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Abstract: In this article, we introduce common fixed-point theoremsCafisti-type mappings by using the absolute derivative of
the mapping as a generator of its Caristi-type maps. The amriired-point theorem that we obtain covers the singleaedland
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1 Introduction fixed-point theorem of Caristi-type mapping for two
mappings. We also give some examples to illustrate the

Development of the Caristi’s fixed-point theoremi$lias  main results in this article.

been carried out by researchers through a variety of

different ways such as combining the Banach’s fixed

point theorems to that Caristi's fixed-point theorerds [ 2 Common fixed-point of Caristi-type

In 1996, Kada-Suzuki and Takahashi usedwhdistance mappings

functions to characterize the Caristi-type mappingjs [

Further, there exist several results involving set-valued

mappings into Caristi-type conditions (s&@[5], [6]).

, In 19.81’ Bhakta and Basﬂ][_int.roduced a common Let (X,d) be a complete metric space akdC X

f|xed-|pc;|nt tthfaorems Olf Z%igs?j%/pe ma:jpﬁlngs O Caristi's fixed-point theorem states that each mapping

complete metric spaces. i » Obama and Kuro8ja [ f : K — K satisfies the condition: there exists a lower

roved the same thing by using-distance function . . .
\F/)vhich was introducedg b))l/ Kac?;\ et al3][ as a semi-continuous functioth : K — [0, ) such that

generalization of common fixed-point theorems of Bhakta _

and Basu. In 2015, Sitthikul and Saejung discussed the de T(x)) < () = @ ((x)), @

result by Obama with weaker assumpti@. [Moreover,  for eachx € X has a fixed point.

L. Samih et al. introduced common fixed-point theorems  gome authors have mentioned that a mapping

of Caristi-type mappings in cone metric spackg [ f: K — K is called Caristi-type mappings if the
Motivated by the above results, in particular, by jnequalities {) is satisfied.

Bhakta and Basu7], in this article, we introduce a

common fixed-point theorem of Caristi-type mapping by ~ SupposéX,d) and(Y,p) are two metric spaces. Then

using the absolute derivative as a generator of its Caristive use the notatio?y(X) (resp.¢.Z(X) ) as the family

type. In previous articles, we characterized Caristi-typeof all non-empty (resp. closed ) subsets<of

mapping by its absolute derivative but only for one The mappingF : X — Z(Y) is called set-valued

mapping [L1]. In this article, we obtain a common functionswhere the mapE (x) € (YY) for eachx € X.

For the convenience, in the next we recall the Caristi’s
fixed-point theorems as follows.
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We say that a point € X is a fixed point ofr if z€ F(2).
The functionf : X — Y is said to beselection of F if
f(x) € F(x) for all x € X.

By using Caristi’s fixed-point theorems, in 1989,
Mizoguchi and Takahashi5] resulted in fixed-point
theorem for set-valued mappings.

Theorem 1.Let (X.d) be a complete metric space aRd

X — Py(X) be a set-valued mapping. If there exigts

X — [0,+] is a lower semi continuous function such
that for eachx € X, there existy € F(x) such that

d(xy) < ¢(x) —¢(y),

then the set-valued mdphas a fixed point.
In 1971 Ciric [L2] introduced the notion of orbital
continuity as follows

Definition 1. Let (X,d) be a metric space and: X — X
be a mapping. The set

)

®)

is called orbit of f at fixed pointxy, € X, where
fl' = fofof...of. Then the mappingf is called

O{Xo} ={Xn=1"%:n=1,23---}

——————
n—times
orbitally ~ continuous  if I(Iimf"‘«xo:t, then
—00

Ilim ffMexg = f(t).
—»00

Every continuous mapping : X — X is orbitally
continuous but not conversel§Z).

In 1981, Bhakta and Basu7] proved a common
fixed-point theorem of the Caristi-type mapping for two

0 > 0 such that for every,y € X,x # y and 0< d(x, p) <
0,0<d(y,p) < 9, then

p(f(x),f(y)
d(x,y)

On the other hand, in 1975, K. Skaland defined the
weaker form of Braude’s definition.

