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Abstract: In this paper, we investigated a new mathematical model on effect of the diffusion with voids in generalized thermoelastic

half-space with electromagnetic field, gravity field, and rotation. The model is formulated in the context of four thermoelastic theories;

Classical (CT), Lord Shulman (LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL) models. The boundary conditions on the surface

applied to obtain the enclosed expressions for the displacements, temperature, stresses, concentration of diffusion and volume fraction

field in the physical domain using the normal mode method. A comparison will be made for the results obtained in the presence and

absence of the new considered variables and displayed graphically. We shall compare the results in the context of the new mathematical

model with the previous results obtained by others to ensure the quality of the model and show the physical meaning of the phenomena.

Finally, we shall make simulation with Geologists and Petroleum Engineers to show the useful and applications of the new model and

generalize the results for the new mathematical model obtained

Keywords: Electromagnetic field, gravity field, rotation; voids, diffusion, normal mode analysis, green-Lindsay, lord-Shulman, dual-

phase-lag

1 Introduction

Seismology is the study of mechanical waves that travel
on and beneath the surface of the earth. It was first
recognized as a scientific discipline in the 1800s with the
emergence of the quantitative study of earthquakes, one
of the most common natural sources of seismic waves.
Although instruments designed to detect earthquakes date
back to 132 A.D. (Dewey and Byerly [1]), is the first
modern seismometers were developed and installed in
observatories around the world in the late 1800s and early
1900s to study the cause of earthquakes and investigate
the structure of the earth’s interior (Agnew [2]). The first
network of seismometers and seismographs to record
earthquakes in Kansas was established by the Kansas
Geological Survey (KGS) in 1977 to assess the level of
seismic activity in the state. As seismic technology and
instrumentation improved, active sources were developed
to intentionally generate seismic waves for local studies
of the earth’s subsurface.

During the past few decades, wide spread attentions
have been given to thermoelasticity theories that admit a
finite speed for the propagation of thermal signals. In
contrast, to the conventional theories based on parabolic
type heat equation, these theories are referred to as
generalized theories. Because of the experimental
evidence in support of the finite of the speed of
propagation of a heat wave, generalized thermoelasticity
theories are more realistic than conventional
thermoelasticity theories in dealing with practical
problems involving very short time intervals and high
heat fluxes such as those occurring in laser units, energy
channels, nuclear reactors, etc.

The phenomenon of coupling between the
thermomechanical behavior of materials and magnetic
behavior of materials has been studied since the 19th
century. There are a number of theories, which describe
mechanical properties of porous materials, and one of
them is a Biot consolidation theory of fluid-saturated
porous solids (Biot [3]). These theories reduce to classical
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elasticity when the pore fluid is absent. In addition, a
continuum theory for granular materials, whose matrix
material (or skeletal) is elastic and interstices are voids.
They formulated this theory from the formal arguments of
continuum mechanics and introduced the concept of
distributed body, which represents a continuum model for
granular materials (sand, grain, powder, etc.) as well as
porous materials (rock, soil, sponge, pressed powder,
cork, etc.). The basic concept underlying this theory is
that the bulk density of the material written as the product
of two fields, the density field of the matrix material and
the volume fraction field (the ratio of the volume
occupied by grains to the bulk volume at a point of the
material). This representation of the bulk density of the
material introduces an additional kinematic variable in the
theory.

The classical and generalized theories of coupled
thermoelasticity extensively developed due to their many
applications in the advanced structural design problems.
Therefore, it is crucial to obtain the deformation and
temperature distributions in the structures under thermal
shock loads. Recently, the effect of diffusion spread takes
a wide range of medical applications, nuclear and
engineering, we studied the effect of the diffusion with
voids in generalized thermoelastic half-space with an
electromagnetic field, gravity field, rotation and initial
stress. Lord and Shulman [4] introduced the theory of
generalized thermo elasticity with one relaxation time for
the special case of an isotropic body. Cowin and Nunziato
[5] developed linear elastic materials with voids. Aouadi
[6] studied generalized theory of thermoelasic diffusion
for an anisotropic media. Aouadi [7] illustrated a problem
for an infinite elastic body with a spherical cavity in the
theory of generalized thermoelastic diffusion. Aouadi [8]
illustrated uniqueness and reciprocity theorem in the
theory of generalized thermoelasic diffusion. Singh ([9],
[10]) studied reflection of P and SV waves from free
surface of an elastic solid with generalized
thermodiffusion. Nowacki ([11]-[13]) illustrated
dynamical problems of thermoelastic diffusion in solids.
Olesiak and Pyryev [14] studied a coupled
quasi-stationary problem of thermodifusion for an elastic
cylinder. Sherief and Saleh [15] discussed a half-space
problem in the theory of generalized thermoelastic
diffusion. Ram et al. [16] studied thermo-mechanical
response of generalized thermoelastic diffusion with one
relaxation time due to time harmonic sources. Bayones
[17] discussed the influence of diffusion on generalized
magneto-thermo-viscoelastic problem of a homogenous
isotropic material. Abo-Dahab and Singh [18] illustrated
influence of magnetic field on wave propagation in
generalized thermoelastic solid with diffusion. Xia et al.
[19] developed the influence of diffusion on generalized
thermoelastic problems of infinite body with a cylindrical
cavity. Allam et al. [20] discussed GL model on reflection
of P and SV waves from the free surface of thermo-elastic
diffusion solid under influence of the electromagnetic
field and initial stress. Abouelregal and Abo-Dahab [21]

illustrated dual-phase-lag diffusion model for Thomson’s
phenomenon on electromagneto-thermoelastic an infinite
solid cylinder.

Abo-Dahab [22] studied S-waves propagation in a
non-homogeneous anisotropic incompressible medium
under influences of gravity field, initial stress,
electromagnetic field and rotation. Kumar and Kumar
[23] illustrated wave propagation and fundamental
solution of initially stressed thermoelastic diffusion with
voids. The extensive literature on the topic is now
available and we can only mention a few recent
interesting investigations (Abd-Alla et al.[24], Abd-Alla
and Abo-Dahab [25] and Youssef and El-Bary [26]).
Kumar and Gupta [27] discussed wave propagation at the
boundary surface of inviscid fluid half-space and
thermoelastic diffusion solid half-space with
dual-phase-lag models. Kumar and Gupta [28] studied
dual-phase-lag models of wave propagation at the
interface between elastic and thermoelastic diffusion
media. Sur and Kanoria [29] developed three-phase-lag
elasto-thermodiffusive response in an elastic solid under
hydrostatic pressure. Kumar et al. [30] studied
axi-symmetric propagation in a thermoelastic diffusion
with phase lags. Abouelregal [31] illustrated a problem of
a semi-infinite medium subjected to exponential heating
using a dual-phase-lag thermoelastic model. Kumar and
Kansal [32] discussed propagation of plane waves and
fundamental solution in the theories of thermoelastic
diffusive materials with voids.

