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Abstract: We design and analyse two numerical methods namely a fittesth rled a fitted operator finite difference methods for
solving singularly perturbed Volterra integro-differeitequations. The fitted mesh method we propose is constiugting a finite
difference operator to approximate the derivative part smahe suitably chosen quadrature rules for the integral parbbtain a
parameter-uniform convergence, we use a piecewise-umifieesh of Shishkin type. On the other hand, to construct tteel fitperator
method, the Volterra integro-differential equation iscdétised by introducing a fitting factor via the method okgnal identity with

the use of exponential basis function along with interpotatjuadrature rule<]. The two methods are analysed for convergence and
stability. We show that the two methods are robust with resfmethe perturbation parameter. Two numerical examplesalved to
show the applicability of the proposed schemes.
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convergence, error bound

1 Introduction accordance with those when= 0. This incompatibility
gives rise to an initial layer.

In this paper, we study the singularly perturbed Volterra  These problems often arise in various areas, for
integro-differential problem (SPVIDE) instance, in models of population dynamics, epidemics,
. diffusion with nonlinear surface dissipation, synchrosiou
Lu: — eU () +altu(t /K t su(slds=f(t). (1.1 control systems and nonlinear renewal processes, filament
(OFatyut)+ 0 (t.9)u(s) ®, @1 stretching, polymer rheology, nonlinear radiation heat
tel:=[0,1], transfer (see, e.g.2]13] and references quoted).

u(0) = w, (1.2) It is known that, unless severe restrictions are made
on the step size of a discretisation, most of the classical
whereyy is a given constant and the singular perturbationnumerical methods are not fit to handle problems with a
parametek is assumed to take arbitrary small values 0 small parameter multiplying the derivative. The
€ < 1. The coefficiena(t) is a sufficiently smooth function  truncation error becomes unbounded as the perturbation
onl, such that(t) > a > 0. The functiond (t) andK(t,s) parameter gets small. To resolve this issue, two

are sufficiently smooth ohandl x | respectively. approaches are often used in the framework of finite
Puttinge = 0 in equation {.1) we obtain the reduced difference methods. The first approach, usually named
equation fitted mesh finite difference methods, consists of an

