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Abstract: Centrifugal jet spinning is a novel method that is used to produce nanofibers. In this paper, theoretical and numerical study

of the behavior of polymeric liquid jets during centrifugal spinning is investigated. The nonlinear instability of polymeric liquid jets

is examined in the presence of centrifugal forces, gravity and surface tension. In addition, an asymptotic analysis and perturbation

theory are applied for this polymeric jets during centrifugal spinning to simplify the governing equations into a set of one-dimensional

equations. Then, the trajectory of non-Newtonian liquid jets during the centrifugal spinning has been determined. Furthermore, the

two-step Lax-Wendroff method is used to determine the nonlinear travelling waves along the polymeric jets. Our results also show that

when the rotation rate and gravitational force are high, shear thickening has more break-up lengths than shear thinning jets.
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1 Introduction

The movement of molten polymeric Liquid Jets (LJ) in
centrifugal spinning under the influence of gravity has
many applications, for example in industrial processes
such as ink jets printing, fuel atomisation, agricultural
irrigation, spray coating (the reader can refer to Eggers
et al. [12], Middleman et al. [18], Basaran [5] and
Mckinley [16] for more applications). Rayleigh [23] and
Weber [34] investigated the capillary instability of liquid
jet break-up, such specification was examined by Keller
et al. [14]. A similar way of an asymptotic analysis to the
dynamics of viscous fluid jets was investigated by
Papageorgiou [20].

The prilling process enables the construction of small
spherical pellets from the break-up of (Lj), and has
multiple uses including the usage in fertilizer
manufacture.

Here a liquid flows from a hole on the outer surface of
a rapidly rotating cylindrical container forming a liquid
jet (surrounded by air) that separates from the edges and
falls under gravity.This liquid jet subsequently breaks up
because of surface tension-driven instabilities. The result
drops falling under gravity and the resulting solidifies
forming the required pellets. This was first studied in a
mathematical model for inviscid jets in Wallwork et

al. [33] but that paper neglected gravity, and was
generalized to contain gravity by Decent et al. [6]. Decent
et al. [7] then examined the rotating Newtonian viscous
jet.

Liquids in real industrial applications are
non-Newtonian and the instability of a rotating
non-Newtonian liquid jet was examined in Uddin et
al. [27], though that paper neglected gravity. Gravity was
included for non-Newtonian jets but without rotation in
Uddin and Decent [30].

These previous modeling papers have looked at liquid
jets where the torsion is zero, with the exception of
Decent et al. [6] which incorporated both rotation and
gravity to examine prilling when the torsion is O(1). It
has recently been shown in Decent et al. [8] that the
approach developed in these previous papers to examine
slender liquid jets with a curved trajectory is valid so long
as the torsion is zero, small or O(1), but this
approximation method, which is based upon an
assumption that the jet is asymptotically slender, becomes
invalid when the torsion becomes asymptotically large.
This paper extends Decent et al. [6] to include viscosity,
when the viscosity in Newtonian, shear thinning or shear
thickening, examining situations when the torsion is O(1)
by including both gravity and rotation into the model.
This paper is the first time that curved viscous jets have
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been examined theoretically in a situation when the
centreline has O(1) torsion.

Wong et al [35], Hawkins et al. [13], Partridge et
al. [22] conducted experimental studies on the nonlinear
effects of liquid curved jets. These experiments show a
good agreement with theory for droplet sizes produced
from the instability mechanism. They also observed that
the jets are slender in these experimental papers in
agreement with the asymptotic assumption.

The centrifugal jet spinning process is used to
produce nanofibers (see Mellado et al. [17] and Padron et
al. [19] )in which the polymer is placed in a rotating
device. In this process, the break-up of the jet increases
with increasing the rotation rate. Divvela et al. [9]
investigated the behaviour of Newtonian and
non-Newtonian centrifugal jet spinning. Taghari and
Larson [26] considered centrifugal spinning of viscous
(LJ). A perturbation method was investigated by
Riahi [25] to study nonlinear polymeric fiber jets during
force spinning process.