In this paper, we investigated the effect of the
diffusion with voids in generalized thermoelastic
half-space with an electromagnetic field, gravity field and
rotation in the context of Classical (CT), Lord Shulman
(LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL)
models. Numerical computation is performed by using a
numerical technique and the resulting quantities are
shown graphically. Comparisons have been made with the
obtained results in the presence and absence of the
considered variables. The effect of the diffusion with
voids, magnetic field, rotation and gravity field on
temperature, displacement and stress in elastic body are
studied and indicated that has a perfect influence on the
phenomena.

2 Formulation of the problem

Let us consider a homogeneous generalized thermoelastic
half-space rotating uniformly with an angular velocity
−→
Ω = Ω−→n , where, is −→n a unit vector representing the
direction of the axis of rotation. The rectangular Cartesian
coordinate system (x,y,z) with y-axis vertically
downwards into the medium is introduced. The
displacement equation of motion in the rotating frame has
two additional terms centripetal acceleration,
−→
Ω ×

(−→
Ω ×−→u

)

due to time varying motion only and

Corioli’s acceleration 2
−→
Ω ×

−→.
u , where,−→u = (u,0,w) is
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the dynamic displacement vector, and
−→
Ω = (0,Ω ,0) is

the angular velocity .
We consider the normal source acting at the plane

surface of generalized thermo-elastic half-space under the
influence of gravity and constant primary magnetic field
and electric field.

3 Basic equations

The governing equations for a homogeneous generalized
thermoelastic half-space with diffusion, voids and
Lorentz’s body forces in the absence of incremental heat
flux at reference temperature T0 given as follows:

σi j= (λ e− γ
(

1+ τ1
∂
∂ t

)

T + bΦν −β1

(

1+ τ1 ∂
∂ t

)

C)δi j + 2µei j,

(1)

pc =−β1e+bcC−acT −b∗2Φν (2)

ρη = γe+αT +mΦν +acC (3)

g∗ =−be−ξ Φν +mT −ω0Φ̇ν +b∗2C

(4)

ei j =
1

2
(ui, j+u j,i) (5)

ωi j =
1

2
(u j,i−ui, j) (6)

Si =αΦν,i (7)

The Maxwell’s equation is

τi j = µe

[

Hih j +H jhi − (
−→
H k.

−→
h k)δi j

]

, i, j = 1,2,3 (8)

where, τi j is Maxwell’s stress tensor, which reduces to

τ11 = τ33 = µeH2

(

∂u

∂x
+

∂w

∂ z

)

, τ13 = 0

Equation of motion is

σ ji, j +Fi = ρ [
−→
ü +

−→
Ω ×

(−→
Ω ×−→u

)

+ 2
−→
Ω ×

−→.
u ]i (9)

which tends to

µui, j j +(λ +µ)u j,i j − γ

(

1+ τ1

∂

∂ t

)

T,i +bΦν,i −β1

(

1+ τ1 ∂

∂ t

)

C,i

+Fi +G i = ρ [
−→
ü +

−→
Ω ×

(−→
Ω ×−→u

)

+2
−→
Ω ×

−→.
u ]i (10)

where

Fi =
(−→

J ×
−→
B
)

i
, G = ρg

(

∂ω

∂x
,0,−

∂u

∂x

)

(11)

The variation of magnetic field and electric field given by
Maxwell’s equation as the following form:

−→
J + ε0

∂
−→
E

∂ t
= curl

−→
h

−µe
∂
−→
h

∂ t
= curl

−→
E

div
−→
h = 0

div
−→
E = 0

−→
E =−µe

(

∂−→u
∂ t

×
−→
H 0

)

−→
h = curl(−→u ×

−→
H 0)

(12)

where,

−→
H 0 = (0, H, 0),

−→
H =

−→
H 0 +

−→
h (x,z, t) (13)

Using Eq. (12) we obtain

Fx = µeH2

[

∂e

∂x
− ε0

∂ 2u

∂ t2

]

(14)

Fy = 0, (15)

Fz = µeH2

[

∂e

∂ z
− ε0

∂ 2w

∂ t2

]

, (16)

The heat conduction equation considering voids and dual-
phase-lag model in the form (Allam et al. [20])

K
(

1+ τΘ
∂
∂ t

)

T,ii =
(

n1 + τq
∂
∂ t

)(

ρCE
∂T
∂ t

+αcT0
∂C
∂ t

+mT0
∂Φν
∂ t

)

+ γT0

(

n1 + n0τq
∂
∂ t

)

∂e
∂ t

(17)
The equation of voids is

αΦν,ii −bui,i−ζ
.

Φν −ω0

.

Φν +mT +b∗2C = ρχ
..

Φν (18)

The equation of diffusion is

(

1+ τq
∂
∂ t

)(

dβ1e,ii − dbc

(

1+ τ1 ∂
∂ t

)

C,ii + dac

(

1+ τ1
∂
∂ t

)

T,ii

+db∗2Φν,ii)+
(

1+ τη
∂
∂ t

) .

C = 0

(19)
We study the above basic equations for the following four
different theories:
(i) Classical and Dynamical coupled theory (1956) (CD):

n0 = 0, n1 = 1, τq = 0, τ1 = 0, τΘ = 0, τ1 = 0, τη = 0, τP = 0

(ii) Lord and Shulman theory (1967) (LS):

n0 = 1, n1 = 1, τq > 0, τ1 = 0, τΘ = 0, τ1 = 0, τη < τq, τP = 0

(iii) Green and Linday theory (1972) (GL):

n0 = 0, n1 = 1, τq > 0, τ1 ≥ τq, τΘ = 0, τ1 ≥ τq, τη = 0, τP = 0

(iv) Dual-Phase-Lag theory (1956) (DPL):

n0 = 1, n1 = 1, τq > 0, τ1 = 0, τΘ < τq, τ1 = 0, τη = 0, τP = 0
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4 Solution of the problem

From equations (10) and (17)-(19) we obtain

µ∇2u+(λ +µ)
∂e

∂x
− γ

(

1+ τ1
∂

∂ t

)

∂T

∂x

+b
∂Φν

∂x
−β1

(

1+ τ1 ∂

∂ t

)

∂C

∂x
+Fx +ρg

∂w

∂x

= ρ

[

∂ 2u

∂ t2
+2Ω

∂w

∂ t
−Ω 2u

]

(20)

µ∇2w+(λ +µ)
∂e

∂ z
− γ

(

1+ τ1
∂

∂ t

)

∂T

∂ z

+b
∂Φν

∂ z
−β1

(

1+ τ1 ∂

∂ t

)

∂C

∂ z
+Fz −ρg

∂u

∂x

= ρ

[

∂ 2w

∂ t2
−2Ω

∂u

∂ t
−Ω 2w

]

(21)

K

(

1+ τΘ
∂

∂ t

)

T,ii =

(

n1 + τq
∂

∂ t

)(

ρCE
∂T

∂ t
+αcT0

∂C

∂ t
+mT0

∂Φν

∂ t

)

