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Abstract: In this paper we introduce the Kumaraswamy exponentiated Chen distribution for modelling a bathtub-shaped hazard rate
function. Some structural properties of the Kumaraswamy exponentiated Chen distribution are discussed. The method ofmaximum
likelihood is used for estimating the model parameters. Finally, the flexibility of the proposed distribution is illustrated using reliability
data.
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1 Introduction

Models for life testing problems with lifetime
distributions occupy an outstanding place in reliability
theory. Characteristically, lifetime refers to the span of
life of devices, survival times of patients in epidemiology.
Recently Chaubey and Zhang [3] introduced and studied
the exponentiated Chen distribution having the two
parameter Chen [2] lifetime distribution as the special
sub-model for modelling lifetime data. The cumulative
distribution function (cdf) of the exponentiated Chen
distribution is

G(x) =
[

1−exp
{

α
(

1−exp(xβ )
)}]θ

, x> 0, (1)

whereα > 0 is the scale parameter,β > 0 andθ > 0 are
the shape parameters of the exponentiated Chen
distribution. The corresponding probability density
function (pdf) is given by

g(x) = αβ θxβ−1exp
{

xβ +α
(

1−exp(xβ )
)}{

1−exp
{

α
(

1−exp(xβ )
)}}θ−1

,

(2)
This paper uses the Kumaraswamy G family approach for
developing a new distribution called the Kumaraswamy
exponentiated Chen distribution. Given a base line
distribution this family adds two more shape parameters
for making it more flexible.
For an arbitrary baseline cumulative functionG(x),

Cordeiro and de Castro [6] defined the pdff (x) and cdf
F(x) of the Kw-G distribution by

f (x) = abg(x) G(x)a−1{1− G(x)a}b−1
, (3)

and
F(x) = 1−{1− G(x)a}

b
, (4)

Various different distributions has been dedicated in
the literature to developing the new Kumaraswamy G
family of distributions. Correa et al. [4] studied the
Kumaraswamy Normal distribution and evaluated the
performance of this model using simulation. Nadarajah
and Eljbri [11] examined the Kumaraswamy generalized
Pareto distribution and obtained the first four moments,
the asymptotic distribution of order statistics with
L-moments and discussed maximum likelihood
estimation using simulation. Elbatal [7] defined the
Kumaraswamy linear exponential distribution, derived
moments and moment generating function and discussed
the method of MLE. Shams [14] proposed the
Kumarswamy generalized Lomax distribution. Cordeiro
et al [5] proposed the Kumaraswamy modified Weibull
distribution with several mathematical properties and
showed that it can have bathtub, unimodal, increasing and
decreasing hazard rate functions. Gomes et al. [8]
proposed the Kumaraswamy generalized Rayleigh
distribution with covarites regression modelling for
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analysing lifetime data. More recently Khan et al. [10]
proposed the transmuted exponentiated Chen distribution
and investigated various structural properties with
application. In this article, we consider a generalizationof
the exponentiated Chen distribution by introducing two
extra shape parameters using Kumaraswamy G family
generator, which provide greater flexibility in the new
extended model. We hope that the Kumaraswamy
exponentiated Chen distribution will attract wider
applications for modelling real world scenarios.

The rest of the article is organized as follows. In
Section 2, we provide the analytical shapes of the
probability density and hazard functions of theKEC

distribution. The method of moment properties are
considered in Section3, and evaluated the ordinary
moments of the new distribution. The Rényi entropy and
the q-entropy are derived in Section4. Maximum
likelihood estimates (MLE) of the unknown parameters
are discussed in Section5. We fit the Kumaraswamy
exponentiated Chen distribution to fatigue life of 6061-T6
aluminum coupons data in Section6 which illustrate the
usefulness of the proposed model. Finally, concluding
remarks are addressed in Section 7.