upwinding scheme as a discretisation on a nonuniform
t mesh. The second approach which forms the class of
a(t)UO(t)+/o K(t,s)uo(s)ds= f(t) fitted operator finite difference methods recourses to a
discrete operator involving either a fitting factor (of
which is a Volterra integral equation of the second kind. exponential type for example) or a denominator function.
The singularly perturbed character df.1) occurs when The above approaches have been used extensively to
the properties of the solution witls # O are not in  solve singularly perturbed differential equations.
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However, very little effort in their use is observed for This approach is termed exponentially fitted operator
singularly perturbed integro-differential equations. finite difference method (EFOFDM). A similar numerical
Numerous works on numerical treatment of approach has been proposed by Amiralivey and Sevgin
\olterra/Fredholm integral equations have been recorded2].
in the literature over the past half century. Thus, the approach to construct difference problems
Kauthen P] surveyed the existing litterature on and analyze the error for approximate the solutions is
singularly perturbed \olterra integral and analogous to the ones frorg][ [10] and [16] and based
integro-differential equations. He also analysed anupon some quadrature rules introduced by Amiraliyev
implicit Runge-Kutta method for singularly perturbed [3]. An extension and summary of these rules are given in
Volterra integro-differential equatior”]. whilst in [8] the ~ Amiraliyev and Mamedou].
same author studied the convergence of the extended The proposed methods are analysed for convergence
implicit Pouzet-Volterra-Runge-Kutta methods applied to and stability and are shown to be first order accurate.
singularly perturbed systems of \olterra Before we proceed further, we present a lemma which
integro-differential equations. An exponential fitted will be useful in the analysis of the methods introduced in
scheme for a fixed perturbation parameters derived  subsequent sections.
and stability analyis of the scheme is discussedls.[ :
The discretization of singularly perturbed \olterra Lemma 11The .solutlon u(t) of problem (.1-(1.9
. ) . , . satisfies the estimate
integro-differential equation and \olterra integral
equations by tension spline collocation methods in | K| <c(1+ ¢ exp—at/e)) tel, 0<k<3.
tension spline spaces can be foundéh [ - - _(1'3)
A general overview of several techniques to integrate
Volterra/Fredholm  integral  or integro-differential Prof. See P] _
equations can be found in1,11,12,14,17]. In 2006 _The rest of the paper is structured as follows: The
Bijura[5] demonstrated the existence of the initial layers fitted mesh method is given in Section 2. Inl2we
whose thickness is not of order of magnitl’(dg)’g — |n'tr0duce the Shishkin mesh and describe the finite
0, and developed approximate solutions using the initiaidifference scheme. The convergence properties of the
|ayer theory In u_6], Sevgin studied the convergence f|tted mesh methold |S. analysed in22 Section 3, deals
properties of a difference scheme for singularly perturbedVith the exponential fitted operator method. Iri 3the
\olterra integro-differential equations on a graded mesh difference scheme is developed on a uniform mesh. The
Zhongdi and Lifeng 18] used the midpoint difference Stability .and convergence of the exponential fitted
operator along with trapezoidal integration on a piecewisedperator is provided in.2. In 33, we carry out the error
uniform Shishkin mesh to develop the numerical methodanalyis of the exponential scheme. Two test examples are
for (1.1)-(1.2. They discussed the convergence of thePresented in Section 4. Some concluding remarks and
method and showed that the proposed method is almogfiscussion are given in Section 5.
second convergence. On the other hand, Amiraliyev and Notation _ .
$evgin p] presented an exponentia”y f|tted f|n|te For a pOS|t|VeN, we adOpt the fO”OW|ng notations. Let
difference method to solve the same problem. The fittingn ={to=0<ti <tz <tz <... <tn-1 <ty =1}, Py =
factor was intoduced via the method of integral identities $n U {t = 0}, be a partition of/0,1] and for each > 1,
with the use of exponential basis functions andWwe set the mesh widthk =t —ti_1. Throughout the
interpolating quadrature rules with weight and remainderPaper, the notatio; = (gi — gi-1)/hi is used for any
terms in integral form. Their method was first order mesh functiorg; defined onyn andC denotes a generic
accurate. constant that is independent of the perturbation parameter
In this paper, we introduce two discretisations of € and of the mesh step-sizg. To simplify the notation
(1.1-(1.2). Firstly, we use the upwinding scheme and aWe setg = g(ti) for any functiong(t) and utilize the
combination of the right side rectangle and trapezoidaimaximum norm defined by [|g[l. = ”351049('[”-
rules on a piecewise uniform mesh of Shishkin type. We 0]
refer to this method as the fitted mesh finite difference
method (FMFDM) for (.1)-(1.2. Kudu et al. [L(]
designed an implicit finite difference scheme on a
piecewise uniform mesh of Shishkin-type for solving a
singularly perturbed delay integro-differential equatio
However, he did not use the trapezoidal rule. 2 Method | : FMFDM
Secondly, based on the method of integral identities
and the use of exponential basis functions we compute @n this section we decribe the finite difference scheme and
fitting factor which is used to discretise the differential introduce the piecewise uniform mesh. Next we present
part of (1.1)-(1.2. Then, a blend of some suitable some features of the scheme and lastly we present the
interpolating quadrature rules with weight and remaindererror analysis of the scheme. The approach we present
terms in the integral form are used for the integral part.here was derived using a method based upon the finite

Furthermore, for any discrete functign we denote the
corresponding discrete norm by

1190,y = [[9]e0 = r[ggfqgil-

(@© 2018 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.12, No. 3, 517-527 (2018)www.naturalspublishing.com/Journals.asp

N <SS 2 519

difference operator for the first derivative on Shishkin Clearly from @.6) and @.9 we have the following
meshes along with the right side rectangle and repeatedxpression fou(t;)

trapezoidal quadrature rules.

2.1 The discretisation

A fitted mesh method for solving the SPVIDE.{)-(1.2

is now outlined. Onyny a piecewise uniform mesh of

hi hi
EUg; + gl -+ — K (b, ti)ui + ZIK(thti—l)Ui—l

4
+K(to, .- ti—1;Up, ..., Ui—1) + R, = fi,

where

i = 1(1)N,(2.11)

0, =1,

K(to""ti1;u°"”’uil)_{zj LK () + Kty 1], i > 1,

Shishkin type is constructed as follows: the domaingng the discretization error is

| =[0,1] is partitioned into two subdomain@ AU A, 1].
On each of the subdomains a uniform mesh whitji2

mesh intervals is established. The mesh transition point iy

satisfies
A =min{1/2,a te|Ing|}. (2.4)

In the rest of the paper, we assume that a~¢|Ing| so

that the mesh is fine g8, A| and coarse ifA, 1]. Then our

mesh points are
. lein[1-(1-¢)2], i=0(1)N/2,
A2 = N/24+ (DN

To construct the fitted mesh scheme for solvithdl)-
(1.2, we integrateI.Z) over the open intervdt_1,t;)