+ γT0

(

n1 +n0τq
∂

∂ t

)

∂e

∂ t
(22)

α

(

∂ 2Φν

∂x2
+

∂ 2Φν

∂ z2

)

−b

(

∂u

∂x
+

∂w

∂ z

)

−ζΦν −ω0
∂Φν

∂ t
+mT +b∗2C = ρχ

∂ 2Φν

∂ t2
(23)

(

1+ τP

∂

∂ t

)[

dβ1

(

∂ 2e

∂ x2
+

∂ 2e

∂ z2

)

−dbc

(

1+ τ1 ∂

∂ t

)(

∂ 2C

∂ x2
+

∂ 2C

∂ z2

)

+dac

(

1+ τ1

∂

∂ t

)(

∂ 2T

∂ x2
+

∂ 2T

∂ z2

)

+db∗2

(

∂ 2Φν

∂ x2
+

∂ 2Φν

∂ z2

)]

+

(

1+ τη
∂

∂ t

)

C = 0 (24)

The constitutive relations written as

σxx = (λ +2µ) ∂ u
∂ x

+λ ∂ w
∂ z

− γ
(

1+ τ1
∂
∂ t

)

T +bΦν −β1

(

1+ τ1 ∂
∂ t

)

C

(25)

σyy = λ e− γ
(

1+ τ1
∂
∂ t

)

T + bΦν −β1

(

1+ τ1 ∂
∂ t

)

C

(26)

σzz = (λ + 2µ) ∂w
∂ z

+λ ∂u
∂x

− γ
(

1+ τ1
∂
∂ t

)

T + bΦν −β1

(

1+ τ1 ∂
∂ t

)

C

(27)

σxz = µ

(

∂u

∂ z
+

∂w

∂x

)

(28)

σzx = µ

(

∂w

∂x
+

∂u

∂ z

)

(29)

σxy = σyx = 0 (30)

For simplifications, we shall use the following
non-dimensional variables:

x
′

i =
ω∗

c0
xi, u

′

i =
ρc0ω∗

γT0
ui, Ω

′
=

Ω

ω∗
,

θ =
T

T0

, σ
′

i j =
σi j

γT0

, Φ
′

ν =
χ

γT0

Φν ,C
′
=

β1

γT0

C,

g
′
=

g

c0ω∗
, (t

′
,τ

′
,τ

′

1,τ
1′
,τ

′

q,

τ
′

Θ ,τ
′

p,τ
′

η ) = ω∗(t,τ,τ1,τ
1
,τq,τΘ ,τp,τη ), b∗ =

b

χ
,

τ
′

i j =
τi j

γT0

. (31)

In terms of non-dimensional quantities defined in Eq. (31),
the above governing equations (20)-(24) tend to:

(

µ

ρc2
0

)

∇2u+

(

λ +µ

ρc2
0

+RH

)

∂ e

∂ x
−

(

1+ τ1

∂

∂ t

)

∂ θ

∂ x

+b∗
∂ Φ

′
ν

∂ x
−

(

1+ τ1

∂

∂ t

)

∂C

∂ x
+g

∂ w

∂ x
=

[

β 2 ∂ 2u

∂ t2
+2Ω

∂ w

∂ t
−Ω 2u

]

(32)

(

µ

ρc2
0

)

∇2w+

(

λ +µ

ρc2
0

+RH

)

∂ e

∂ z
−

(

1+ τ1

∂

∂ t

)

∂ θ

∂ z

+b∗
∂ Φ

′
ν

∂ z
−

(

1+ τ1

∂

∂ t

)

∂C

∂ z
−g

∂ u

∂ x
=

[

β 2 ∂ 2w

∂ t2
−2Ω

∂ u

∂ t
−Ω 2w

]

(33)

(

1+ τΘ
∂

∂ t

)

∇2θ =

(

n1 + τΘ
∂

∂ t

)

(

θ̇ +ζ2Φ̇
′

ν +ζ3Ċ

)

+ζ1

(

n1 +n0τq

∂

∂ t

)

ė (34)

∇2Φν −a1

(

∂ u

∂ x
+

∂ w

∂ z

)

−a2Φν

−a3

∂ Φν

∂ t
+a4θ +a

”

4C = a5

∂ 2Φν

∂ t2
. (35)

(

1+ τp

∂

∂ t

)(

∇2e+a6

(

1+ τ1

∂

∂ t

)

∇2θ −a8

(

1+ τ1 ∂

∂ t

)

∇2C+a9∇2Φν

)

+a7

(

Ċ+ τηC̈
)

= 0. (36)

a1 =
bχ

ραω∗2
, a2 =

ζc2
0

αω∗2
, a3 =

ω0c2
0

αω∗
,

a4 =
mc2

0χ

γαω∗2
,a

′

4 =
b∗2c2

0χ

β1αω∗2
,

a5 =
ρc2

0χ

α
, a6 =

acρc2
0

β1γ
,

a7 =
Kc2

0

dβ 2
1 CE

, a8 =
bcρc2

0

β 2
1

,

a9 =
b∗2c2

0χ

β1χ
,ζ1 =

γ2T0

ρKω∗
,

ζ2 =
mT0γ

ρCE χ
, ζ3 =

acT0γ

ρCEβ 1
.
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By Helmholtz theorem, the displacement vector written in
the displacement potentials Φ(x,z, t) and Ψ (x,z, t) form as

u =
∂Φ

∂x
+

∂Ψ

∂ z
, w =

∂Φ

∂ z
−

∂Ψ

∂x
,

−→
Ψ = (0,−Ψ ,0)

(37)

∇2Φ =
∂ 2Φ

∂x2
+

∂ 2Φ

∂ z2
, ∇2Ψ =

∂u

∂ z
−

∂w

∂x
,

(38)

(

a11∇2 −β 2 ∂ 2

∂ t2 +Ω 2
)

Φ −
(

g ∂
∂x

− 2Ω ∂
∂ t

)

Ψ −
(

1+ τ1
∂
∂ t

)

θ

+b∗Φν −
(

1+ τ1 ∂
∂ t

)

C = 0

(39)

(

g
∂

∂x
− 2Ω

∂

∂ t

)

Φ +

(

a12∇2 −β 2 ∂ 2

∂ t2
+Ω 2

)

Ψ = 0

(40)

(

1+ τΘ
∂
∂ t

)

∇2θ =
(

n1 + τq
∂
∂ t

)(

θ̇ + ζ2Φ̇
′

ν + ζ3Ċ

)

+ ζ1

(

n1 + n0τq
∂
∂ t

)

ė

(41)

(

∇2 − a2 − a3
∂

∂ t
− a5

∂ 2

∂ t2

)

Φν −a1∇2Φ+a4θ +a
′

4C = 0

(42)
where

(

1+ τp

∂

∂ t

)(

∇2
(

∇2Φ
)

+a6

(

1+ τ1

∂

∂ t

)