Definition 3. Let (X,d) and(Y, p) be a metric spaces and
let p € X be a limit point. The mapping : X — Y is
said differentiable at p if real numberf’(p) exists with
the property that for every > 0 there exist® > 0 such
that for everyx € Ns(p) then

p(f(x), f(p)
d(x, p)

A non-negative real numbér (p) is calledmetrically

derivative[13] or quasiderivativg14] of the mappingf at
the pointp € X.
Example 1. Let X [-1,1]. The function
f:[—1,1] — R with f(x) = |x| for eachx € [-1,1] is
metrically differentiable orX. For p =0 € [-1,1], we
obtain

- f'(p)| <e. (5)

—f'(p)|<e. (6)

X =0 _ o [=X_

f/(0) = lim = =1,
() x—0~ |X| x—0~ |X|
and 0
#(0) = lim X=0 _ iy Xy
x—0t |X| x—0+ |X|

For each O< x < 1 and—1 < x < 0, we havef’(x) = 1.

mappings on complete metric spaces. The followingWe know thatf is not differentiable in the classical sense

theorem in question.

Theorem 2. Let (X,d) be a complete metric space and
f,g: X — X be two orbitally continuous mappings &h

If there are two mapping, ¢ : X — [0, ) satisfying the
condition:

d(fx,gy) <o(X)—¢(fx)+@ly) —¢ay) (4)

for all x,y € X, thenf andg have a unique common fixed
point.

Theorem2 has been generalized by Oban& vith
using w-distance function and then followed by Sitthikul
with weaker requiremeng].

3 Absolute derivatives

In 1971, E. Braudg intrqduced the deriva}tive of Fhe Theorem 4. Let
metric-valued function with abstract metric domains

which is known as "metrically differentiable” (se&3)).

Definition 2. Let (X,d) and(Y,p) be two metric spaces
and letp € X be a limit point. The mappin§: X — Y is
said metrically differentiable at p if a real numberf’(p)
exists with the property that for evegy> 0 there exists

atx=20.

Since the value of the derivative is always a
non-negative real number, its derivative is called absolut
derivative.

Throughout this paper, we use the notatidp. as an
absolute derivative of the functioi and a function
differentiable in the sense of the metric is called
metrically differentiable.

4 Existence of common fixed point

Our first main result modifies the common fixed-point
theorem (Theorem2). The modification is done by
replacing two non-negative real functiogs and ¢ on
Theorem2 by two absolute derivatives of the functiofs
and g provided that the functiorf and g are metrically
differentiable.

(X,d) be a complete metric space and
f,g: X — X be two orbitally continuous mappings &n

If f andg are metrically differentiablae oX such that the
absolute derivative,, g, X — [0,) satisfying the
condition:

d(F%,9y) < fape¥) — Tape X) + GandY) — Gaps@Y)  (7)
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for all x,y € X, thenf andg have a unique common fixed
point.

Proof. We take two pointsg € X andyg € X fixed. Thus,
we can form the sequences as follows

x1 = fxo,x2 = fxg = 2%, % = f¥xo, -+
and

Y1=0Y0,Y2=0Yy1 = gzyo, Y= gk)’ow-
for ke N.

By inequalities 7), we obtain
n n

d(xi,yi) = > d(fxi-1,9¥%-1)
i; i Yi i; i i

< _i{ frnd(Xi—1) — Fapd FXi—1) + Gapd¥i-1) — Gapd OYi—1)}

=31 Fabs04-1) — faps) + apsl¥i-1) — Gans¥i)}

= fapsX0) — FapsXn) + GandYo) — Gaps(¥n)
< fabs(XO) + gabs(yo)-

Similarly, we can get

(8)

._id(yi,mﬁ = _id(gy._l, fx)
<3 fabs(%) — faps( 1) + Gaps(¥i-1) — Gand O -1)}

=3 fabs(%6) — fapsX11) + andYo) — Gaps¥n)}

= fans¥1) — fabsXn+1) + Gand¥0) — Faps¥n)
< Tapg(1) + GandYo). 9
From inequalities &) and @), we have the inequality as
follows
n n

