is a traight result of (2.24) by puttingA= 0 and
F = R. The results of Lemmas26 and 2.2 are now
combined to give the following main estimate in this
section
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Theorem 28Let u be the solution of the continuous
problem (1.1)-(1.2) and y the solution of the discrete
problem (2.13)-(2.14). Then under the requirements of
Lemma11, we have

||y−u||∞,ψN ≤CN−1 (2.42)

Remark 29Note that the aboveε-uniform result does not
contain the so called “locking factor” which usually
surfaces when discretisations are made on Shishkin
meshes. If fact, estimates of the type
||y − u||∞,ψN ≤ CN−1 lnN are encountered when the
choice of the transition point is dependent on some factor
of lnN. Our choice of the transition point was inspired by
[16] which uses a factor oflnε (See(2.4)).

3 Method II: EFOFDM

In this section the mesh is taken to be uniform. As before,
let N be a positive integer. We consider the following
uniform partition of the interval[0,1] which we denote by
ψ̄N:
t0 = 0, ti = t0 + ih, i = 1(1)N, tN = 1 whereh = 1/N,
the mesh size. In the rest of the section, we first construct
the numerical method and derive the fitting factor. Then
we give some useful facts of the scheme and finaly we
carry out the convergence analysis.

3.1 Derivation of the scheme

To get started, we recall that the problem discussed in the
previous section is considered again here. In [2],
Amiraliyev and Şevgin suggested a EFOFDM to solve
(1.1)-(1.2). Our aim in this section is to constructed a
modified EFOFDM for (1.1)-(1.2) which is based on the
underlying idea of EFOFDM in [2]. To achieve the goal,
we consider the following identity[2]

χ−1
i h−1

∫ t1

ti−1

Luϕi(t)dt= χ−1h−1
∫ ti

ti−1

f (t)ϕi(t)dt, 1(1)N.

(3.43)
where the exponential functionϕi(t) andχi are the slight
variants of the ones from [2] and hence are respectively
given by

ϕi(t) = exp
(ai

ε
(t − ti)

)
, (3.44)

χi = h−1
∫ ti

ti−1

ϕi(t)dt =
1−exp(−ρai)

ρai
with ρ = h/ε.

(3.45)
We note that the exponential basis functionϕi(t) satisfies

−εϕ ′
i (t)+aiϕi(t) = 0, ϕ(ti) = 1, (3.46)

and that

χ−1
i h−1

∫ ti

ti−1

ϕi(t)dt = 1. (3.47)

Hence, relation (3.43) is written in the form

χ−1
i h−1ε

∫ ti

ti−1

u′(t)ϕi(t)dt+ χ−1
i h−1ai

∫ ti

ti−1

u(t)ϕi(t)dt+

χ−1
i h−1

∫ ti

ti−1

ϕi(t)

(∫ t

0
K(t,s)u(s)ds

)
dt = fi −R(1)

i ,

where

R(1)
i = χ−1

i h−1
∫ t1

ti−1

[a(t)−a(ti)]u(t)ϕi(t)dt

+χ−1
i h−1

∫ ti

ti−1
[ f (ti)− f (t)]ϕi(t)dt.

Utilizing quadrature rules(2.1) and (2.2) from [4] for
σ = 1 on the interval [ti − ti−1] and take into
considerartion (3.46) we have the following expression

χ−1
i h−1ε

∫ ti

ti−1

u′(t)ϕi(t)dt+ χ−1
i h−1ai

∫ ti

ti−
u(t)ϕi(t)dt+

χ−1
i h−1

∫ ti

ti−1

ϕi(t)

(∫ t

0
K(t,s)u(s)ds

)
dt = fi −R(1)

i

=εũt,i

[
χ−1

i h−1
∫ ti

ti−1

ϕi(t)dt+ χ−1
i h−1ai

∫ ti

ti−1

(t − ti)ϕi(t)dt

]

+aiui + χ−1
i h−1

∫ ti

ti−1

ϕi(t)dt
∫ ti

0
K(ti ,s)u(s)ds+

+

∫ ti

ti−1

d
dη

[∫ η

0
K(η ,s)u(s)ds

]
[H(T −η)−1]dη

=εθi ũt,i +aiui +
∫ ti

0
K(ti ,s)u(s)ds+ χ−1

i h−1
∫ ti

ti−1

ϕi(t)dt×

∫ ti

ti−1

d
dη

[∫ η

0
K(η ,s)u(s)ds

]
[H(T −η)−1]dη

whereθi = 1+ χ−1
i h−1ai

∫ ti
ti−1

(t − ti)ϕi(t)dt, H(T −η) is
a Heaviside function. Moroever, applying the repeated
trapezoidal integration to the integral in the last
expression:
∫ ti