2 Kumaraswamy exponentiated Chen
distribution

A random variablex has the Kumaraswamy exponentiated
Chen distribution defined through equation (3) the KW-G
distribution with parametersa,b,α,β ,θ > 0, then the pdf
is

f (x) = abαβ θxβ−1exp{xβ+α(1−exp(xβ ))}{1−exp{α(1−exp(xβ ))}}
aθ−1

{

1−{1−exp{α(1−exp(xβ ))}}
aθ}1−b ,

(5)
respectively. The cdf corresponding to (5) is

F(x) = 1−

{

1−
{

1−exp
{

α
(

1−exp(xβ )
)}}aθ

}b

.

(6)
where a and b are the additional shape parameters provide
extra flexibility in new model which controls the
skewness and kurtosis. The parameterα controls the
location of the distribution, whereas the parametersβ and
θ control its shape. We obtain the exponentiated Chen
distribution when the shape parametersa = b = 1. For
θ = 1, in addition toa = b = 1 it reduces to the Chen
distribution [2]. If X is a random variable with density
function (5), then we write this model as
X ∼ KE-CHEN(x;a,b,α,β ,θ ).

The plots in Figure1 show some possible shapes of
the Kumaraswamy exponentiated Chen distribution for
some selected choice of parameters. Figure2 shows that
the proposed model has the ability to explain
bathtub-shaped failure rate functions are very useful in

reliability analysis. The reliability and hazard functions of
the kumaraswamy exponentiated Chen distribution are

R(x) =

{

1−
{

1−exp
{

α
(

1−exp(xβ )
)}}aθ

}b

. (7)

and

h(x) =
abαβ θxβ−1exp{xβ+α(1−exp(xβ ))}{1−exp{α(1−exp(xβ ))}}

aθ−1

{

1−{1−exp{α(1−exp(xβ ))}}
aθ}−1 ,

(8)
respectively. Theqth quantileF(xq) of the KEC random
variable is

F−1(u) =

[

ln

{

1−
1
α

ln

{

1−
(

1− (1−q)
1
b

)
1

aθ
}}]

1
β
,

(9)

3 Moments

This section presents thekth moment of the
Kumaraswamy exponentiated Chen distribution. We will
also evaluate the performance of the ordinary moments
for some selected choices of parameters.

Theorem 1.If X has theKEC(x;a,b,α,β ,θ ) distribution
then the kth moment of X is

µ́k = abαθ ∑∞
i, j=0 ∑∞

m,n=0

(

aθ (i +1)−1
j

)(

m
n

)

vi, j ,mΓ
(

k
β +1

)

.

where

vi, j ,m =

(

b−1
i

)

(−1)i+ j+n+ k
β αm( j +1)m

m! (n+1)
k
β +1

.

Proof: The kth moment of theKEC distribution is

µ́k = abαβ θ
∫ ∞

0 xk+β−1 exp{xβ+α(1−exp(xβ ))}{1−exp{α(1−exp(xβ ))}}
aθ−1

{

1−{1−exp{α(1−exp(xβ ))}}
aθ}1−b dx.

The above expression reduces to

µ́k = abαβ θ
∞

∑
i, j=0

(

b−1
i

)(

aθ (i +1)−1
j

)

(−1)i+ j Ik

where

Ik =
∫ ∞

0
xk+β−1exp(xβ +α( j +1)

(

1−exp(xβ )
)

)dx

Hence, the above integral reduces to

µ́k = abαθ ∑∞
i, j=0 ∑∞

m,n=0

(

aθ (i +1)−1
j

)(

m
n

)

vi, j ,mΓ
(

k
β +1

)

,

where

vi, j ,m =

(

b−1
i

)

(−1)i+ j+n+ k
β αm( j +1)m

m! (n+1)
k
β +1

.
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Fig. 1: Plots of theKEC pdf for some parameter values.
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Fig. 2: Plots of theKEC hf for some parameter values.