(2.5)

et [1 Ut / (t)dt+

ti—
t
{/ K(t,s)u(s)ds} dt=ht/ f(t)dt.
-1 /o t—1
Using the right side rectangle rule, we have

eug; +ait +h Lt —ti1) 3 K(t,s)u(s)ds+ RY + R = fi,

(2.6)
where
1 Y d
=0 [ t-tglaOu - fold, @)
i—1
and
ti d t
2 _ _p1 —t q)—
Y= [ g [ /0 K(t,s)u(s)ds] dt.
2.8)
Moreover, applying the repeated

integration to the right-hand-side integral term 2ngj we
get

ti hi hi
K(ti,S)u(S)dt = —IK(ti RIVES ZIK(ti JSio)uiog

4
+Z K(ti, tj)uj + K(ti, tj—_1)uj_1], (2.9)
where
@ < i, do
RY=3 [ -9 gkngusias 2.10)

d

ti
R=-n" [ (t—t 1) g aut) - f(t)]dt

et [ o) [/Kts )ds}dt

ti-1

i q
+le/t-1(tj —9) galK(ti,s)u(s)ds (2.12)

Neglecting the remainder term i2.01), we suggest the
following fitted mesh finite difference scheme to
approximate the solution of.(1)-(1.2

hi hi
LNy =gy +ayi + ZIK(ti L)Y+ ZIK(ti ti1)Yioat
K(to, .. _1)=f, i=1(1N, (2.13)
Yo =Yo, (2.14)
where
0, i=1

K(to,...ti_1;Y0,-.., .
(O i—1,Y0 Yi— ) {le ]j_hZ[ (ti,tj)yj—l—K(ti,tj,l)yj,l], i>1

The lower triangular system of linear equatiofsl)-(1.2)
takes the form

ti-1:Y0,---Yi

AU =F, (2.15)

where the various entries of the matfband components
of the column-vectoF are given by

Ai =%, i=1(1N,
Aj-1=T —1 i =2(1)N,

|
i=1 h
& .
Fr=1f— (——hl+—41KK1> Yo i=1,

trapezoidal \yere

KK = Kio,

€ h
F= (h>+a4+4lK”,
_ h
o

—£ 1
ii—1— >+4{KII 1+ 5 hl 1Kiji—1,

Mi1= —

Here we refer to this scheme as FMFDM. The
discrete operator in the Fitted Mesh Finite Difference
Method, which we denote by, satisfies the following
lemmas P].
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Lemma 21Let the difference operator
Ny =Viyi —Wyi1, 1<i<N, (2.16)

be given, wheréd/; > 0 andW > 0. Then, for all mesh
function @, such thatdy > 0, IN® > 0 for alli > 1, we
have®; >0forall0<i <N

Pr oof

Assume tha®, < 0 for somek satisfying 0< k < N and

that ®, = og]Lan)" Then we haved, — @1 < 0 and so
<I<

IN®y = Vi, — W, < 0, which contradicts the
hypothesis of the lemma. Hencg, > 0 and for alli,
® >0, 1<i < N. This discrete principal which

guarantees the uniqueness of the solution enables us
lemma which provides the

prove the following
boundedness of the the solution.

Lemma 22Let INy; be difined as inZ.16. If V;, —

a > 0, then for the solution of the difference initial value

problem
Ny =F, i>1,
Yo=H
the following inequality holds
1Y/l < |1+ a‘lorgig{llﬁl (2.17)
Proof

Consider two mesh functions which we define by

_ -1 .
=B+ o max| @] £, (2.18)

Itis easy to see that
n>o

and taht fori > 1,
1

NFA. _ A - )

INFT; —A.[|u|+aor%12>,§|ﬁ|+(iy.)}

1
—Bi[|u|+ 0 m.aX|F|—1iYi—1|]

= (A =Bi)|ul+— [A Jmax|F| - Bim.aXIFlfll]iF
> (A —=Bi)[u[+— [A (max |Fi| - B max|Fl] +
B A B
> (A —By)|u|+ org%ll%liﬁ >0
> 0.

Applying the dicrete maximum principle (Lemn24) we
can conclude thafl; > 0, Vi thus

w < -
I¥llo < |B]+a~* max|F|
which is the required result.
Lemma 23Assume that
i=1(1)N.

h.
a+Z'Kn >a, >0, (2.19)

Then for the difference operator

h.
MV = evg; +avi+ L Kiv (2.20)
whereK; = K(t;,t) we have
. Ny,

[|Villeo < |Vo| + aorgi%ﬂ Vi (2.21)
Pr oof
The difference expressio.20 can be rewritten as
Ny = Viyi —Wyi_1 (2.22)
where

h;
-}é + al + 2| K(tla ) 07
and

€

VVI - H > 07
since

h.
Vi—W =a+ E'K(ti,ti) >0 by (219),
and @.21) follows in virtue of 2.17).
Lemma 24(Stability for the difference problem

(2.13-(2.14). Let the difference operatdfly; be given
by (2.20. Then for the difference problen2.(13-(2.19
we get

:
Ny <C S hilyjal +Iflle, 1<i<N. (2.23)
=1
Proof
From 2.13 we have
N i— lh i
Iyl < [fi] + Z Kth )Yi|+ Z K(t,tj—1)yj-1

Taking into account the fact that the kernelis bounded, this

clearly leads t0Z.23.

