
Appl. Math. Inf. Sci. 13, No. 4, 539-544 (2019) 539

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/130404

Conformable Decomposition for Analytical Solutions of

a Time-Fractional One-Factor Markovian Model for Bond

Pricing

S. O. Edeki 1,∗, I. Adinya2, G. O. Akinlabi 1 and O. P. Ogundile1

1Department of Mathematics, Covenant University, Ota, Nigeria
2Department of Mathematics, University of Ibadan, Nigeria

Received: 3 Oct. 2018, Revised: 16 Feb. 2019, Accepted: 23 May 2019

Published online: 1 Jul. 2019

Abstract: In financial and option pricing setting, one-factor model denotes the notion that there exists one Wiener process in the

definition of the short-rate process indicating one source of randomness. In this paper, approximate-analytical solution of a time-

fractional one-factor Markovian model for bond pricing is considered using the approach of conformable decomposition. The method

is a modified version of Adomian decomposition coupled with fractional derivative defined in conformable sense. Illustrative examples

are presented in order to clarify the effectiveness of the proposed solution method, and the solutions are presented graphically based

on some financial parameters at different values of the time-fractional order. This approach can be extended to multi-factor models

formulated in terms of stochastic dynamics.
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1 Introduction

In any financial setting, interest rate implies a certain rate
(amount) that is charged upon the use of financial item,
mainly money [1]. In financial market, interest rates are
non-tradable assets but are derived from the prices of
tradable assets such as bonds and swaps. An Interest Rate
Model (IRM) describes the evolution of the interest rates
in relation to their dependency at maturity known as Term
Structure of Interest Rates (TSIR) [2, 3]. Meanwhile,
bond prices are popularly modeled using short-rate
models [1, 4]. It is basically assumed that the short rate, ξ
is governed by the general stochastic differential equation
(SDE):

dξ = µ (ξ , t)dt +σ (ξ , t)dW (1)

where µ (ξ , t) , σ (ξ , t) , and W =W (t) are trend process,
random fluctuation determinant function, and Wiener
process respectively. Equation (1) yields Markovian
models if µ (ξ , t) = µ (ξ ) and σ (ξ , t) = σ (ξ ); meaning
that µ and σ are strictly functions of variable ξ (not
depending on t at all). We speak of one-factor models or
multi-factor models if ξ = X in (1) is a scalar or a vector

respectively [5]. This work considers one-factor model
(denoting the existence of one Wiener process-for one
source of randomness).
The choice of the volatility function with respect to
(w.r.t.) correctness has been a topic of concern. Chen,
Karolyi, Longstaff, and Sanders proposed a general Short
Rate Model (SRM) defined in terms of single stochastic
dynamics of the form:

dξ = (β1 +β2ξ )dt +σξ φdW (2)

known as CKLS model; where β1, β2, φ are constants,
and W = W (t) is a Wiener process [6]. In this regard,
related references include those of [7-16]. By considering
only corresponding Markov models, and taking τ = T − t

(for convenient) to denote the remaining time to maturity,
it is therefore claimed that the bond price, P(ξ ,τ) solves
the parabolic partial differential model evolving from (2)
expressed in the form:

{

∂P
∂τ = 1

2
σ2ξ 2φ ∂ 2P

∂ξ 2 +(β1 +β2ξ ) ∂P
∂ξ

− ξ P

P(ξ ,0) = h(ξ )
(3)

for P(ξ ,τ) = P, ξ > 0, τ ∈ (0,T ].
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Solution of PDEs such as (3) can be considered by
semi-analytical, numerical, and approximate methods
[17-20]. Goard [21] considered bond-pricing model w.r.t.
group invariant solutions using classical Lie method
approach. In computing the zero-coupon bonds, Sinkala
et al. [22] applied symmetry analysis for the Vasicek and
Cox-Ingersoll-Roll (CIR) models. Pooe et al. [23]
transformed the one-factor bond pricing model to
one-dimensional heat equation in order to obtain
fundamental solutions of zero-coupon bond models.
Recently, Khalique and Motsepa [24] analysed the
one-factor term structure model; thereafter, they
constructed new group invariant solutions to the
corresponding equation.
In this paper, the extension of (3) to time-fractional order
is considered. This takes the form:

{

∂ α P
∂τα = 1

2
σ2ξ 2φ ∂ 2P

∂ξ 2 +(β1 +β2ξ ) ∂P
∂ξ

− ξ P,

P(ξ ,0) = h(ξ ) , α ∈ (0,1] .
(4)

The fractional derivative in (4) is defined in conformable
sense. For related researches on fractional, integer,
financial models and solution methods, we make
reference to [25-35].
In terms of organization in the remaining parts of the
paper, we have in section 2 a brief note on the basic
notions of conformable differential operators, section 3 is
on the proposed solution method (CADM). In section 4,
the proposed method is applied. Thereafter, concluding
remark is presented in section 5.