0
K(ti ,s)u(s)ds

we get the following expression foru(ti)

εθi ũt,i +aiui +
h
4

K(ti , ti)ui +
h
4

K(ti , ti−1)ui−1+

h
2

K̃(t0, ...ti−1;u0, ...,ui−1)+Ri = fi , i = 1(1)N, (3.48)

where

Ri = −χ−1
i h−1

∫ t1

ti−1

[a(t)−a(ti)]u(t)ϕi(t)dt

+χ−1
i h−1

∫ ti

ti−1
[ f (ti)− f (t)]ϕi(t)dt

+

∫ ti

ti−1

d
dη

[∫ η

0
K(η ,s)u(s)ds

]
[H(T −η)−1]dη

+
i

∑
j=1

∫ t j

t j−1

(t j −η)
d
ds

[K(ti ,η)u(η)]dη (3.49)
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and

K̃(t0, ..., ti−1;u0, ...,ui−1)=

{
0, i = 1,
∑i−1

j=1[K(ti, t j )uj+K(ti, t j−1)uj−1], i > 1.

A simple algebra shows that

θi =
ρai exp(ρai)

(1−exp(−ρai))
. (3.50)

NeglectingRi in (3.48) we may propose the following
exponential finite difference scheme to approximate
(1.1)-(1.2):

Lhyi ≡ εθi ỹt,i +aiyi +
h
4

K(ti , ti)yi +
h
4

K(ti , ti−1)yi−1

+
h
2

K̃(t0, ...ti−1;y0, ...,yi−1) = fi , i = 1(1)N,(3.51)

y0 = γ0, (3.52)

where

K̃(t0, ...ti−1;y0, ...,yi−1)=

{
0 i = 1,
∑i−1

j=1[K(ti, t j )y j+K(ti, t j−1)y j−1] i > 1.

The lower triangular system of linear equation (1.1)-(1.2)
takes the form

AU = F, (3.53)

Aii = rc
i , i = 1(1)N,

Ai, i −1= r−i,i−1 i = 2(1)N,

Ai, j = r−i,i−1 i = 3(1)N; j = 1(1)i −1,

F = f1− (−
εθ1

h
+

h
4

KK1)y0 i = 1,

Fi = fi − (
h
2

KKi)y0 i = 2(1)N






where

rc
i =

εθi

h
+ai +

h
4

Kii ,

r−i,i−1 =
−εθi

h
+

h
4

Ki,i−1+
1
2

hKi,i−1,

r−i,i−1 =
h
2

K(ti , t j).





3.2 Some useful properties of the EFOFDM

Lemma 31Let the difference operator

lyi = Aiyi −Biyi−1, 1≤ i ≤ N, (3.54)

be given, whereAi > 0 andBi > 0. Then the difference
operator (3.54) satisfies the following discrete maximum
principal: if lyi ≥ 0,∀ i ≥ 0 andy0 ≥ 0, thenyi ≥ 0,∀ i ≥ 0.

Proof Following the technique of proof given in Lemma
21, we can prove the present Lemma

Lemma 32Let lyi be difined as in (3.54). If
Ai −Bi ≥ α > 0, then for the solution of the difference
initial value problem

lyi = Fi, i ≥ 1,

y0 = µ
the following inequality holds

||yi ||∞ ≤ |µ |+α−1 max
0≤i≤N

|Fi| (3.55)

Proof The proof is obtained by arguments similar to those
used in proving Lemma 4.1 part 2 and 3

Lemma 33Let the condition

α +
h
4

Kii ≥ α∗ > 0, i = 1(1)N (3.56)

be guaranteed, then for the difference operator

lhvi = εθi ṽt,i +aivi +
h
4

Kii vi (3.57)

we have

||vi ||∞ ≤ |v0|+α max
0≤i≤N

|lvi | (3.58)

whereKii = K(ti , ti).
Proof see (2.1)

Lemma 34[Stability of the discrete problem (3.51)-(3.52)]
. Let the difference operatorlhyi be defined by (3.57). Then
for difference problem (3.51)-(3.52) we have

lhyi ≤Ch
i

∑
j=1

|y j−1|+ || f ||∞, 1≤ i ≤ N (3.59)