The important features and characteristics of theKEC

distribution are studied through moments. The central
moment and the cumulants are

µn = ∑n
i=0

(

n
i

)

(−1)i µ́n
1 ´µn−i and kn = µ́n−∑n−1

i=1

(

n−1
i −1

)

k1 ´µn−i,

respectively, where k1 = µ́1, k2 = µ́2 − µ́2
1 ,

k3 = µ́3−3µ́2µ́1+2µ́3
1, k4 = µ́4−4µ́3µ́1+6µ́2µ́2

1 −3µ́4
1

, etc. The skewness and kurtosis measures are calculated
using Well-known relationships. The values of the first
eight ordinary moments for some selected choices of
parameters are shown in Table1.

4 Entropies

The Rényi [12] introduced the entropy denoted as,IR(ρ),
for X with probability density from the
KEC(x;a,b,α,β ,θ ) is a measure of dispersion of the
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Table 1: Moments values of theKEC distribution for some selected values of parametersα = 1,β = 0.5,θ = 2.

µ́k a= 0.5,b= 1.5 a= 0.7,b= 1.8 a= 0.9,b= 2 a= 1,b= 3
µ́1 0.3144 0.3541 0.4094 0.3107
µ́2 0.2819 0.2897 0.3322 0.1829
µ́3 0.3931 0.3561 0.3892 0.1544
µ́4 0.7195 0.5692 0.5842 0.1671
µ́5 1.5968 1.1017 1.0543 0.2181
µ́6 4.1085 2.4744 2.2015 0.3310
µ́7 11.9067 6.2729 5.1823 0.5690
µ́8 38.0982 17.6001 13.4986 1.0875
SD 0.42784 0.4053 0.4056 0.2938
CV 1.3608 1.1447 0.9909 0.9458
CS 2.4179 2.0591 1.7735 1.7298
CK 10.8336 8.7263 7.2588 7.1312

uncertainty and is defined as

IR(ρ) =
1

1−ρ
log

{

∫ ∞

0
f (x)ρ dx

}

, (10)

where ρ > 0 and ρ 6= 1. The integral inIR(ρ) for the
KEC(x;a,b,α,β ,θ ) can be defined by substituting (5) and
(6) in (10) as

IR(ρ) =
1

1−ρ
log











(abαβθ)ρ
∫ ∞

0
xρ(β−1) exp

{

xρβ}Vρ {1−V}ρ(aθ−1)

{

1−{1−V}aθ
}ρ(1−b)

dx











,

where V = exp
{

α
(

1−exp(xβ )
)}

, the above integral
reduces to

IR(ρ) =
1

1−ρ
log

{

∞

∑
i, j=0

∞

∑
m=0

zi, j ,m

∫ ∞

0
xρ(β−1) exp

{

(ρ +m)xβ
}

dx

}

,

where

zi, j ,m = (abαβθ)ρ
(

ρ(b−1)
i

)(

aθ(ρ + i)−ρ
j

)(

k
m

)

(−1)i+ j+m

m!
.

Finally we obtain theKEC distribution Rényi entropy as

IR(ρ) =
ρ

1−ρ
loga+

ρ
1−ρ

logb+
ρ

1−ρ
log(α)+

ρ
1−ρ

log(β )+
ρ

1−ρ
log(θ)

+
1

1−ρ
log

{

∞

∑
i, j=0

∞

∑
m=0

(

ρ(b−1)
i

)(

aθ(ρ + i)−ρ
j

)(

k
m

)

Ui, j ,m

}

,

where

Ui, j ,m =
(−1)i+ j+m+ρ− ρ

β −β+1

m!β (ρ +m)
ρ(β−1)

β −β+2
Γ
(

ρ −
ρ
β
−β +2

)

.

Theq-entropy was introduced by Havrda and Charvat [9],
and is defined as

IH(q) =
1

q−1

{

1−
∫ ∞

0
f (x)qdx

}

, (11)

whereq> 0 andq 6= 1. SupposeX has theKEC distribution
then by substituting (5) and (6) in (11), we obtain

IH (q) =
1

q−1











1− (abαβθ)q
∫ ∞

0
xq(β−1) exp

{

xqβ}Vq {1−V}q(aθ−1)

{

1−{1−V}aθ
}q(1−b)

dx











,

the above integral yields theKEC distributionq-entropy as

IH (q) =
1

q−1







1−
∞

∑
i, j=0

∞

∑
m=0

zi, j ,m(−1)
i+ j+m+q− q

β −β+1

m!β (q+m)
q(β−1)

β −β+2
Γ
(

q−
q
β
−β +2

)







,

where

zi, j ,m = (abαβ θ )q
(

q(b−1)
i

)(

aθ (q+ i)−q
j

)(

k
m

)

.