Zld(xiaxi-i-l) < _Zl{d(xi,Yi) +d(yi,Xi+1)}

< Faps(X0) + fapsX1) + 20apdYo)-

n
Since patrtial sumde(xi,xiH) is a bounded, the series
i=

zid(x;,xiﬂ) is convergent. Consequently the sequenc
i=

non-negative real numbéd(x,% 1)} converges to zero
(asi —» ). For eachm,n € N with m > n, we obtain

m-1
> d(%i,Xi+1) — 0
i=n

d(Xp, Xm) <

Similarly, in the same way, the sequenigg} is also
Cauchy sequence ot SinceX is complete, each of them
is convergent, namelkp —t € X andy, — s€ X ash — .

If lim f(x,) =t implies limf(fx,)=ft and if

n—oo N—co
Amg(X”) = s implies nILrgg(g)@) =gsby f andg are

orbitally continuous. It allows the sequengg 1 — f(t)
andyny1 — g(s) asn — «. This gives thatft =t and
gs=s. So the point is a fixed point off and the poins
is a fixed point ofy. By inequalities 7), we obtain

d(t.8) = d(ft,99) < fape(t) — fapd ) + Gans(S) — Gand 09

= fabs(t) - fabs(t) + gabs(s) - gabs(s) =0.
This meang = s. In the other words, the poirttis a
common fixed point of andg (t = ft = gt).

Supposd has the other fixed pointe X (fu=u). By
applying (7), we have

d(u,t) = d(fu,gt)
< Fans(U) — Taps FU) + Gape(t) — GandO1)
= faps(U) — faps(U) + Gaps(t) — Gand(t)
prm— 07
which impliesu =t (unique). Hence, the poiritis the
unique fixed point off. Similarly, we can show thdtis

also the unique fixed point @f. This completes the proof.
L.

Example 2.Let X = [0.68,1] endowed by usual metrics.
Let f,g:[0.68,1] — R be a real function with (x) = X2
andg(x) = —x+2 for allx € [0.68,1]. Itis clear thatf and

g are orbitally continuous and metrically differentiable o
(0.68,1) with derivative as follows

5
AN S
abs(X) = - |=7 (10)
and
Jans®¥) = [~ 1| =1, (11)

respectively. From the equatioh@) and (L1) we obtain

%
=—= 12
) (12)

35
X%

z:\bs( fX) = 2

and
Gans(O%) = |- 1| = 1. (13)
Now, we investigate as follows: For =y = 0.68, we

eobtain

|£(0.68) — g(0.68)| = 1.0608< 1.2147

= fans(0.68) — fapsf (0.68) + gy 0.68) — gébsg(o'ﬁgg)

Forx=y=1, we obtain

ash — «. So, the sequendg,} is a Cauchy sequence on |f(1)—g(1)] =0= 1) — f2f (1) + o 1) — dapI(L).

X.

(15)
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Forx=0.68 andy = 1, we obtain

|£(0.68) —g(1)| = 0.7408< 1.2147
= f2ps(0.68) — fopsf (0.68) + gopd 1) — Gapd(1).  (16)
For all 068 < x,y < 0.791, we have
5
X2
fapsX=—~ > —y+2=0y
and .
dosf (9 = 25 < xE = fx
so that
5 35
X2 7X4
fapsX — fapsf X+ Oapy — Gap Y = > 5 1-1
7 7
>(-y+2)—x2 =|(-y+2)—x2[ = |gy— fX
=|fx—gyl. @a7)
For all 0.791< x,y < 0.878, we have
35
X4
absf (X) = —5— < —y+2=gy
and :
7
fapsX = %2 >xt = fx
so that
7xT 7x2
fabsfX— fapsX = — 7
7
<(-y+2)-x2=|(-y+2)—-x2[.  (18)

If both sides are multiplied by the numberl, then we
have

fz:\bsx abs
(19)

35
7
For all 0878< x,y < 1, we haveﬁ >—-y+2>0and

7x5’ ?
- zx% > 0 so that
5 35
X2 T7X4
fapsX — fapsf X+ Oapy — Gap Y = - 5t 1-1
7 7
> (=y+2)—x2 =|(-y+2)—x2[=[f(x) - gy
(20)

Since the inequality?) is satisfied, the functior andg
have a unique fixed point, namely=1f (1) = g(1).