From (2.13) we get

|lhyi | ≤ | fi |+

∣∣∣∣∣
h
2

i−1

∑
j=1

K(ti , t j)y j

∣∣∣∣∣+
∣∣∣∣∣
h
2

i

∑
j=1

K(ti , t j−1)u j−1

∣∣∣∣∣

and taking into account the fact that the kernelK(t,s) is
bounded, (3.59) can be established

Lemma 35Let (3.56) be satisfied, then for then solution of
the difference scheme (3.51)-(3.52) we have the following
estimate

|yi | ≤ (α−1
∗ || f ||∞ + |A|)exp(α−1

∗ Cti), 1≤ i ≤ N. (3.60)

Proof
See [2] Lemma 4.4

3.3 Error analyis of the EFOFDM

Let zi = yi −ui, whereyi andui are solution of problems
(3.51)-(3.52) and (1.1)-(1.2) respectively at the mesh point
ti . Then for the error functionzi , we have

Lhzi = Ri , i = 1(1)N, (3.61)

z0 = 0, (3.62)

whereRi is defined by (3.49).

Lemma 36Under conditionsa, f ∈ C1 and K ∈ C1
0, the

remainder term (3.49) of the scheme (3.51)-(3.52)
satisfies

||R||∞,ψh ≤Ch (3.63)
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Proof
We rewriteRi as

R(1)
i = −χ−1

i h−1
∫ t1

ti−1

[
a(t)−a(ti)

]
u(t)ϕi(t)dt

+χ−1
i h−1

∫ ti

ti−1

[
f (ti)− f (t)

]
ϕi(t)dt (3.64)

R(2)
i =

∫ ti

ti−1

d
dη

[∫ η

0
K(η ,s)u(s)ds

]
[H(T−η)−1]dη(3.65)

R(3)
i =

i

∑
j=1

∫ t j

t j−1

(t j −η)
d

dη
[K(ti ,η)u(η)]dη . (3.66)

First we prove that for (3.64) inequality

|R(1)
i | ≤Ch 1(1)N (3.67)

holds. We rewrite (3.64) as

|R(1)
i | ≤ χ−1

i h−1
∫ ti

ti−1

|[a(t)−a(ti)]u(t)ϕi(t)|dt

+χ−1
i h−1

∫ ti

ti−1

|[ f (ti)− f (t)]ϕi(t)|dt.

It follows by means of the intermediate value theorem [2]
that

|a(t)−a(ti)| = |a′(ϑi)||t − ti| ≤C1h, ϑi ∈ (ti , t),

| f (ti)− f (t)| = | f ′(υi)||ti − t| ≤C2h, υi ∈ (t, ti)

and so, it is easy to see that (3.67) is true.
Next, for (3.65) we have [2],

R(2)
i =

∫ ti

ti−1

{
K(η ,η)uη+

∫ η

0

∂
∂η

[
K(η ,s)u(s)

]
ds

}

×[H(t−η)−1]dη

≤ C
∫ ti

ti−1

{
|K(η ,η)| |u(η)|+

∣∣∣∣
∫ η

0

∂
∂η

K(η ,s)u(s)ds

∣∣∣∣
}

×[H(t−η)−1]dη

≤ C

{∫ ti

ti−1

|u(η)|dη +

∫ ti

ti−1

∣∣∣∣
∫ η

0
u(s)ds

∣∣∣∣dη
}
.

Using Lemma11we obtain

R(2)
i ≤Ch. (3.68)

Following the same lines of discussion as in (2.30), it
can be observed that (3.66) satisfies (3.63). This completes
the proof.

Lemma 37Let (3.56) be satisfied, then the solutionzi of
the problem (3.61)-(3.62) satisfies

||zi ||∞,ψh ≤ max
0≤i≤N

|Ri |. (3.69)

Proof
The proof is straight forward as a consequence of (3.60)
by settingA = 0 andF = R. Using lemmas36 and 37,
we obtained the following first orderε-uniformly accurate
error estimate in the maximum norm which we summarize
in the theorem below.

Theorem 38Assume that u satisfies the continous
problem (1.1)-(1.2) and y satisfies the descrete problem
(3.51)-(3.52). Then under assumptions that a, f ∈ C1(I)
and K∈C1

0, we have

||y−u||∞,ψh ≤Ch (3.70)

4 Numerical results

In the section, we test the two numerical methods
described in this paper. To this end, two Volterra
integro-differential equations are presented and the
maximum errors along with the rates of convergence are
given in tabular form. The maximum errors at all the
mesh points are evaluated using the formula

eε,N := max
[0≤ j≤1]

|u(x j)− y(x j)| (4.71)

for the different values ofN. The numerical rates of
convergence are calculated using the formula

rε,k := log2

(
eNk,ε

e2Nk,ε

)
,k= 1,2,3, ... (4.72)

The test examples are considered over the interval
I = [0,1].