Lemma 25Let (2.19 be satisfied, then for the solution of
the difference schem@ (13-(2.14 we have the following
estimate

¥il < (@[ Flle + [A]) exp(a;'CH),
See Lemma 41 of [2]

1<i<N. (2.24)

2.2 Error analysis of the FMFDM

Let 1 =y —u, 0<i <N, wherey; is the solution of
(2.13-(2.14 andu; the solution of {.1)-(1.2) at the mesh
pointt;. Then for the error functiom;, we have

LNT =eT; + [aiyi — aiti] + %[K(thti))’i —K(t,t)u]+
PR Ao Kb u 1] +K AR 1= 1N,
(2.25)
To =0, (2.26)
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where the remainder terR) is given by .12 and
fori =1,

0,
K= {Zijl%{[K(tl, iy — K(ti, tj)uj],
+[K (G, t-1)yj-1— K(ti, tj— 1)uJ 1)} fori>1.

Lemma 26Under the requirements of Lemni4, for the
remainder termR; of the scheme 2.13-(2.14 the
following inequality

IR s,y <CN*
holds.

(2.27)

Proof
We rewrite the remainder term in the form

R —RY+R? RO

where R(l),Ri(z)andR<3) are respectively given by2(7),

(2.8 and @.10. From @.7), taking into consideration the

hypothesis of Lemmal on an arbitrary mesh we get
ti

RYl<cfh+ [ Woldt, i=1DN,
i—1

1t
gc{hi+g/t exp—at/e)dt), i=11LN. (2.28)

i—-1

For (2.8), using Leibnitz rule andl(3) we obtain
@) < h;l/ti (t—t 1) i/tK(t,s)u(s)d% dt
g ot Jo
<ht /ti“la—ti_1>|K<t,t>||u<t>|dt
s‘dt

/ st
(2.29)

it
—ht [ (t—tig)
tio1
S Cha I_ 1(1)

Lastly from .10,
@ _ v M p o
=] > / -9 gglk 5 9u(s))ds
Y 0
<[3 ) 97K Esu

3 [ 0-

<ch| /0 u(s)lds-+ /0 |u(s)/ds

(. 9)u(s)ds,

1]
Further, since, bw(.3)/ |U'(s)|dt < C we have
0

R¥<ch i=1(DN, (2.30)
In each of the subdomaifi@ A] and[A, 1], we estimate

the remaindeR; as following.

In the subdomairf0,A], considering the estimat&l
we have from 2.28 that

RV < C[h.+a’1 (exp( >+exp<——)>] (2.31)
i=1(DN.

and,
hi = —aleln {1— (1—5)%}

+ateln {1 —(1- e)w}

<2a le—1)N?!

But also,

exp(—ati_1/€) +exp(—ati/e) =2(1—&)N1.

It follows from (2.31) that

RTY <cNL, i=1(1)N/2 (2.32)
For (2.29 and .30 we get the following approximation
RY|<CNL i=1(1)N/2 (2.33)
RY <CcNL i=11)N/2 (2.34)

As aresult, from2.32-(2.34 for the subdomaifD, A] we
obtain the estimate

IR|<CN71 i=1(1)N/2.

Next, considefA, 1] and recall 16] that
U(t) <Corelexp—at/e) <1 whichimplies that

(2.35)

RY|<ch, i=N/2+1(1)N. (2.36)
In the similar manner as above, we obtain
RYI<CNL i=N/2+1(DN. (2.37)
RY|<CNL i=N/2+1(DN, (2.38)
RY|<CNL, i=N/2+1(1)N. (2.39)
From (2.37-(2.39 for the subdomai , 1] we obtain
IR|<CN7! i=N/24+1(1)N. (2.40)

And this completes the proof.