5 Parameter estimation

Consider the random samplesx1,x2, ...,xn consisting ofn
observations from the Kumaraswamy exponentiated Chen
distribution. Then the log-likelihood functionℓ(Θ)=lnL of
(5) is

ℓ(Θ ) = nloga+nlogb+nlogα +nlogβ +nlogθ

+(β −1)
n

∑
i=1

logxi +
n

∑
i=1

xβ
i +α

n

∑
i=1

(

1−exp(xβ
i )
)

+(b−1)
n

∑
i=1

log

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

}

. (12)

By differentiating (12) with respect toa,b,α,β ,θ and
then equating it to zero, we obtain the components of
score vectorU(Θ):

∂ ℓ(Θ )

∂a
=

n
a
− (b−1)

n

∑
i=1

{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

log
{

1−exp
{

α
(

1−exp(xβ
i )
)}}

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

} ,
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∂ℓ(Θ)

∂b
=

n
b
−

n

∑
i=1

log

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

}

,

∂ ℓ(Θ )

∂ α
=

n
α

+
n

∑
i=1

(

1−exp(xβ
i )
)

+(b−1)
n

∑
i=1

aθ
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ−1

exp
{

α
(

1−exp(xβ
i )
)}

(

1−exp(xβ
i )
)−1

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

} ,

∂ ℓ(Θ )

∂ β
=

n
β
+

n

∑
i=1

logxi +
n

∑
i=1

xβ
i logxi +nα −α

n

∑
i=1

exp(xβ
i )x

β
i logxi − (b−1)

n

∑
i=1

aαθ
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ−1

exp(xβ
i )x

β
i logxi

exp
{

−α
(

1−exp(xβ
i )
)}

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

} ,

and
∂ ℓ(Θ )

∂ θ
=

n
θ
− (b−1)

n

∑
i=1

{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

log
{

1−exp
{

α
(

1−exp(xβ
i )
)}}

{

1−
{

1−exp
{

α
(

1−exp(xβ
i )
)}}aθ

} ,

respectively. The log-likelihood can be maximized by
solving the non-linear equations numerically for the
parameter vectorΘ = (a,b,α,β ,θ )T is the multivariate
normal with the variance covariance matrix. These
nonlinear system of equations cannot be solved
analytically and statistical software can be used to solve
them numerically by using iterative procedures such as
Newton Raphson method, BFGS, BHHH and L-BFGS-B
through R-package (Adequacy Model). For interval
estimation and hypothesis tests on the model parameters,
we compute the inverse of the expected information
matrix is
(

(â−a) ,
(

b̂−b
)

,(α̂ −α),(β̂ −β ),(θ̂ −θ )
)

∼ N5

{

0, I(Θ)−1
}

,

where I(Θ)−1 is the variance covariance matrix of the
unknown parameters for the parameter vector
Θ = (a,b,α,β ,θ )T . An approximate 100(1 − γ)%
confidence intervals for the parametersa,b,α,β ,θ can be
determined in the traditional procedure.

6 Application

In this section, we present analysis for illustrative purpose
using the fatigue life of 6061-T6 aluminum coupons cut
parallel with the direction of rolling and oscillated at 18
cycles per second data, reported by Birnbaum and
Saunders [1]. The data are

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108,
108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 119,
120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128,
128, 129, 129, 130, 130,130, 131, 131, 131, 131, 131, 132,
132, 132, 133, 134, 134, 134, 134, 136, 136, 137, 138, 138,
138, 139, 139, 141, 141, 142,142, 142, 142, 142, 142, 144,
144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157,
157, 157, 157, 158, 159, 162, 163,163, 164, 166, 166, 168,
170, 174, 201, 212.