∇2θ −a8

(

1+ τ1 ∂

∂ t

)

∇2C+a9∇2Φν

)

+

(

a7

∂

∂ t
+a7τη

∂ 2

∂ t2

)

C = 0 (43)

The constitutive relations written as

σxx = b0
∂u
∂x

+ b1
∂w
∂ z

− γ
(

1+ τ1
∂
∂ t

)

θ + b∗Φν −
(

1+ τ1 ∂
∂ t

)

C

(44)

σyy = b1∇2Φ−

(

1+ τ1
∂

∂ t

)

θ +b∗Φν −

(

1+ τ1 ∂

∂ t

)

C

(45)

σzz = b0
∂w
∂ z

+ b1
∂u
∂x

−
(

1+ τ1
∂
∂ t

)

θ + b∗Φν −
(

1+ τ1 ∂
∂ t

)

C

(46)

σxz = b2

(

∂u

∂ z
+

∂w

∂x

)

(47)

σzx = b2

(

∂w

∂x
+

∂u

∂ z

)

(48)

σxy =σyz = 0
(49)

where

(b0,b1,b2) =
1

ρc2
0

(λ + 2µ ,λ ,µ), a11 =
λ+2µ

ρc2
0

+RH, a12 =
µ

ρc2
0

.

5 Normal mode analysis

The solution of the considered physical variable
decomposed in terms of normal modes and given in the
following form:

[u,w,e,θ ,Φ,Ψ ,h,E,σi j,Φv,C] (x,z, t) =
[

u∗,w∗
,e∗,θ ∗

,Φ∗
,Ψ ∗

,h∗,E∗
,σ∗

i j,Φ
∗
v ,C

∗
]

(z)e(ωt+iax)

(50)

where, ω and a in the x−direction
u∗(z),w∗(z),e∗(z),θ ∗(z),Φ∗(z),Ψ ∗(z),h∗(z),E∗(z),σ∗

i j(z),

Φ∗
v (z) and C∗(z) are the amplitudes of the field

quantities.
Substituting from equation (50) into equations

(39)-(49) we get:

(

a11D2 −Λ1

)

Φ∗−Λ2Ψ
∗−Λ10θ ∗+ b∗Φ∗

ν −Λ11C∗ = 0
(51)

Λ2Φ∗+
(

a12D2 −Λ3

)

Ψ∗ = 0 (52)

−Λ5

(

D2 −α2
)

Φ∗+
(

D2 −Λ4

)

θ ∗+Λ6Φ∗
ν +Λ8C∗ = 0

(53)

(

D2 −Λ7

)

Φ∗
ν + a1

(

−D2 +α2
)

Φ∗+ a4θ ∗+ a
′

4C
∗ = 0

(54)

(

D4 − 2α2D2 +α4
)

Φ∗+ a6Λ10

(

D2 −α2
)

θ ∗

+
(

Λ9 − a8Λ11D2
)

C∗+ a9

(

D2 −α2
)

Φ∗
ν = 0 (55)

σ∗
xx = iab0u∗+ b1Dw∗−Λ10θ ∗+ b∗Φ∗

ν −Λ11C
∗ (56)

σ∗
yy = b1(D

2 −α2)Φ∗−Λ10θ ∗+ b∗Φ∗
ν −Λ11C∗

(57)

σ∗
zz = b0Dw∗+ iab1u∗−Λ10θ ∗+ b∗Φ∗

ν −Λ11C∗ (58)

σ∗
xz = b2Du∗+ iab2w∗ (59)

σ∗
zx = b2Du∗+ iab2w∗ (60)

σ∗
xy = σ∗

yz = 0 (61)

where
Λ1 = a11a2 +β 2ω2 −Ω 2

,

Λ2 = iag− 2Ωω ,Λ3 = a12a2 +β 2ω2 −Ω 2
,

Λ4 = a2 +
ωω2

ω1

,

Λ5 =
ζ1ωω2

ω1

,
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Fig. 1: Horizontal displacement distribution u with electromagnetic field, rotation and gravity field

Fig. 2: Vertical displacement distribution w with electromagnetic field, rotation and gravity field

Λ6 =
−ζ1ωω2

ω1

,

Λ7 = a2 + a2 + a3ω + a5ω2
,

Λ8 =
−ζ3ωω2

ω1

,

Λ9 =
ωω∗

2

ω∗
1

a7 +Λ11a8a2
,

Λ10 = 1+ τ1ω ,

Λ11 = 1+ τ1ω ,

Λ12 = n1 + n0τqω ,

ω1 = 1+ τΘ ω ,

ω2 = 1+ τqω ,

ω∗
1 = 1+ τPω ,

ω∗
2 = 1+ τηω .

Eliminating Ψ ∗(z), Φ∗(z),C∗(z) and θ ∗(z) in Equations
(51)-(55), we get the differential equation for Φ∗(z):

[D10 −AD8 +BD6 −CD4 +ED2 −L]{Φ∗(z)} = 0. (62)

In a similar manner we arrive at

[D10 −AD8 +BD6 −CD4 +ED2 −L]{Ψ∗(z),θ ∗(z),Φ∗
v (z),C

∗(z) }= 0

(63)
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Fig. 3: The distribution of the temperature θ with electromagnetic field, rotation and gravity field

Fig. 4: The change in fraction field distribution Φv with electromagnetic field, rotation and gravity field

where, A, B, C, E and L to Eq. (63) are given in the
Appendix A.

Equation (62) written in the following form:

(D2−k2
1)(D

2−k2
2)(D

2−k2
3)(D

2−k2
4)(D

2−k2
5){Φ∗(z)}= 0

(64)
where, k2

j are the roots of the characteristic equation of
equation (64), which is bounded as is given by

Φ∗(z) =
5

∑
j=1

R je
−k jz, (65)

Ψ ∗(z) =
5

∑
j=1

H1 jR je
−k jz, (66)

Φ∗
v (z) =

5

∑
j=1

H2 jR je
−k jz, (67)

C∗(z) =
5

∑
j=1

H3 jR je
−k jz, (68)

θ ∗(z) =
5

∑
j=1

H4 jR je
−k jz, (69)
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Fig. 5: Distribution of normal stress component σxx with electromagnetic field, rotation and gravity field

Fig. 6: Distribution of shear stress component σxz with electromagnetic field, rotation and gravity field

u∗(z) =
5

∑
j=1

M1 jR je
−k jz, (70)

w∗(z) =
5

∑
j=1

M2 jR je
−k jz, (71)

σ∗
xx(z) =

5

∑
j=1

M3 jR je
−k jz, (72)

σ∗
yy(z) =

5

∑
j=1

M4 jR je
−k jz, (73)

σ∗
zz(z) =

5

∑
j=1

M5 jR je
−k jz, (74)

σ∗
xz(z) =

5

−∑
j=1

M6 jR je
−k jz, (75)

where,
H1 j, H2 j, H3 j, H4 j, M1 j, M2 j, M3 j, M4 j, M5 j and M6 j in
Eqs. (66)-(75) are given in the Appendix B.
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Fig. 7: Distribution of concentration of diffusion C with electromagnetic field, rotation and gravity field

Fig. 8: Variation of the horizontal displacement u with magnetic field for Green and Lindsay’s (G-L)

5.1 Applications

We consider that the boundary conditions at z = 0 take the
form in order to determine the parameters
R1, R2, R3, R4, and R5, are

θ (x,0, t) = f (x,0, t) = f ∗e(ωt+iax)
,

[σxx + τxx](x,0, t) = [σxz + τxz](x,0, t) = 0,

∂C

∂ z
= 0,

∂Φv

∂ z
= 0 (76)

where, f (x, t) an arbitrary is a function of x, t and f ∗ is a
constant.