Example 41[18] Consider problem (1.1)-(1.2) where the
coefficient functions are given by

a(t) = t +1, K(t,s) = t + s,

f (t) = ε cost + t sint +2sint +(t −2tε + ε2)exp

(
−t
ε

)

+t−2t cost + εt− ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = sint +exp

(
−t
ε

)
.

Example 42[2] Consider problem (1.1)-(1.2) with

a(t) = 1, K(t,s) = s,

f (t) = (2+9ε+ εt +11t+ t2)exp(−t)

−10(εt+ ε2)exp

(
−t
ε

)
+5t2+10ε2−2,

u(0) = 10.

The exact solution to this problem is given by

u(t) = 10− (10+ t)exp(−t)+10exp

(
−t
ε

)
.
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Table 1: Results for Example41: Maximum pointwise error
EFOFDM

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560
10−2 3.24E-02 1.62E-02 8.13E-03 4.07E-03 2.03E-03 1.02E-03 5.08E-04
10−3 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−4 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−5 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−6 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−7 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−8 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−9 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−10 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−11 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04
10−12 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04

Table 2: Results for Example41: Maximum pointwise errors
FMFDM

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560
10−2 5.96E-02 7.83E-02 6.75E-02 3.95E-02 2.20E-02 1.17E-02 5.97E-03
10−3 5.85E-02 2.93E-02 1.49E-02 4.30E-02 6.82E-02 6.32E-02 3.69E-02
10−4 5.80E-02 2.91E-02 1.46E-02 7.28E-03 5.25E-03 1.46E-02 2.94E-02
10−5 5.76E-02 2.89E-02 1.45E-02 7.23E-03 3.62E-03 1.81E-03 1.75E-03
10−6 5.73E-02 2.87E-02 1.44E-02 7.20E-03 3.60E-03 1.80E-03 9.01E-04
10−7 5.70E-02 2.86E-02 1.43E-02 7.17E-03 3.59E-03 1.79E-03 8.97E-04
10−8 5.69E-02 2.85E-02 1.43E-02 7.15E-03 3.58E-03 1.79E-03 8.95E-04
10−9 5.67E-02 2.85E-02 1.43E-02 7.14E-03 3.57E-03 1.79E-03 8.93E-04
10−10 5.66E-02 2.84E-02 1.42E-02 7.13E-03 3.57E-03 1.78E-03 8.92E-04
10−11 5.66E-02 2.84E-02 1.42E-02 7.12E-03 3.56E-03 1.78E-03 8.91E-04
10−12 5.65E-02 2.84E-02 1.42E-02 7.11E-03 3.56E-03 1.78E-03 8.90E-04

Table 3: Rates of convergence obtained for Example41utilizing
EFOFDM

ε r=1 r=2 r=3 r=4 r=5 r=6
10−2 1.00 1.00 1.00 1.00 1.00 1.00
10−3 1.00 1.00 1.00 1.00 1.00 1.00
10−4 1.00 1.00 1.00 1.00 1.00 1.00
10−5 1.00 1.00 1.00 1.00 1.00 1.00
10−6 1.00 1.00 1.00 1.00 1.00 1.00
10−7 1.00 1.00 1.00 1.00 1.00 1.00
10−8 1.00 1.00 1.00 1.00 1.00 1.00
10−9 1.00 1.00 1.00 1.00 1.00 1.00
10−10 1.00 1.00 1.00 1.00 1.00 1.00
10−11 1.00 1.00 1.00 1.00 1.00 1.00
10−12 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: Rates of convergence obtained for Example42utilizing
FMFDM

ε r=1 r=2 r=3 r=4 r=5 r=6
10−2 1.00 1.00 1.00 1.00 1.00 1.00
10−3 1.00 1.00 1.00 1.00 1.00 1.00
10−4 1.00 1.00 1.00 1.00 1.00 1.00
10−5 1.00 1.00 1.00 1.00 1.00 1.00
10−6 1.00 1.00 1.00 1.00 1.00 1.00
10−7 1.00 1.00 1.00 1.00 1.00 1.00
10−8 0.95 0.97 0.99 0.99 1.00 1.00
10−9 0.94 0.97 0.99 0.99 1.00 1.00
10−10 0.94 0.97 0.98 0.99 1.00 1.00
10−11 0.93 0.96 0.98 0.99 1.00 1.00
10−12 0.93 0.96 0.98 0.99 1.00 1.00