Various other scenarios have also been examined
previously. Renardy [24] numerically described the
break-up of Newtonian and non-Newtonian liquid jets.
Drop formation of viscoelastic rotation jets was examined
by Alsharif [1] and Alsharif et al. [2]. Alsharif et al. [3]
examined the influence of torsion on slender curved liquid
jets. Lorenz et al. [15] carried out the effect of gravity on
a dynamic curved jet. Eggers and Dupont [10] studied
drop formation of viscous (LJ). The linear and nonlinear
instability of a rotating viscous jet with surfactants was
discussed by Uddin [28] and Uddin et al. [29]. Drop
formation for non-Newtonian liquid curved jets with
surfactant is investigated by Uddin & Decent [31].

The aim of this paper is to further explain the work of
Uddin et al. [27] to examine the nonlinear instability of
slender power law polymeric jets in the presence of
gravity. This corresponds to the centrifugal spinning
process. The equations which govern the system are
simplified to a set of non-dimensional equations by using
the slender jet asymptotic approach introduced in
Wallwork et al. [33]. We find steady state solutions and
then use the Lax-Wendroff method to compute the
break-up lengths and drop formation for the polymeric
liquid jets in centrifugal spinning with gravity. This
provides an overview of the process of producing
nanofibers.

2 Formulation of the problem

In this contribution, we study the temporal and spatial
instability of shear thinning and shear thickening curved
viscous jets by additionally incorporating gravity. We also
consider the Newtonian case.

A cylindrical container which has radius s0 and
rotates with angular velocity Ω is considered. The axis of
the cylinder is vertical and the cylinder rotates about this
axis. On the side of the container, a small orifice (with

radius a) is apparent. We define a x,y,z Cartesian
coordinate system, which rotates with the container and
where the origin is at the centre of the orifice. g is denoted
to the acceleration of gravity which is in negative
direction of y-axis. The x-axis is normal to the surface of
the cylinder and the z-axis is tangential to the surface of
the cylinder, and the Cartesian system is right-handed.
The functions (x = X(s, t),y = Y (s, t),z = Z(s, t)) are
used to describe the position of the centreline of the
curved liquid jet, where s is the arc-length along the
centreline of the jet, and t is the time (see Wallwork [32]).
A curvilinear coordinate system (s,n,φ) is used in any
cross-section of the jet, and (n,φ) are the plane polar
coordinates, which are the radial and azimuthal
coordinates in any cross-section of the jet, and es, en,eφ

are unit vectors (see Decent et al. [6]).
The governing equations are described as follows

∇ ·u = 0,

ρ

(

∂u

∂ t
+u ·∇u

)

=−∇p+ g+∇ · τ

−2w×u−w× (w× r), (1)

where u = uex + ven + ωeφ is the liquid velocity, ρ
represented the liquid density, p detonated to the pressure,
g denotes the acceleration gravity, ω = (0,ω ,0) is the
angular velocity vector of the container and r is the
position vector.

Here the viscosity is not constant for power law fluids
so that we have τ = γ η , where γ is the rate of strain

tensor, η = m

(

γ:γ
2

) α−1
2

is the apparent viscosity, α is the

flow index number and m is the fluid consistency number
and so that the apparent viscosity is written in terms of
the second invariant of the rate of strain tensor. The
normal stress condition is given by n·Π ·n = σκ , where
Π is the total stress tensor given by −pI + τ , σ is the
isotropic surface tension and κ is the curvature of the
liquid-gas free-surface. The free surface of the jet is
described by n − R(s, t,φ) = 0, where R(s, t,φ) is a
function which gives the free-surface position. The
tangential stress conditions are ti ·Π ·n = 0, where i = 1,2
where n, t1 and t2 are the normal and tangential vectors to
the free-surface. The normal and tangential stress
conditions are applied at n = R(s,φ , t). The kinematic

condition is given by D
Dt
(R(s, t,φ − n) = 0 on

n = R(s,φ , t), and the arc-length condition is

X2
s +Y 2

s +Z2
s = 1.

The unit vectors are treated as described in Decent et
al. [6,8], so that es is assumed to be tangential to the
centreline and the other two unit vectors are perpendicular
to the centreline. It is shown in Decent et al. [8] which is
valid for asymptotically the torsion is O(1), small or zero,
but will not be valid if the torsion of the centreline is
asymptotically large. This approach is a useful one given
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the complexity of determining the equations of motion if
these assumptions are not made, as is discussed in Decent
et al. [8].