Using the expressions of the variables considered into
the above boundary conditions (76), we can obtain the
following equations satisfied by the parameters:

5

∑
j=1

H4 jR j = f ∗ (77)

5

∑
j=1

(M3 j +RHΓ1)R j = 0 (78)
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Fig. 9: Variation of the vertical displacement w with magnetic field for Green and Lindsay’s (G-L)

Fig. 10: Variation of the temperature θ with magnetic field for Green and Lindsay’s (G-L)

5

∑
j=1

M6 jR j = 0 (79)

5

∑
j=1

K jH2 jR j = 0 (80)

5

∑
j=1

K jH3 jR j = 0 (81)

Solving the above system of equations in (77)-(81) using
the inverse of matrix method, we get the parameters
(Ri, j = 1,2...,5).

We obtain the expressions of the displacement
components, force stress, temperature distribution,
volume fraction field and concentration of the diffusion.
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Fig. 11: Variation of fraction field distribution Φv with magnetic field for Green and Lindsay’s (G-L)

Fig. 12: Distribution of normal stress component σxx with magnetic field for Green and Lindsay’s (G-L)

6 Numerical results and discussion

We take the values of parameters for copper material, the
physical data given below (Nowacki [11]):

λ = 7.76× 1010 N.m−2
,µ = 3.86× 1010 Kg.m−1

.S−2
,

CE = 383.1J.Kg−1
.K−1

,K = 386 W.m−1
.K−1

,

αt = 1.78× 10−5K−1
,ρ = 8954 Kg.m−3

, T0 = 293ok,

f ∗ = 1,ω = ω0 + iξ , ω0 = 3.5, ξ =−4.5,

a = 1.2, τq = 0.1, τΘ = 0.08, τ1 = 0.6, τ1 = 0.1,

t = 0.09,x = 0.5,0 ≤ x ≤ 2.5.

For voids parameters are
b = 1.13849 × 106, ω0 = 0.078 × 10−3, κ =
1.756 × 10−15,α = 3.688 × 10−5, m = 2 × 106, ζ =
1.475× 1010.

For diffusion parameters are

bc = 0.9 × 106, αc = 1.2 × 104, τP = 0.3, τη =

0.09, αc = 1.98,×10−4, d = 0.85,×10−8,b∗2 =

2.9,×1012.

A Matlab program is used to make the calculations.

Fig. 1 shows the variation of the horizontal
displacement distribution with respect to the axial z for
different theories of the classical (CT), Lord Shulman
(LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL)
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Fig. 13: Distribution of shear stress component σxz with magnetic field for Green and Lindsay’s (G-L)

Fig. 14: Distribution of concentration of diffusion C with magnetic field for Green and Lindsay’s (G-L)

models. It is observed that the horizontal displacement
distribution u in (CD) greater than in (DPL), while in
(DPL) greater than in (LS), as well as in (LS) greater than
in (GL) in the interval [0,0.4], while in the interval
[0.4,1.6] the horizontal displacement distribution in (GL)
greater than in (LS), while in (LS) greater than in (DPL),
as well as in (DPL) greater than in (CT), as well as it
coincides in the interval [1.6,2.5] with electromagnetic
field, rotation and gravity field. Fig. 2 displays the
variation of the axial displacement distribution w with
respect to the axial z for different theories of the classical
(CT), Lord Shulman (LS), Green Lindsay (GL) and
Dual-Phase-Lag (DPL) models. It is observed that the

vertical displacement distribution in (LS) greater than in
(DPL), while in (DPL) greater than in (CT), as well in
greater than in (CT) in the interval [0,0.7], while in the
interval [0.7,1.8], the vertical displacement distribution in
(CT) greater than in (DPL), while in (DPL) greater than
in (LS), as well in (LS) greater than in (GL), as well it
coincides in the interval [1.8,2.5] with electromagnetic
field, rotation and gravity field. Fig. 3 shows the variation
of the distribution of the temperature θ with respect to the
axial z for different theories of the classical (CT), Lord
Shulman (LS), Green Lindsay (GL) and Dual-Phase-Lag
(DPL) models. It is observed that the distribution of the
temperature in (CT) greater than in (DPL), while in
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Fig. 15: Variations of the horizontal displacement u with rotation for Green and Lindsay’s (G-L)

Fig. 16: Variations of the vertical displacement w with rotation for Green and Lindsay’s (G-L)

(DPL) greater than in (LS), as well in (LS) greater than in
(GL) in the interval [0,0.5], while in the interval [0.5,1.5]
the distribution of the temperature in (LS) greater than in
(GL), while in (GL) greater than in (DPL), as well as in
(DPL) greater than in (CT), as well in the interval
[1.5,2.5] it coincides in the theories (LS) and (GL), while
it coincides in the theories (CT) and (DPL) with
electromagnetic field, rotation, gravity field. Fig. 4shows
the variation of the change in fraction field distribution
Φv with respect to the axial z for different theories of the
classical (CT), Lord Shulman (LS), Green Lindsay (GL)
and Dual-Phase-Lag (DPL) models. It is observed that the
change in fraction field distribution in (GL) greater than

in (LS), while in (LS) greater than in (DPL), as well as in
(DPL) greater than in (CT) in the interval [0,0.4], while in
the interval [0.4,2] the change in fraction field distribution
in (CT) greater than in (DPL), while in (DPL) greater than
in (LS), as well as in (LS) greater than in (GL), as well it
coincides in the interval [2,2.5] with electromagnetic
field, rotation, gravity field. Fig. 5appears the variation of
the distribution of normal stress component with respect
to the axial z for different theories of the classical (CT),
Lord Shulman (LS), Green Lindsay (GL) and
Dual-Phase-Lag (DPL) models. It is observed that the
distribution of stress component in (GL) greater than in
(CT), while in (CT) greater than in (DPL), as well as in
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Fig. 17: Variations of the temperature θ with rotation for Green and Lindsay’s (G-L)

Fig. 18: Variation of fraction field distribution Φv with rotation for Green and Lindsay’s (G-L)

(DPL) greater than in (LS) in the interval [0,0.4], while in
the interval [0.4,2.5] the distribution of stress component
in (GL) greater than in (LS), while in (LS) greater than in
(CT), as well as in (CT) greater than in (DPL).