Table 5: Results for Example42: Maximum pointwise error
EFOFDM

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560
10−2 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.40E-02 7.02E-03 3.51E-03
10−3 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−4 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−5 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−6 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−7 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−8 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−9 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−10 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−11 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03
10−12 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 3.52E-03

Table 6: Results for Example42: Maximum pointwise errors
FMFDM

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560
10−2 4.76E-01 9.01E-01 7.56E-01 4.42E-01 2.46E-01 1.30E-01 6.74E-02
10−3 4.19E-01 2.13E-01 1.85E-01 4.80E-01 7.48E-01 6.91E-01 4.04E-01
10−4 4.33E-01 2.18E-01 1.10E-01 5.55E-02 6.29E-02 1.61E-01 3.22E-01
10−5 4.40E-01 2.22E-01 1.11E-01 5.58E-02 2.80E-02 1.40E-02 2.06E-02
10−6 4.40E-01 2.22E-01 1.12E-01 5.58E-02 2.80E-02 1.40E-02 7.02E-03
10−7 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.80E-02 1.40E-02 7.02E-03
10−8 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.40E-02 7.02E-03
10−9 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03
10−10 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03
10−11 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03
10−12 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03
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Table 8: Rates of convergence obtained for Example42utilizing
FMFDM

ε r=1 r=2 r=3 r=4 r=5 r=6
10−2 0.25 0.77 0.85 0.91 0.95 0.98
10−3 0.20 -1.37 -0.64 0.11 0.77 0.76
10−4 0.98 0.99 -0.18 -1.36 -1.00 -0.72
10−5 1.00 0.99 1.00 1.00 -0.55 -1.31
10−6 0.99 1.00 0.99 1.00 1.00 1.00
10−7 0.99 1.00 1.00 1.00 1.00 1.00
10−8 0.99 1.00 0.99 1.00 1.00 1.00
10−9 0.99 1.00 1.00 1.00 1.00 1.00
10−10 0.99 1.00 1.00 1.00 1.00 1.00
10−11 0.99 1.00 1.00 1.00 1.00 1.00
10−12 0.99 1.00 1.00 1.00 1.00 1.00

Table 7: Rates of convergence obtained for Example42utilizing
EFOFDM

ε r=1 r=2 r=3 r=4 r=5 r=6
10−2 1.00 1.0 1.00 1.00 1.00 1.00
10−3 1.00 1.0 1.00 1.00 1.00 1.00
10−4 1.00 1.0 1.00 1.00 1.00 1.00
10−5 1.00 1.0 1.00 1.00 1.00 1.00
10−6 1.00 1.0 1.00 1.00 1.00 1.00
10−7 1.00 1.0 1.00 1.00 1.00 1.00
10−8 1.00 1.0 1.00 1.00 1.00 1.00
10−9 1.00 1.0 1.00 1.00 1.00 1.00
10−10 1.00 1.0 1.00 1.00 1.00 1.00
10−11 1.00 1.0 1.00 1.00 1.00 1.00
10−12 1.00 1.0 1.00 1.00 1.00 1.00

The analyses summarised in theorems28and38show
that the proposed numerical methods are both first order
uniformly convergent independently of the perturbation
parameter. These theoretical results are confirmed
numerically in tables1 - 8. In tables1 and2 we computed
the maximum errorseε,N and their corresponding rates of
convergencerε,k in tables 3 and 4, respectively, for
Example 41. Similarly for Example 42, where the
maximum errors are presented in tables5 and6 and the
corresponding rates of convergence in tables7 and8.

5 Discussion and conclusion

We designed and implemented fitted mesh and fitted
operator finite difference methods for solving singularly
perturbed Volterra integro-differential equations. To
construct the fitted mesh method, we used the difference
operator on a piecewise uniform mesh along with right
side rectangle rule and trapezoidal integration with weight

and remainder term in the integral form. In order for the
method to beε-uniform, a piecewise-uniform mesh of
Shishkin type was considered. The exponential fitted
operator was developed utilizing the method of integral
identity with the use of an exponential basis function and
interpolating quadrature rules with weight and remainder
term in the integral form [2].

The error analysis shows that the proposed methods
are ε-convergent. Two test examples were considered to
confirm these results. The nodal maximum errorseε,N and
the corresponding rates of convergencerε,k are provided
in tables1-8.
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