Lemma 27Let (2.19 be satisfied, then the solutian of
the problem2.25-(2.26) satisfies

1T,y < max|R]. (2.41)
Pr oof

The proof is a traight result o2(24 by puttingA = 0 and
F = R The results of Lemmag6 and 2.2 are now
combined to give the following main estimate in this
section
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Theorem 28Let u be the solution of the continuous Hence, relation3.43 is written in the form

problem (.1)-(1.2) and y the solution of the discrete i ol
problem @.13-(2.14. Then under the requirements of Xi N 5/_ u(t)¢i(t)dt+ xh ai/ u(t)¢i(t)dt+
Lemmall, we have tig . t i1
T Y _ ¢ _pD
1y = Ul gy <CN (2.42) Xihe o e (/o K(taS)U(S)dS> dt=fi—R~,
where

Remark 29Note that the above-uniform result does not .
contain the so called “locking factor” which usually Ri(l) :Xi—lh—l ! [a(t) — a(t)]u(t) i (t)dt

surfaces when discretisations are made on Shishkin tg
meshes. If fact, estimates of the type L
Iy — UlJwyy < CN"INN are encountered when the +X h Ail[f(ti)—f(t)]d’i(t)dt-

choice of the transition point is dependent on some factor .. .
of INN.. Our choice of the transition point was inspired by Ytilizing quadrature rules2.1) and (2.2) from [4] for

; o =1 on the interval [t — ti_1] and take into
[16] which uses a factor ahe (See(2.4). considerartion3.46 we have the following expression

. ti 1

3 MethOd II EFOFDM Xiflhflg/tj U/(t)¢i (t)dt_FXiflhfla‘_ | U(t)¢i (t)dt—|—
In this section the mesh is taken to be uniform. As before, tilfl ; . .

let N be a positive integer. We consider the following Xi‘lh‘l/ Pi(t) (/ K(t,s)u(s)ds) dt=f —Rf )
uniform partition of the interval0, 1] which we denote by ti-1 0

g _ -1 —1/ti _ 11
=0, t —to+ih, i= LN, ty =1 wherdr— 1/N, %% [Xi =), odtexha |
the mesh size. In the rest of the section, we first construct i i

the numerical method and derive the fitting factor. Then +ay; +Xi‘1h‘1/ oi (t)dt/ K(ti,s)u(s)ds+
we give some useful facts of the scheme and finaly we i1 0

ti

a—mwamﬂ

i i d n
carry out the convergence analysis. 4_/t o [/O K(n,s)u(s)ds} H(T—n)—1dn
i—1
ti 1
3.1 Derivation of the scheme =0y +aiui+/0 K(ti,S)U(S)0|S+XF1W1/t ¢i(t)dtx
i—1

To get started, we recall that the problem discussed in the /t' i [/” ] )
previous section is considered again here. B, [ t_, dn |Jo K(ns)u(s)ds| [H(T —n) = Ljdn

Amiraliyev and Sevgin suggested a EFOFDM to solve 1 i .
(1.1)-(1.2. Our aim in this section is to constructed a Where6 =1+ x; “h™a " (t—t)¢i(t)dt, H(T —n) is
modified EFOFDM for 1.1)-(1.2) which is based on the a Heaviside function. Moroever, applying the repeated
underlying idea of EFOFDM inJ]. To achieve the goal, trapezoidal integration to the integral in the last
we consider the following identit] expression:

t
t 1 X
x et [7 Lugode=x et [T fogodt LN Jy Kt st
i1 i (3.43)  We get the following expression fout;)

where the exponential functiaf (t) and x; are the slight h h
P ah(t) Xi 9 ee.uﬁi+a4ui —|——K(ti,ti)ui+ZK(ti,ti_l)Ui_l—F

variants of the ones fron] and hence are respectively 4
given by h~ )
a EK(tOw--ti—l;an---aui—l)"’Ri: fi, 1=1(1)N, (3.48)
di(t) = exp(;(t 1)), (3.44) where
xi—ht t fi(t)dt = 1—exp(—pai) .+ p—he. R=—xth? | [a(t) — a(ti)]u(t) ¢i(t)dt
i1 pai W
(3.45) It [T IR — ()] (t)dt
We note that the exponential basis functi(t) satisfies X tifl[ ()~ FOI6)
t n
—£¢/(t) +aigi(t) =0, ¢(t)=1, (3.46) +/ di [/ K(r],s)u(s)ds} [H(T —n)—1dn
and that i1 n Lo
. Lot d
xtht [ gi(t)dt=1. (3.47) +> /t (tj =) gglK G, mu(n)]dn (3.49)
i1 =1/
@© 2018 NSP
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and
- . fo, i=1
it W)= S ()UK (8 1)Uy ), > L

A simple algebra shows that

__ paiexp(pa)
= A ex(pa))’ (3.50)

NeglectingR; in (3.489 we may propose the following

K(to, ..