Fig. 6 displays the variation of the distribution of
tangential stress component σxx with respect to the axial z
for different theories of the classical (CT), Lord Shulman
(LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL)
models. It is observed that the distribution of stress
component in (GL) greater than in (LS), while in (LS)
greater than in (DPL), as well as in (DPL) greater than in

(CT) in the interval [0,0.7], while in the interval [0.7,2.5]
the distribution of stress component in (CT) greater than
in (DPL), while in (DPL) greater than in (LS), as well as
in (LS) greater than in (GL), as well it coincides in the
interval [2,2.5] with electromagnetic field, rotation and
gravity field. Fig. 7shows the variation of the distribution
of concentration of diffusion C with respect to the axial z
for different theories of the classical (CT), Lord Shulman
(LS), Green Lindsay (GL) and Dual-Phase-Lag (DPL)
models. It is observed that the distribution of
concentration of diffusion in (CT) greater than in (DPL),
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Fig. 19: stress component σxx with rotation for Green and Lindsay’s (G-L)

Fig. 20: Variations of stress component σxz with rotation for Green and Lindsay’s (G-L)

while in (DPL) greater than in (LS), as well as in (LS)
greater than in (GL) in the interval [0,0.5], while in the
interval [0.5,2.5], the distribution of concentration of
diffusion in (LS) greater than in (CT), while in (CT)
greater than in (DPL), as well as in (DPL) greater than in
(GL), as well increases with increasing of axial z. Fig.
8illustrates the horizontal displacement u with respect to
z-axis in Green and Lindsay’s theory for different values
of magnetic field H0.

In Fig. 8, an overview shows that the horizontal
displacement always increases with the increase of axial
z, while increases with increasing of magnetic field in the
interval [0,0.8], as well it decreases with increasing of

magnetic field in the interval [0.8,2] and it coincides in
the interval [2,2.5]. The horizontal displacement has an
oscillatory behavior for thermoelastic diffusion and voids
in the interval [0,2]. From Fig. 9, it appears that the
variation of the axial displacement w with respect to
z-axis in Green and Lindsay’s theory for different values
of magnetic field H0. The axial displacement w decreases
with increasing of magnetic field and axial z, while it
coincides in the interval [2,2.5]. Fig. 10 shows that the
variation of the temperature θ with respect to z-axis in
Green and Lindsay’s theory for different values of
magnetic field H0. The temperature increases with the
decreasing of magnetic field, while it decreases with the
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Fig. 21: Variations of concentration of diffusion C with rotation for Green and Lindsay’s (G-L)

increasing of axial z, as well the temperature has an
oscillatory behavior for thermoelastic diffusion and voids
in the whole range of the axial z. Fig. 11shows that the
variation of the fraction field distribution Φv with respect
to z-axis in Green and Lindsay’s theory for different
values of magnetic field H0. The fraction field distribution
has an oscillatory behavior for thermoelastic diffusion
and voids in the interval [0,1.5], while it coincides in the
interval [1.5,2.5]. Fig. 12displays that the variation of the
normal stress component σxx with respect to z-axis in
Green and Lindsay’s theory for different values of
magnetic field H0. The stress normal component increases
with increasing of magnetic field, while it has an
oscillatory behavior for thermoelastic diffusion and voids
in the whole range of the axial z. Fig. 13shows that the
variation of the tangential stress component with respect
to z-axis in Green and Lindsay’s theory for different
values of magnetic field H0. The tangential stress
component coincides in the interval [1.5,2.5], while it has
an oscillatory behavior for thermoelastic diffusion and
voids in the interval [0,1.5]. Fig. 14clears that the
variation of the concentration of diffusion C with respect
to z-axis in Green and Lindsay’s theory for different
values of magnetic field H0. The concentration of
diffusion has an oscillatory behavior for thermoelastic
diffusion and voids in the interval [0,1.5] and it coincides
in the interval [1.5,2.5].

Fig. 15 illustrates the horizontal displacement u with
respect to z-axis in Green and Lindsay’s theory for
different values of rotation Ω . In Fig. 15, an overview
shows that the horizontal displacement always increases
with the increase of rotation in the interval [0.2,1.7],
while it coincides in the interval [1.7,2.5]. The horizontal
displacement has an oscillatory behavior for
thermoelastic diffusion and voids in the interval [0,1.7].

Fig. 16 shows that the variation of the axial displacement
w with respect to z-axis in Green and Lindsay’s theory for
different values of rotation Ω . The axial displacement
decreases with increasing of rotation in the interval
[0,1.3] and axial z, while it coincides in the interval
[2,2.5]. Fig. 17shows that the variation of the temperature
θ with respect to z-axis in Green and Lindsay’s theory for
different values of rotation Ω . The temperature increases
with the decreasing of rotation, while the temperature has
an oscillatory behavior for thermoelastic diffusion and
voids in the whole range of the axial z. Fig. 18shows that
the variation of the fraction field distribution Φv with
respect to z-axis in Green and Lindsay’s theory for
different values of rotation Ω . The fraction field
distribution has an oscillatory behavior for thermoelastic
diffusion and voids in the interval [0,1.7], while it
coincides in the interval [1.7,2.5]. Fig. 19 shows that the
variation of the normal stress component σxx with respect
to z-axis in Green and Lindsay’s theory for different
values of rotation Ω . The stress normal component
decreases with increasing of rotation, while it has an
oscillatory behavior for thermoelastic diffusion and voids
in the whole range of the axial . Fig. 20 shows that the
variation of the tangential stress component with respect
to z-axis in Green and Lindsay’s theory for different
values of rotation Ω . The tangential stress increases with
increasing of rotation in the interval [0,0.5], while it
coincides in the interval [1.8,2.5], as well as it decreases
in the interval and tangential stress component has an
oscillatory behavior for thermoelastic diffusion and voids
in the interval [0.5,1.8]. Fig. 21 shows that the variation
of the concentration of diffusion C with respect to z-axis
in Green and Lindsay’s theory for different values of
rotation Ω . The concentration of diffusion has an
oscillatory behavior for thermoelastic diffusion and voids
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in the interval [0,2] and it coincides in the interval [2,2.5].

7 Conclusion

In this paper, we observed from graphical results that,
effect in electromagnetic field, gravity field and rotation
with diffusion and voids generalized thermoelastic
half-space in the context of Classical and Dynamical
(CT), Green and Lindsay’s (G-L), Lord-Shulman (L-S)
and the dual-phase-lag (DPL) theories play important role
in thermoelasticity field.

The analysis of graphs permits us some concluding
remarks:

1. The medium deforms due to the application of
rotation with magnetic field which indicates the
magnetothermoelastic coupled effects with vacuum on
physical quantities.

2. The rotation, electric field, magnetic field and
gravity field play a significant role in the distribution of
all the physical quantities. The physical quantities vary
(increase or decrease) as rotation, gravity field increase.
Presence of rotation and gravity field restrict the
quantities to oscillate.