Let # = {f | f: X — X} be a collection of all
metrically differentiable.

Corolary 1. Let (X d) be a complete metric space. If two
mappmgsf g € .% such that the absolute derlvatnfgOS
andgabs satisfying the following condition:

d(%,9Y) < Faps(¥) — Faps FX) + GapdY) — Gand OY)

for all x,y € X, thenf andg have a unique common fixed
point.

Proof By Theorem4, it is clear f andg have a unique
common fixed poinkg € X. If his the other mapping in
7, thenf andh have a unique common fixed poine X
by Theoremd. Sincexg € X is the unique fixed point of
the mappingf, hencexg = u. So the pointg is a unique
common fixed point of, gandh. Of coursexg is a unique
common fixed point of the mappings i becausé is an
arbitrary mapping in the collectiogr. [J

Theorem 5. Let (X,d) be a complete metric space and
f,g: X — X be two mappings oX. If f andg are
metrically differentiable onX such that the absolute

derivativef, o gyps: X — [0,0) satisfying the condition

d(x,y) +d(x, fx) +-d(y.gy)
< fabs( ) f;bs( fX) + g;\bs(y) -

for all x,y € X, thenf andg have a unique common fixed
point.

Proof Now consider two pointgy € X andyg € X as fixed.
Then, we can form sequences as follows.

apd@Y)  (21)

X1 = fxo, % = fxg = F2xg,---x¢ = f¥%0, - -

and

Y1=0Y0,Y2 = g¥1 = %0, Yk = §Vo, -

forke N.
By inequalities 21), we obtain

3 1)

< _i{d(xi—l,)ﬁ—l) +d(Xi—1,%) +d(Yi—1. Vi) }
= _i{d(xila)’il) +d(Xi—1, fxi1) +d(Yi—1,0yi-1) }

<31 fabs(%i-1) — TapelXi) + Gapel¥i-1) — Gaps¥i)}

= fabs(XO) - f;bs(xﬂ) + g;lbs(yo) - g/abs(yn)

< faps(X0) + GapdY0)- (22)

This implies that the seneiid Xi—1,%) IS convergent.

As the proof in Theorem, the sequencéx,} is a Cauchy
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sequence. Likewise, the sequenég,} is a Cauchy From 24) and £6) we have that
sequence. /
Since metric spacX is complete, each of them is UabslY) — Tans(GY) = 3y* —3y° >0

convergent, nameby, — u € X andy, — v &€ X asn — oo,
If L@ f(Xn) =u implies nIi_}m f(fxp) = fu and if

lim g(%n) = v implies limg(gx,) =gv by f andg are Since(x—x?) > 0 and(y—y®) > Oforallx,y € [0.6,1],

orbitally continuous. It allows the sequengg.; — f(u) we obtain

andyni1 — g(v) asn — . This gives thatfu = u and

forally € [0.6,1].

2 2
gv= V. So the poinu is a fixed point off and the point X=X = X=X = (x=x%)
is a fixed point ofg. <2(x—x2) = LX) — fapd FX)  (27)
By inequalities 21), we obtain
d

d(u,v) < d(u,v)+d(u, fu) +-d(v,gv) an

< FapeU) ~ Faoe FU) + Gl ¥) — G V) Y=ot =ly-yl= -y

’ / / ’ /

= faps(U) = faps(U) + GapgV) — GapdV) =3 y2 y6 = Gans(Y) ~ Gand9Y) (28)

=0. forall x,y € [0.6,1].
This meansu = v. In the other words, the point is a .
common fixed point of andg (u= fu = gu). Further, we consider the forim —y| + [x— x| + |y —