exponential finite difference scheme to approximate

(1.-(1.2:
h h
Ly = eBy; +ayi + RS AL Ry INUR SN
h-~ .
+§K(t07---ti—1;YO7---aYi—1) = fi, i=1(1)N(3.51)
Yo = Yo, (3.52)
where

i=1,
V= {2‘1 JHK @)Y bt )y ] 1> 1
The lower triangular system of linear equatidnij-(1.2
takes the form

K(to,-ti-13Y0, Vi

AU =F, (3.53)
Ai =1t i=1(1)N,
Aii—1=r;_, i=2(1)N,
Aij=r5q i=31N;j=11)i-1,
891 h .
F = fl— (—T+ZKK1)yO | = 1,
Fi=fi—(5KK)Yo i=2(1)N
where
€6 h
r|c TI‘FaH‘—Kna
—£6 %

1T g

_ h
Mi-1= 5K(G,).

3.2 Some useful properties of the EFOFDM

Lemma 31Let the difference operator
lyi = Ayi —Biyi-1, 1<i<N, (3.54)

be given, wherey; > 0 andB; > 0. Then the difference
operator 8.549) satisfies the following discrete maximum
principal: ifly; > 0,Vi > 0 andy > 0, theny; > 0,Vi > 0.

Proof The proof is obtained by arguments similar to those
used in proving Lemma.4 part 2 and 3

Lemma 33Let the condition

o+ EK" >a,>0 i=1(1)N (3.56)
be guaranteed, then for the difference operator

[hy, :ge,vﬂi—f—a;vi—i—gKiivi (3.57)
we have

[Villeo < |Vo| + aorg%llvil (3.58)

whereK; = K(t;,t).
Proof see 2.1)

L emma 34[Stability of the discrete problen3(51)-(3.52]
. Let the difference operatt?y; be defined by3.57. Then
for difference problem3.51)-(3.52 we have

i
"y <Ch S |yjal+|[flle;, 1<i<N (3.59)
=1
From .13 we get

- i
Z (t,t gz tlatj 1UJ 1

and taking into account the fact that the kerKét,s) is
bounded, 8.59 can be established

i | < ||+ |5

Lemma 35Let (3.56) be satisfied, then for then solution of
the difference schem&(51)-(3.52 we have the following
estimate

Ivil < (oI F [l + A explar, Ch),

Proof
See Pl Lemma 4.4

1<i<N. (3.60)

3.3 Error analyis of the EFOFDM

Letz =y, — u;, wherey; andu; are solution of problems
(3.5D-(3.52 and @.1)-(1.2 respectively at the mesh point

Proof Following the technique of proof given in Lemma ti. Then for the error function, we have

21, we can prove the present Lemma

Lemma32Let ly; be difined as in 354. If

A —Bi > a > 0, then for the solution of the difference
initial value problem

|yi = i, I 2 17

Yo=H

the following inequality holds

Yillo < [H[+a

! max|F| (3.55)
0<i<N

L'z =R,
2y =0,

i = 1(1)N, (3.61)

(3.62)

whereR,; is defined by 8.49.

Lemma 36Under conditionsa, f € C! andK € C}, the
remainder term 3.49 of the scheme 3.51)-(3.52
satisfies

I|Rl[eo,y, < Ch (3.63)
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Pr oof Theorem 38Assume that u satisfies the continous
We rewriteR; as problem (.1)-(1.2) and y satisfies the descrete problem
W ooy [l (3.510-(3.52. Then under assumptions thatfac C(1)
RY =t [ a(t) —a()|ut) gi(t)de and K& CJ, we have
i— 1
_ —Ul]eogr. <Ch s
Fx 1[f(ti)_f(t)}¢i(t)dt 364) [V7Ullown=C (3.70)
ti—

(2) _ )
R /n ,dn [/ K(n sy Uds] [H(T=n)~1]dn(3.65) 4 Numerical results

In the section, we test the two numerical methods
described in this paper. To this end, two \olterra
integro-differential equations are presented and the

@ _ < [,
RO= 3 [ 6-mgglkanumion. @60

First we prove that for3.64) inequality

|Ri(l>| <Ch 1(1)N (3.67) maximum errors along with the rates of convergence are
- given in tabular form. The maximum errors at all the

holds. We rewrite .64 as mesh points are evaluated using the formula

fi
RY| < xtht ti l|[a(t)—a(ti)]U(t)(Pi(t)ldt eN —[mjeglIU(XJ) y(xj)| (4.71)

fi
x| (6) — F()]¢i(t)]dt. for the different values ofN. The numerical rates of

i1 convergence are calculated using the formula
It follows by means of the intermediate value theor&in [
that ENy

rek =100, ~ 1,k=1,2,3,... (4.72)