3. The displacement components and stress
components show an oscillatory nature with the
decreasing of rotation, magnetic field and gravity field.
These trends obey elastic and thermoelastic properties of
a solid under investigation.

4. The temperature has a significant effect on the
resulting quantities. The theory of Green and Lindsay of
magneto-thermoelasticity describes the behavior of the
particles of elastic body more real than the theory of
classical thermoelasticity.

5. The result provides a motivation to investigate
conducting thermoelectric materials as a new class of
applicable thermoelectric solids. The results presented in
this paper should prove useful for researchers in material
science, designers of new materials, physicists as well as
for those working on the development of
magneto-thermoelasticity and in practical situations as in
geophysics, optics, acoustics, geomagnetic and oil
prospecting etc. The used methods in the present article is
applicable to a wide range of problems in
thermodynamics and thermoelasticity.

Applications: The results obtained in this paper
indicate to measure sonic vibrations on urban buildings
due to aircraft traffic, in building stone quarrying or in
mining operations for an estimation of vibration
influences on the mine or other nearby residential
buildings.
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8 Appendices

8.1 Appendix A

A∗ = Λ11 (−Λ3 −Λ4a12 −Λ7a12 +Λ1a8a12 +Λ3a8a11 +Λ7Λ11a8a11a12 + a1a9a12 +Λ5Λ10a6a12 − a1a8a12b∗

+Λ5Λ10a8a12 +Λ4a8a11a12 − 2a2a12

)

+ a12

(

Λ9a11 + a′′4b∗−Λ8Λ10 − a9a11a′′4 −Λ8Λ10a6a11

)

B∗ = Λ11

(

Λ3 [Λ4 +Λ7 −a1a9]−Λ6a4a12 −Λ1Λ3a8 −2a2a1a9a12 −Λ6Λ10a1a8a12 −Λ6Λ10a1a6a12 +2Λ3a2 +Λ4Λ7a12

+2Λ7a2a12 −Λ5a4a9a12 −Λ1Λ7a8a12 −Λ3Λ7a8a11 −2Λ4a2a12 −Λ3Λ4a8a11 −Λ 2
2 a8 −Λ5Λ7Λ10a6a12 +a2a12

−Λ3Λ5Λ10a6 −Λ1Λ4a8a12 +Λ4a1a8a12b∗+Λ6a4a8a11a12 −Λ4a1a9a12 −Λ3Λ5Λ10a8 −Λ7Λ5Λ10a8a12 +Λ5a4a8a12b∗a8a12b∗)

+Λ3Λ11a1a8b∗−Λ5Λ10a2a12(2Λ11a6 +a8)−Λ4Λ7a8a11a12 +Λ11a2a1

+Λ10(Λ5a6a12a′′4b∗+Λ8a2a6a11a12 +Λ3Λ8 +Λ6a12a′′4

+Λ7Λ8a12 −Λ5Λ9a12 +2Λ8a2a12 −Λ8a1a9a12 −Λ8a1a6a12b∗

+Λ7Λ8a6a11a12 +Λ5a9a12a′′4 +Λ6a6a11a12a′′4

+Λ1Λ8a6a12 +Λ3Λ8a6a11)+a12(Λ9a1b∗−Λ1Λ9 −Λ8a4b∗+Λ1a9a′′4 −Λ4Λ9a11 −Λ4Λ7Λ9a11a′′4b∗−2a2a′′4b∗

+Λ4a9a11a′′4 +a2a9a11a′′4 +Λ8a4a9a11)−Λ3Λ9a11 +Λ3a9a11a′′4b∗

C∗ = Λ11

(

Λ3

(

Λ1Λ4a8 −2Λ7a2 +2a2a1a9 −Λ4a1a8b∗−a4 −2Λ4a2 +Λ6Λ10a1a6 +Λ5Λ7Λ10a8 +Λ5Λ7Λ10a6 −Λ5a4a8b∗

+2Λ5Λ10a2a6 +Λ6a4 +Λ4a1a9 +Λ4Λ7a8a11

−Λ6a4a8a11 +Λ1Λ7a8 +Λ6Λ10a1a8 −a2a1a8b∗+Λ5a4a9 +Λ5Λ10a2a8)

−2Λ4Λ7a2a12 +Λ 2
2 Λ4a8 −Λ3Λ4Λ7 −Λ7a4a12 +Λ 2

2 Λ6a8 −Λ3Λ4Λ7

−Λ7a4a12 +Λ 2
2 Λ7a8 +2Λ6a2a4a12 +a4a1a9a12

+a4a1a9a12 +Λ1Λ4Λ7a8a12 +Λ5Λ10a4a6a12 +2Λ4Λ11a2a1a9a12

+Λ5Λ7Λ10a2a8a12 +2Λ6Λ10a2a1a6a12 +Λ6Λ10a2a1a8a12

−Λ5a2a4a8a12b∗−Λ1Λ6a4a8a12 −Λ1a2a9a12a′′4 −Λ4a2a1a8a12b∗−Λ4a2a12

+2Λ5a2a4a9a12)+Λ10(−Λ3Λ7Λ8 +Λ3Λ8a1a9

+Λ5Λ9a2a12 −Λ 2
2 Λ8a6 −2Λ3Λ8a2 −Λ1Λ8a2a6a12 −Λ3Λ8a2a6a11

−Λ1Λ7Λ8a6a12 −Λ3Λ8a2a6a11a12 −Λ3Λ6a′′4 −Λ3Λ5a6a′′4b∗

+Λ3Λ8a1a6b∗−Λ1Λ6a6a12a′′4 +2Λ5Λ7Λ11a2a6a12 +Λ6Λ9a1a12

−2Λ6a2a12a′′4 +Λ5Λ7Λ9a12 −2Λ5a2a9a12a′′4 −Λ8a4a12

−Λ3Λ5a9a′′4 −2Λ5a2a6a12a′′4b∗−Λ3Λ7Λ8a6a11

−Λ1Λ3Λ8a6 +Λ3Λ5Λ9 −Λ3Λ6a6a11a′′4 +2Λ8a2a1a6a12b∗+2Λ8a2a1a9a12 −

Λ6a2a6a11a12a′′4 −2Λ5a2a6a12a′′4b∗−Λ3Λ7Λ8a6a11 −Λ1Λ3Λ8a6 +Λ3Λ5Λ9 −Λ3Λ6a6a11a′′4 +2Λ8a2a1a6a12b∗+2Λ8a2a1a9a12 −

Λ6a2a6a11a12a′′4 −2Λ7Λ8Λ10a2a12)+a12(−Λ9a2a1b∗+a4a′′4b∗−Λ4Λ9a1b∗−Λ1Λ8a4a9 +Λ1Λ4Λ9 +2Λ8a4a4b∗−Λ5Λ9a4b∗