_ 2
Supposef has the other fixed point ¢ X (fw=w). I = X=Yl+ X=x)+(y— y?) forall x#y € [0.6,1].
By applying 1), we have If x—y > 0, then we obtain

d(V\IaU)<d(W U)-f—d(V\l7 fW)—l—d(u’gu) |X—y|—|—|x_ fx|+|y_gy|_( ) (X X2)—|—(y_y3)
< fapsW) — Taps( W) + GapfU) — Gans(9U) ) fx_z y3; 2;6 2+ -¥)
’ f X X
_ cf)abS(W) o)+ Gt~ Gl ) < 2(x—2) + 3(y2—yP)

= Taps(¥) — faps( %) + GandY) — Gand9Y):  (29)
which impliesw = u (unique). Hence, the point is the ) N
unique fixed point off. Similarly, we can show thatis  forall x#y € [0.6,1] by inequalities 27) and @8).
also the unique fixed point @ This completes the proof.

0 If x—y < 0, then we obtain

Example 3. -~ _ Cavl— (— 2 _
Let X = [0.6,1] be endowed by usual metrics. Let X=YIE 2fx|+|y oy = x:y)+(x )Yy

f,g:[0.6,1 — R be a real function withf (x) = x*> and = X+ (2y-Y) < (x=¥) +(2y-y)

g(x) = x3 for all x € [0.6,1]. It is clear thatf and g < 2(x—x3) +3(y2—yP)

orbitally continuous and metrically differentiable on , , , ,

[0.6,1] with absolute derivative as follows = Taps(X) — Taps( TX) + Gans(Y) — Gand(9Y), ~ (30)

for all x #y € [0.6,1] by inequalities 27) and @8). Thus,
all of the calculations above were fulfilling the inequality
(22) so thatf andg have common fixed poirg = 1 =

OapeX) = [3¢%] = 3¢, (24) f(1) =9(1).

respectively. From the equatio23) and @4) we obtain

abs( ) |2X| (23)

and

/ , , 5 Common fixed-point for set-valued
aps(TX) = [2x7| = 2x (25 functions
and ) . 6 Next, we consider common fixed-point theorems of
Jabs(9X) = [3X°] = 3x°, (26)  caristi-type mappings for set-valued mappings. To the

respectively. Now, we investigate as follows: Frogg( ~ Proof of theorem below, we shall use the following

and @5) we have that Lemma.
Lemma 5. [15] Let (X,d) be a metric space and let
Los(X) — faps FX) = 2x—2x2 >0 F: X — ¢.2(X) be an upper semi-continuous. Suppose
{Xn} is a sequence iX such thatx,.1 € Fxn. If the
forall x € [0.6,1]. sequencéx,} converges tal € X, thenu € Fu.
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Theorem 6. Let (X,d) be a complete metric space and

Supposé- has the other fixed point € X (w € Fw).

F.G: X — ¥%(X) be two upper semi-continuous By applying 31), we have

set-valued mappings oX. If there exists selectiof € F
andg € G are metrically differentiable oX such that the
absolute derivative,, g, X — [0,) satisfying the
following condition: For each two pointg,y € X there
existsu € Fx andv € Gy such that

(U V) < FapgX) — FapdW) + Gape¥Y) — Gapd V).

thenF andG have a unique common fixed point.

Proof We take two pointsg € X andyp € X fixed. Thus,
we can form sequences as follows.

(31)

X1 € FXg, X0 € FXq, - X € FX¢_1,---

and

y1 € GYo,Y2 € Gy, Yk € G¥k—1,"

for k € N. In general we have

Xn €FXh1 and W€ Gyp1
forallne N.

Suppose two pointg;_1,y;_1 are arbitrary inX, we
can choose a poin € Fx;_1 and a point; € Gy,_1. By
inequalities 81), we obtain

A6, 1) < Faps%-1) — Taps) + Gaps¥i-1) — Gaps¥1)
(32)
foralli € N.