lat) —a(t)] = [a(S)[[t—t| <Cih, i€ (4,1), ’ Nee

f(t)—f(t)] = [f'(u)|[t —t| <Coh t,t . .
1) = FOI = [Fu)li -t < Coh, - v LE) The test examples are considered over the interval

and so, it is easy to see th&§7) is true. | =[0,1].
Next, for (3.65 we have 12]
L Example 41[18] Consider problem 1.1)-(1.2) where the
2 _ p p
R _/i 1{ (n.n un+/ K, s)u( )}ds} coefficient functions are given by
x[H(t-n)—1]dn alt) =t+1, K(t,s) =t+s,
ti n g _
<C/tll{|K(’7,’7)||U(’7)|+‘/o EK(U,S)U(S)C{S‘} f(t):800§+t3int+25im+(t—2t£+£2)exp(?t)
x[H(t=n)—1]dn +t—2tcost + &t —

e[ [ wven- |

Using Lemmal 1l we obtain

/ S‘dn} u(0) = 1.

The exact solution to this problem is given by

sz) <Ch. (3.68) u(t) :sint+exp(%t>.

Following the same lines of discussion as 130, it _ _
can be observed tha8.66 satisfies 8.63. This completes Example 42[2] Consider problem1.1)-(1.2) with

the proof.
alt) =1, K(t,s)=s,

Lemma 37Let (3.56 be satisfied, then the solutian of . 2 B
the problem 3.61)-(3.62 satisfies f(t) = (2+9+et+ 11t+tt)exp( v

, _ 2 -t 2 2
[1Zi]]oo, g, < OrgIg)'gIRl (3.69) 10(et+ € )exp( . ) +5t°410¢
Proof u(0) = 10.

The proof is straight forward as a consequence3d(@
by settingA = 0 andF = R. Using lemmas36 and 37,
we obtained the following first orderuniformly accurate
error estimate in the maximum norm which we summarize u(t) = 10— (10+t)exg —t) 4+ 10 exp(__t> )
in the theorem below. €

The exact solution to this problem is given by
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Table 1. Results for

Exampletl: Maximum pointwise error

Table4: Rates of convergence obtained for Exam{®eultilizing

EFOFDM FMFDM

T IoE ST 1o 0 5103 A0IET 203E0s LOETE 55 € | r=sl r=2 r=3 r=4 r=5 =6

103 | 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 9E5M 102 1.00 1.00 1.00 1.00 1.00 1.00

104 | 3.24E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 OESM

10 | 324E02 163E02 813E03 407E03 204E-03  LO2E-03 9B04 103 | 1.00 1.00 1.00 1.00 1.00 1.0D

Bl iwm oo Gmen o imemEl 04 100 100 100 100 100 10D

109 | 324502 1eaE0s 81303 4OTECS 20403 102009 OB 10° | 1.00 1.00 1.00 1.00 100 1.0p

1010 | 324E-02 163E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 9BM 10°6 1.00 1.00 1.00 1.00 1.00 1.00

1011 | 3.24E-02 163E-02 B8.13E-03 4.07E-03 2.04E-03 1.02E-03 9BM

1012 | 324E-02 1.63E-02 8.13E-03 4.07E-03 2.04E-03 1.02E-03 9@ 1077 1.00 100 100 100 100 1.00
108 | 095 097 099 099 1.00 1.0D
10° | 094 097 099 099 1.00 1.0D
1019 | 0.94 097 098 099 1.00 1.0p
1011 | 093 096 098 099 1.00 1.0p
1072 | 093 096 0.98 0.99 1.00 1.00

Table 2: Results for

FMFDM

Exampletl: Maximum pointwise errors

£ N =40 N=80 N=160 N=320 N=640 N=1280 N=2560
107 [ 5.96E-02 7.83E-02 6.75E-02 3.95E-02 2.20E-02 1.17E-02 7E5@B
103 | 5.85E-02 2.93E-02 1.49E-02 4.30E-02 6.82E-02 6.32E-02 9B®
104 | 5.80E-02 2.91E-02 1.46E-02 7.28E-03 5.25E-03 1.46E-02 4B2®
10° | 5.76E-02 2.89E-02 1.45E-02 7.23E-03 3.62E-03 1.81E-03 5E03
106 | 5.73E-02 2.87E-02 1.44E-02 7.20E-03 3.60E-03 1.80E-03 1BM
107 | 5.70E-02 2.86E-02 1.43E-02 7.17E-03 3.59E-03 1.79E-03 7EBB®
108 | 5.69E-02 2.85E-02 1.43E-02 7.15E-03 3.58E-03 1.79E-03 SEB®
10° | 5.67E-02 2.85E-02 1.43E-02 7.14E-03 3.57E-03 1.79E-03 3B®
1010 | 566E-02 2.84E-02 1.42E-02 7.13E-03 3.57E-03 1.78E-03 2BM™
101 | 5.66E-02 2.84E-02 1.42E-02 7.12E-03 3.56E-03 1.78E-03 1BM™
1012 | 5,65E-02 2.84E-02 1.42E-02 7.11E-03 3.56E-03 1.78E-03 OB®™