 

x

De
ns

ity

100 150 200

0.0
00

0.0
05

0.0
10

0.0
15

KE−Chen
E−Chen 

(a)

80 100 140 180

0.0
0.2

0.4
0.6

0.8
1.0

x

Su
rvi

va
l p

ro
ba

bil
ity

 Kaplan−Meier
 KE−Chen 
 E−Chen 

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

 

F(x)

Em
pir

ica
l c

um
ula

tiv
e d

ist
rib

uti
on

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

 

F(x)

Em
pir

ica
l c

um
ula

tiv
e d

ist
rib

uti
on

(d)

Fig. 3: Estimated Fitted KE-CHEN and E-CHEN

distributions with histogram (top left), Estimated survival
function for KE-CHEN and E-CHEN distributions and
the empirical survival curve (top right), pp-plot to assess
the fit of the model for KE-CHEN distribution (bottom
left) and pp-plot to assess the fit of the model for E-
CHEN distribution(bottom right) for fatigue life of 6061-
T6 aluminum coupons data.
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Table 2: MLEs of the Parameters for fatigue life of 6061-T6 aluminum coupons data, the Corresponding SE (given in
parentheses)with AIC, CAIC and BIC goodness of-fit measures

Model a b α β θ AIC CAIC BIC
KE-Chen 3.119 0.468 0.006 0.384 5.376918.19 918.83 931.22

(1.467) (0.183) (0.001) (0.009) (2.528)
E-Chen - - 0.004 0.375 5.693 920.56 920.81 928.38

(0.001) (0.004) (0.901)
NGW - 2E+2 0.004 0.001 1.216 925.28 925.70 935.70

(1E+2) (0.003) (0.008) (0.187)
EW - - 29.848 0.005 1.340 927.18 927.43 934.99

(5.824) (0.001) (0.019)

We examine the use of theKE-CHEN distribution for
modeling the fatigue life of aluminum data. We fit the
Kumaraswamy exponentiated Chen (KE-CHEN),
exponentiated Chen (E-CHEN), New generalized Weibull
(NGW) and exponentiated Weibull (EW) distributions. For
each fitted distribution, we provide the maximum
likelihood estimates their standard errors (in parentheses)
of the parameters and the values of the Akaike
information criteria (AIC), Corrected Akaike information
criteria (CAIC), BIC (Bayesian Information Criterion),
for four distributions are displayed in Table2. The
preferred model based on these goodness of fit measures
is the (KE-CHEN) distribution among the four fitted
lifetime distributions.
The lower values of the AIC, CAIC and BIC goodness of
fit statistics indicate that the (KE-CHEN) distribution
could be chosen as the best model for fatigue life of
aluminum data. All calculations were performed using R
language [13]. To assess whether the (KE-CHEN)
distribution is an appropriate model, Figure3(top left)
plots the histogram of the fatigue life of aluminum and
fitted the (KE-CHEN) and (E-CHEN) density functions.
Furthermore, Figure 3 also plots the empirical and
estimated survival function (top right), pp-plot (bottom
left) for the (KE-CHEN) distribution and pp-plot for
(E-CHEN) distribution(bottom right). All these plots
indicate that the (E-CHEN) distribution provides a
superior fit for fatigue life of aluminum data.

7 Perspective

We have proposed a new distribution called the
Kumaraswamy exponentiated Chen distribution, which is
an extension of the exponentiated Chen distribution. The
proposed distribution could have increasing, decreasing,
bathtub shaped hazard rate functions. Some statistical
properties of the Kumaraswamy exponentiated Chen
distribution are discussed including moments and

entropies. We have considered the method of maximum
likelihood for estimating the model parameters. We have
illustrated the use of the new distribution using fatigue
life of aluminum data. We have shown that the
(KE-CHEN) distribution performs better than other three
lifetime distributions in terms of AIC, CAIC and BIC
goodness of fit measures. In conclusion, the (KE-CHEN)
distribution could be chosen as the best model for fitting
real world applications.
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