−Λ8a4a4a9a11 −Λ8a2a9a11a′′4 +Λ4Λ7Λ9a11 +2Λ4a2a′′4b∗

−Λ6Λ9a4a11 −Λ1Λ4a9a′′4 +Λ1Λ7Λ9)+Λ3(Λ8a4b∗−Λ1Λ9a′′4 +Λ4a′′4b∗

−a2a9a11a′′4 −Λ9a1b∗+2a2a′′4b∗−Λ8a4a9a11 +Λ7Λ9a11 −Λ4a9a11a′′4 +Λ1Λ9 +Λ4Λ9a11)+Λ 2
2 (−a9a′′4 +Λ9)
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E∗ = Λ11(Λ3Λ4a2a1a8b∗−Λ3a4a1a9 −Λ6a4a4a12 +Λ3Λ4Λ11a4 +Λ3Λ5a2a4a8b∗+Λ3Λ7a4

−Λ 2
2 Λ4Λ7a8 −Λ6Λ10a4a1a6a12 +Λ1Λ3Λ9a4a8

+Λ5Λ10a2a6a12a′′4b∗+2Λ3Λ5Λ10a2a6a′′4b∗−2Λ3Λ8Λ10a2a1a6b∗−Λ5a4a4a9a12 −Λ1Λ3Λ4Λ7Λ8 −Λ3Λ5Λ7Λ10a2(a8 −a6)

−Λ5Λ7Λ10a2a6a12 −Λ3Λ5Λ10a2a6 +Λ 2
2 Λ6a4a8 +Λ4Λ7a2a12 −2Λ3Λ6a2a4 −2Λ3Λ4a2a1a9 −2Λ3Λ6Λ10a2a1a6 −Λ3Λ6Λ10a2a1a8

−2Λ3Λ5Λ11a2a4a9 +2Λ3Λ4Λ7Λ11a2 −Λ4a2a1a9a12)+Λ10(Λ6a2a12a′′4 +Λ3Λ8a4

+Λ 2
2 Λ8a2a6 −Λ3Λ5Λ7Λ9 −Λ3Λ6Λ9a1 +Λ1Λ3Λ6a6a′′4

+2Λ3Λ6a2a′′4 +Λ 2
2 Λ6a6a′′4 +2Λ3Λ5a2a9a′′4 +Λ1Λ7Λ8a2a6a12

+Λ3Λ7Λ8a2a6a11 +2Λ3Λ7Λ8a2 +Λ1Λ6a2a6a12a′′4 +Λ3Λ6a2a6a11a′′4

−Λ8a4a1a6a12b∗+Λ1Λ3Λ8a2a6 +Λ 2
2 Λ7Λ8a6 −Λ3Λ5Λ9a2

−Λ6Λ9a2a1a12 −2Λ3Λ8a2a1a9a12 +Λ5a4a9a12a′′4 +Λ1Λ3Λ7Λ8Λ10a6

+Λ7Λ8a4a12 −Λ5Λ7Λ9a2a12)+Λ3(−Λ1Λ4Λ9 −Λ1Λ7Λ9 −2Λ8a2a4b∗−2Λ4a2a′′4b∗+Λ9a2a1b∗

+Λ1a2a9a′′4 −Λ4Λ7Λ9a11 +Λ4Λ9a1b∗

+Λ1Λ8a4a9 +Λ6Λ9a4a11 +Λ4a2a9a11a′′4 −a4a′′4b∗+Λ1Λ4a9a′′4 +Λ5Λ9a4b∗

+Λ8a2a4a9a11)+a12(−Λ1Λ4Λ7Λ9 +Λ1Λ6Λ9a4 −Λ8a2a4b∗

−Λ4a2a′′4b∗+Λ4Λ9a2a1b∗+Λ5Λ9a2a4b∗+Λ1Λ8a2a4a9

+Λ1Λ4a2a9a′′4)+Λ 2
2 (Λ4a9a′′4 +Λ8a4a9 +a2a9a′′4 −Λ4Λ9 −Λ7Λ9)

L∗ = Λ3(Λ10(Λ6Λ9a2a1 +Λ8a4a1a6b∗−Λ1Λ7Λ8a2a6 +Λ6Λ11a4a1a6 +Λ5Λ7Λ9a2

−Λ6a4a′′4 +Λ8a4a1a9 −Λ1Λ6a2a6a′′4 −Λ5a4a6a′′4b∗

+Λ5Λ7Λ11a2a6 −Λ5a4a9a′′4)+Λ11a4(Λ5a4a9 −Λ4Λ7 +Λ6a4 +Λ4a1a9)+Λ8a2a4b∗

+Λ4a4a′′4b∗−Λ1Λ4a2a9a′′4 −Λ7Λ8Λ10a4

−Λ5Λ9a2a4b∗−Λ1Λ8a2a4a9 +Λ1Λ4Λ7Λ9 −Λ1Λ6Λ9a4 −Λ4Λ9a2a1b∗)+Λ 2
2 (−Λ6Λ9a4 +Λ4Λ7Λ9 −Λ8a2a4a9 −Λ6Λ10a2a6a′′4

−Λ7Λ8Λ10a2a6 −Λ4a2a9a′′4)

F = Λ11a12(1−a8a11), A =
A∗

F
, B =

B∗

F
, C =

C∗

F
, E =

E∗

F
, L =

L∗

F

8.2 Appendix B

A1 = Γ4Γ2 −Λ5Λ10Γ1, A2 = Γ5a6Λ10 −a4Γ7, B1 = b∗Γ2 +Λ6Λ10, B2 = Γ1 (Γ3a6Λ10 −a4a9) ,

C1 = Λ8Λ10 −Λ11Γ2, C2 = a′′4a6Λ10Γ1 −a4Γ6, D =−Λ2Γ2, Γ1 = k2
j −a2

, Γ2 = k2
j −Λ4,

Γ3 = k2
j −Λ7, Γ4 = a11k2

j −Λ1, Γ5 =−a1(k
2
j −a2), Γ6 = Λ9 −k2

j a8Λ11, Γ7 = k2
j (k

2
j −2a2)+a4

,

H1 j =
Λ2

Λ3 −a12k2
j

, H2 j =
A1C2 −A2C1 +DC2H1 j

B2C1 −B1C2
, H3 j =

A1B2 −A2B1 +DB2H1 j

B1C2 −B2C1
, H4 j =−

Γ7 +a9Γ1H2 j +Γ6H2 j

a6Λ10Γ1
,

M1 j = ia−k jH1 j, M2 j = k j + iaH1 j, M3 j = iab0M1 j +b1k jM2 j −Λ10H4 j −
P

γT0
+b∗H2 j −Λ11H3 j,

M4 j = b1Γ1 −Λ10H4 j −
P

γT0
+b∗H2 j −Λ11H3 j, M5 j = iab1M1 j +b0k jM2 j −Λ10H4 j −

P

γT0
+b∗H2 j −Λ11H3 j,

M6 j = (b2 +b3)k jM1 j + iaM2 j(b2 −b3).
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