These equations are similar to those found in Uddin et
al. [27] but gravity is included in these equations here in
equation (2). In order to control the break-up lengths and
drop sizes of the centrifugal jet spinning, we use the
gravitational force, which can affect the instability theory
of liquid jets (see Amini et al. [4]). We can make our
governing equations in non-dimensionalization forms by
the follows equations

ū =
u

U
, v̄ =

v

U
, w̄ =

w

U
, n̄ =

n

a
, ε =

a

s0

, R̄ =
R

a
,

s̄ =
s

s0

, t̄ =
U

s0

t, p̄ =
p

ρU2
, X̄ =

X

s0

, Ȳ =
Y

s0

, Z̄ =
Z

s0

,

where U is the speed of the jet at the orifice and ε is the
aspect ratio of the jet. Therefore we have
non-dimensionless parameters, which are the Rossby
number Rb = U/(s0Ω), the Weber number
We = ρU2a/σ , the generalized Reynolds number
Reα = (ρ/m)sα

0 U2−α , the Froude number

Fr = U/(s0g)1/2 and R̂eα = εReα . As found in Uddin et
al. [27] the correct balance for the instability equations is
to take R̂eα = O(1) in this paper.

The jet is assumed to be asymptotically slender in this
paper so that ε << 1. The difference then between this
paper and Uddin et al. [27] is that in this paper Fr = O(1)
and the torsion of the jet’s centreline is also O(1), while
in Uddin et al. [27] the Fr = ∞ and the torsion of the
centreline is zero.

3 Steady state solutions

Expanding the variables u,v,w and p in the Taylor series
in εn and R,X ,Y,Z in ε (see Eggers [11]). We consider
that the axial component of the velocity at the leading
order is independent of φ . Therefore, we have
u = u0(s, t) + (ε n)u1(s,φ , t)+ ...
v = (ε n)v1(s,φ , t)+ (ε n)2v2(s,φ , t)+ ...
w = (ε n)w1(s,φ , t)+ (ε n)2w2(s,φ , t)+ ...
p = p0(s,n,φ , t)+ (ε n)p1(s,φ , t)+ ...
R = R0(s, t)+ ε R1(s,φ , t)+ ...
X = X0(s)+ ε X1(s, t)+ ...
Y = Y0(s)+ ε Y1(s, t)+ ...
Z = Z0(s)+ ε Z1(s, t)+ ...

Now by applying these expansions to the steady
equations and then follow the method of Decent et al. [6,
7] and Uddin et al. [27] we can fined out the following
equations. For simplicity we rewrite X0,Y0 and Z0 here as
X ,Y and Z since we only need to use the leading-order
terms in the above expansions for these quantities in this
paper. Then for R̂eα = O(1), viscosity is found to be
absent from the steady equations as in Decent et al. [7]
and Uddin et al. [27]. Thus this gives the same steady

equations as found in Decent et al. [6,8], which are as
follows

u2
0 = 1− 2Y

Fr2
+

(

X2 + 2X +Z2
)

Rb2
+

2

We

(

1− 1

R0

)

, (2)

(X2
ss +Y 2

ss +Z2
ss)

(

u2
0 −

1

WeR0

)

=
2

Rb
u0(XsZss −ZsXss)

−Yss

F2
+

(X + 1)Xss+ZZss

Rb2
, (3)

ZsXss −ZssXs

F2
− 2Yssu0

Rb
+

(X + 1)(YssZs −YsZss)

Rb2

+
Z(YsXss −YssXs)

Rb2
= 0, (4)

and finally the arc-length condition is

X2
s +Y 2

s +Z2
s = 1,

as well as
R2

0u0 = 1.

The initial conditions for these equations are
u0(0) = R0(0) = Xs(0) = 1 and
Y (0) = X(0) = Z(0) = Zs(0) = Ys(0) = 0.

The above equations represented a system of four
equations in four unknowns variables X ,Y,Z,u0. We solve
these equations with the help of MATLAB and using the
Rounge-Kutta method for obtaining the trajectory of the
jet.