Table 3: Rates of convergence obtained for Examfilaitilizing

Table 5: Results for

Examplet2: Maximum pointwise error

EFOFDM

B N=40 N=80 N=160 N=320 N=640 N=1280 N=2560
102 | 223E-01 1.12E-01 561E-02 281E-02 1.40E-02 7.02E-03 1B3(
103 | 2.23E-01 1.12E-01 5.61E-02 281E-02 1.41E-02 7.03E-03 2B3(
104 | 2.23E-01 1.12E-01 5.61E-02 281E-02 1.41E-02 7.03E-03 2B3(
10°% | 2.23E-01 1.12E-01 5.61E-02 281E-02 1.41E-02 7.03E-03 2B3(
106 | 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 2B
107 | 223E-01 1.12E-01 5.61E-02 281E-02 1.41E-02 7.03E-03 2B3(
108 | 2.23E-01 1.12E-01 5.61E-02 281E-02 1.41E-02 7.03E-03 2B3(
10° | 2.236-01 1.12E-01 561E-02 2.81E-02 1.41E-02 7.03E-03 2B
1010 | 2.236-01 1.12E-01 561E-02 2.81E-02 141E-02 7.03E-03 2B
1011 | 2.236-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03 2B3(B
1012 | 2.236-01 1.12E-01 561E-02 2.81E-02 141E-02 7.03E-03 2B

EFOFDM
£ r=1 r=2 r=3 r=4 r=5 r=6
102 1.00 1.00 1.00 1.00 1.00 1.00
103 1.00 100 100 1.00 1.00 1.00
104 | 1.00 1.00 1.00 1.00 1.00 1.00 'llz'it/lb'I:eDi‘)A Results for Examplel2: Maximum pointwise errors
10°° 1.00 1.00 1.00 1.00 1.00 1.00
10° | 1.00 100 100 1.00 1.00 1.0 o 4N7ZE4(())1 210212001 NfségomN:jzzgmN:ziAlaoE02‘:123?0050,\1‘:45223
107 | 1.00 1.00 1.00 1.00 1.00 1.0p 102 419E-01 213E-01 185E-01 A480E-01 748E-01 6.91E-01 ARMDL
10 | 100 100 1.00 100 100 1.0p 105 | Gd0E01 2EC IHEGI S0 200E02 LAOE0E oED
109 | 100 100 100 100 100 10D | 1o H0E0i :zeor fmcor sseos soeos iocr: o
10010 | 1.00 1.00 1.00 1.00 1.00 1.00 10*5 4.40E-01 223E-01 1.12E-01 561E-02 2.81E-02 1.40E-02 2E708
11 100 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 3EA@B
10 1.00 100 100 1.00 1.00 1.00 1010 | 440E.01 223501 112601 561E02 281E-02 141E-02 3EB
0% 1.00 100 100 100 100 100 |i=|4ieo szmeoi 1ieo secee smeoe iaeor wom
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Table8: Rates of convergence obtained for Exam#feitilizing  and remainder term in the integral form. In order for the
FMFDM method to bee-uniform, a piecewise-uniform mesh of
z =1  1=> =3 =7 =% =5 Shishkin type was considered. The exponential fitted
102 1025 077 08 091 09 09 operator was developed utilizing the method of integral
103 | 020 -137 -064 011 077 0.7 !dentlty w_|th the use of an expon_entlal_bass functlon_ and
104 0.98 0 '99 -0.18 _1' 36 -1. 00 0 7 mterp_olatmg guadrature rules with weight and remainder
s : : : : . : term in the integral formd].
10 6 100 099 100 100 -055 -1.3 The error analysis shows that the proposed methods
10> | 0.99 100 099 100 100 1.0 are e-convergent. Two test examples were considered to
107 1099 100 1.00 1.00 100 1.0 confirm these results. The nodal maximum ererg and
10% 1099 100 099 1.00 100 1.0 the corresponding rates of convergemgg are provided
10° | 099 1.00 1.00 1.00 100 1.0 '

in tables1-8.
1010 | 099 100 100 1.00 100 1.0
10111099 100 1.00 1.00 1.00 1.0
1012099 100 100 1.00 1.00 1.0

A= SR S S S S Sy ey ) B S S S
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