Suppose two points;,y; 1 are arbitrary inX, we can
choose a poinki.1 € Fx; and a pointy; € Gy;_1. By
inequalities 81), we obtain

d0%+2,91) < Faps%) — TapsXi41) + Gaps¥i-1) — g’abs<(yi> |
33
foralli € N.

Suppose two point;,y; is arbitrary in X, we can
choose a poink.1 € Fx; and a pointyj;1 € Gyi. By
inequalities 81), we obtain

~ GapeYi+1)
(34)

d(%i1,Yi+1) < Fans) — TapsXi+1) + GapsVi)

foralli € N.

From inequality 82), (33) and (34) and similar way
to proof of Theorend, both sequencefsx,} and{yn} are
Chauchy sequences.

Since X is complete metric spaces, each of them is

convergent, namelyx, - u e X andy, —» v € X as

n — o. SinceF and G are upper semi-continuous, by

Lemmab, we haveu € Fu andv € Gv. From inequalities
(31), we obtain

d(U V) < fabs( )

This meansi = v. Henceu € FunGu.

faps(U) + Gaps(V) — Gapd V) = 0

Faps(W) + Gapd(U) — GapgU) = O

So,w = u. In the other words, the pointis the only fixed
point of F.

Supposé € X satisfieg € Gt. By applying 31) again,
we have

d(Ut) < Tapg(U) — fapdU) + Gapdt) — Gapdt) =

So,t = u. In the other words, the pointis the only fixed
point of G. Thus the poinu is a uniqgue common fixed
point of F andG. This completes the prodi]

Example 4.Let X = [0,1] be endowed by usual metrics.
Let F,G:[0,1] — R be an interval-valued function with
Fx=[x2—x,X andGx= [3x2+ 1,1] for all x € [0, 1]. We
choose selectionfsx = (x? —x) € Fxandgx= (3 I+ %) €
Gx Itis clear thatf andg are metrically dlfferentlable on
[0, 1] with absolute derivative

d(W,u) < fapdw) —

fapx =[x =1 =2x~1, gypx=[X=x  (35)
sincex € [1,2].
For eachx,y € X, we choose the pointsc Fx = [x?> — X, X]

andv € Gy = [3y?+ 3,1] such that

1 1
X2 —x<u<x §y2+§§v§ 1.

f— — )

(36)

Now, we calculate as follows:
Let(u—v)>0,v<u<x x<y. From 35 and @36)
we obtain

lu—v|=u—v=(3u—2u)—v<(3x—2u)—v
< (2x—2u) + (x—V)
= (2= vy
== -(@2u-1)+({y-v)

= fapX — Tapdi+ Gansy — Gangy.
Let (u—v) <0,u<v<x x<y. From 35 and @36)
we obtain
[U—V|=v—u=Vv+ (U—2u) < x4+ (Xx—2u)
< (xX=20)+(y—v)
=x=1)—(2u-1)+(y—-Vv)
= fapX — Tapdi+ Gansy — Gang.

Let(u—v)>0,v<u<y,y<x From @35 and @36)
we obtain

[u—v|=u—v=(3u—2u)—v<(3y—2u)—
<(@y-20)+(y-v)
< (X=2u)+(y-V)
== -(2u-1)+(y-V)

=f, absX — fab§1+gab§/ gabs
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[u—v|=v—u=v+(u—2u)<y+(y—2u)=2y—2u Mu Epsilon Journal, Vol. 15, No.10, pp. 514-519 (1974).

. oy o . [14] K. Skaland, Differentiation on Metric Spaces, Proc S D
<@ < (-1 - (u-1)+(y-V) Acad Sci, Vol. 54, pp. 75-77 (1975).
= fapsX— fapdd+ Japsy — GandV: [15] W. Takahashi, Nonlinear Functional Analysis, Yokolzam
Publishers, Yokohama, 2000.
Thus, all of the calculations above are fulfilling the
inequality @1) and the pointz=1 € F(1) N G(1) is
unique common fixed point of set-valuEdandG.
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