The relationship between the jet’s radius and the
arc-lengths is displayed in Figs. 1 and 2 for some values
of the Froude and Rossby numbers and the remaining
parameter (We = 10) is fixed. It can be noticed in these
two figures that the polymeric jet’s radius reduces with
the arc-length s that goes on. We can also observe that the
gravitational force and centrifugal spinning have an effect
on the behavior of the jet’s radius. Fig. 3 shows the
trajectory of the polymeric jet for two different values of
the Froude number (Fr = 0.5 and 1) for Rb = 1 and
We = 10. In general the polymeric jet coils is gradually
reduced as the Froude number increases and reaches to
minimum value after more interval of the Froude number.
In addition the polymeric jet coils are increasing when the
gravitational force Fr decreases. The same result is
obtained in Figs 4 and 5 for changing the centrifugal force
and surface tension. In Fig. 6 we plot the torsion κ2

against the arc-length s, which is same result, with an
initially negative value for the torsion at the orifice. For
large values of s, the torsion decay gradually and reaches
to zero. We pointed that the torsion κ2 never has a large
asymptotic values for any value of s.

The torsion of the centreline of the curved jet is κ2 =
P/Q where

P = X ′ (−Z′′Y ′′′+Y ′′Z′′′)+Z′ (−Y ′′X ′′′+X ′′Y ′′′)

+Y ′ (−X ′′Z′′′+Z′′X ′′′) (5)
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Fig. 1: The jet’s radius R0 versus the arc-length s for varying the

values of the Froude number, where Rb = 1 and We = 10.
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Fig. 2: The jet’s radius R0 versus the arc-length s for varying the

values of the Rossby number, where Fr = 0.5 and We = 10.

and

Q =
(

−Z′Y ′′+Y ′Z′′)2
+
(

Y ′X ′′−X ′Y ′′)2

+
(

−X ′Z′′+Z′X ′′)2
. (6)

(See Decent et al. [8] ).
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Fig. 3: The jet’s trajectory for varying the values of the Froude

number, where Rb = 1 and We = 10.
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Fig. 4: The jet’s trajectory for varying the values of the Rossby

number, where Fr = 0.5 and We = 10.

4 Numerical method

The two-step Lax-Wendroff method has been used to solve
nonlinear equations of the form

∂u

∂ t
=−∂ F(u)

∂ s
+G(u,s),

where F and u are vectors. To apply this method in our
nonlinear governing equations, we choose equally spaced
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Fig. 5: The jet’s trajectory for varying the values of the Weber

number, where Rb = 1 and Fr = 0.5.
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Fig. 6: The torsion κ2against the arc-length s for Fr = 1.5, Rb =
1.1 and We = 10.

points for both space x and t axes, namely

s j = s0 + jds, tn = t0 + ndt,

here the space and time intervals are ds and dt

respectively, and s0 and t0 are the initial values for s and t.
For the purpose of making this method stable in terms of
the numerical solution, we use half time-steps t j+1/2 and
half mesh-points si+1/2 as

u
n+1/2

j+1/2
=

1

2
(un

j+1 +un
j)−

dt

2ds
(Fn

j+1 −Fn
j)+ 0.5(∆)Gm

j .
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Fig. 7: The trajectory of a rotating polymeric liquid jet for Rb =
1, We = 10, Re = 3000, α = 1.2, δ = 0.001 and κ = 0.9.
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Fig. 8: The trajectory of a rotating polymeric liquid jet for Rb =
1, We = 10, Re = 3000, α = 0.2, δ = 0.001 and κ = 0.9.

Then, the new flux is worked out from u
n+1/2

j+1/2
, thus the

final step is

un+1
j = un

j −
dt

ds
(F

n+1/2

j+1/2
−F

n+1/2

j−1/2
)+∆Gm

j .

5 Nonlinear Temporal Solutions and Results

Here we focus on investigating the break-up lengths and
drop formation, which can be found from the nonlinear

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


722 A. M. Alsharif: A mathematical approach to nonlinear travelling...

z
-0.1 0 0.1 0.2 0.3 0.4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z
-0.1 0 0.1 0.2 0.3 0.4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 9: The trajectory of a rotating polymeric liquid jet for Rb =
1, We = 10, Re = 3000, α = 0.2 and 1.2, δ = 0.001 and κ = 0.9.

Fig. 10: The trajectory of a rotating polymeric liquid jet for Rb =
1, We = 10, Re = 3000, α = 0.2, δ = 0.001 and κ = 0.9.

instability theory for our problem. This is because
typically there are many small satellites wasted in the
process of producing nanofibers. Therefore, we replace
the leading order pressure term p0 =

1
We

1
R0

in Eqn. (3) by

the following expression as follows

p =
1

We

[

1

R0(1+ ε2R2
0s)

1/2
− ε2R0ss

(1+ ε2R2
0s)

3/2

]

. (7)

Multiple authors have carried out the same approach (see
Papageorgiou [20] and Eggers [11]). Here we denote η̂ =

|
√

3us|
α−1

and A = A(s, t), where A(s, t) = R2(s, t), thus
we can write our nonlinear system of equations as follows

∂u

∂ t
=−

(

u2

2

)

s

− 1

We

∂

∂ s

4σ

(

2A+(εAs)
2 − ε2AAss

)

(

4A+(εAs)2

)3/2
+

(X + 1)Xs+ZZs

Rb2
− Ys

Fr
+

3

Re

(η̂Aus)s

A
, (8)

∂A

∂ t
=− ∂

∂ s
(Au), (9)

Here we use the initial conditions at t = 0 which are
A(s, t = 0) = R2

0(s), u(s, t = 0) = u0(s) as discussed
earlier for the steady state solutions (see section 3). We
use upstream boundary conditions at the nozzle as follows

u(0, t) = δ sin
(κt

ε

)

+ 1, A(0, t) = 1, A(0,1) = 1.

where κ is the disturbance frequency, and δ is the
amplitude of the initial non-dimensional velocity
disturbance.

Now we use the experimental value of ε(= a
s0
)

namely is 0.01 (see Wong et al. [35]). The second-order
finite difference method is based on an explicit scheme,
and then we use the Lax-Wendroff two-stage scheme to
point out the break-up lengths and small satellites of
polymeric (LJ) in centrifugal spinning with gravity.

To determine drop formation and break-up lengths of
polymeric jets in centrifugal spinning, we use the
nonlinear instability theory that can be examined using
the two-step Lax-Wendroff method. Fig. 7 represents the
numerical simulation of the polymeric jet in the x − z

plane with the effect of the gravitational force Fr. When
Fr = 0.5, we see that the thickening polymeric liquid jets
gradually decreases followed by oscillations with small
amplitude and again gradually increases. By increasing
the Fr parameter due to increases of thickening polymeric
liquid jets and the amplitude of oscillation increases as
observed in Fig. (7). This shows that when Fr increases,
the break-up lengths of thickening polymeric liquid jets
(α = 1.2) increases. We have found the same result in
Fig. 8 for shear polymeric liquid jet (α = 0.2), where the
rest of the parameters is
Rb = 1,We = 10,Re = 3000,δ = 0.001 and κ = 0.9.

We have compared the break-up lengths of shear and
thickening liquid jets in the presence of gravity. From this
comparison, we have found that thickening polymeric
liquid jets has longer break-up times than shear polymeric
liquid jet (see Figure 9). A comparison is also made in
Fig. 10 to see the effects of gravitational force on the
break-up lengths of polymeric liquid jets for three
different values of Froude Fr. This figure shows that the
increase in the number of Froude gives us a longer
break-up length for polymeric jets in centrifugal spinning,
which means that the force of gravity has an affected on
this jet.
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6 Conclusions

In this paper, the problem of polymer processing
examined in Uddin et al. [27] is extended to include
gravity. Similar to the analysis in Uddin et al. [27], the
asymptotic and perturbation theory are applied for this
polymeric jets during centrifugal spinning. Then, we have
followed the method of Decent et al. [6,7] and Uddin et
al. [27] to find the steady state solutions of
non-Newtonian liquid jets during the centrifugal spinning
in the presence of gravity. We have also considered the
nonlinear travelling waves of polymeric liquid jets in the
centrifugal spinning with gravity to determine the
break-up lengths for different flow index numbers. We
have found that the gravitational force has an effect on the
break-up lengths and drop sizes of polymeric jets in
centrifugal spinning. Our results also confirm that the
polymeric jet bends more when the gravitational force is
small which means that the Froude number Fr decreases.
The same result is obtained in Figs 4 and 5 for changing
the centrifugal force and surface tension the Rossby Rb

and Weber We numbers respectively.
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