2 Basic Notions of Conformable Differential

Operators

For a function ψ : [0,∞)→ R, the conformable derivative
of ψ of order α ∈ [0,∞) is defined as:

Cα (ψ)(t) = lim
ε→0

(

ψ
(

t + εt1−α
)

−ψ (t)

ε

)

, ∀t ≥ 0. (5)

Reference is made to [25-28, 31] for details regarding
conformable differential operators.

2.1 Properties of Conformable Differential

Operators CDOs

Suppose ψ = ψ (t), ψ1 = ψ1 (t) and ψ2 = ψ2 (t) are α −
differentiable functions at t > 0, then the following holds:

(C1):Cα (λ1ψ1 ±λ2ψ2) =

{

λ1Cα (ψ1)
±λ2Cα (ψ2) , λ1,λ2 ∈ R

}

.

(C2):Cα (ψ = λ ) = 0, λ ∈ R.

(C3):Cα (ψ1ψ2) = ψ1Cα (ψ2)+ψ2Cα (ψ1) .

(C4):Cα

(

ψ1

ψ2

)

= ψ2Cα (ψ1)−ψ1Cα (ψ2)

ψ2
2

.

(C5):Cα (tγ) = γtγ−α , ∀γ ∈ R.

(C6):Cα (ψ (t)) = tγ−1ψ ′ (t) , ψ ′ (t) = dψ(·)
dt

.

(C7):Suppose further that ψ (t) is an n-times differentiable
function at t, then:

Cα (ψ (t)) =

{

t [α ]−α ψ([α ]) (t)
α ∈ (n,n+ 1] ,

where [α] denotes the smallest integer such that [α]≥ α .

3 The Conformable Sense of the

Decomposition Method

Let us consider a general nonlinear fractional partial
differential equation (NLFDE) of the form [25-28]:

Lα (ψ (x, t))+R(ψ (x, t))+N (ψ (x, t)) = η (x, t) (6)

where Lα (·) represents a linear operator based on
conformable derivative of order α , with respect to t, such
that α ∈ (n,n+ 1], R is the remaining part of the linear
conformable differential operator, N denotes the
nonlinear operator, while η (x, t) is the associated
non-homogeneous part (source term).
Suppose Lα (·) = Cα (·) is invertible such that L−1

α (·)
exists, then (6) becomes:

Cα (ψ (x, t))+R(ψ (x, t))+N (ψ (x, t)) = η (x, t) . (7)

Hence, by the differential property of the conformable
derivative (C7), we have:

t [α ]−α ψ([α ]) (t)+R(ψ (x, t))+N (ψ (x, t)) = η (x, t) . (8)

... t [α ]−α ∂ [α ]ψ (x, t)

∂ tα
= η (x, t)−

(

R(ψ (x, t))
+N (ψ (x, t))

)

. (9)

The inverse operator is defined as follows:

L−1
α (·) =

t
∫

o

τ1
∫

o

· · ·

τn−1
∫

o

1

τ [α ]−α
(·)dτndτn−1 · · ·dτ1. (10)

So, applying (10) to both sides of (9) gives:

L−1
α

(

t [α ]−α ∂ [α ]ψ (x, t)

∂ tα

)

= L−1
α





η (x, t)

−

(

R(ψ (x, t))
+N (ψ (x, t))

)



 .

⇒ ψ (x, t) =

{

ψ (x,0)+L−1
α (η (x, t))

−L−1
α (R(ψ (x, t))+N (ψ (x, t)))

}

. (11)

For the decomposition of the solution, we write:

ψ (x, t) =
∞

∑
n=0

ψn (x, t) (12)
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while the nonlinear term with the Adomian polynomials
An is defined as:

N (ψ (x, t)) =
∞

∑
n=0

An. (13)

Note that An (the Adomian polynomials) is given as:

An =
1

n!

∂ n

∂ςn

[

N

(

n

∑
i=0

ς ihi

)]

ς=0

. (14)

Thus, using (12-14) in (11) gives:

∞

∑
n=0

ψn (x, t) =























ψ (x,0)+L−1
t {η (x, t)}

−L−1
t























R

(

∞

∑
n=0

ψn (x, t)

)

+N

(

∞

∑
n=0

An

)























.
(15)

Hence, in recursive relation, we have:

{

ψ0 = ψ (x,0)+L−1
t {η (x, t)}

ψn+1 =−L−1
t {(R(ψn)+An)} ,n ≥ 0.

(16)

The solution, ψ (x, t) is therefore confirmed as:

ψ (x, t) = lim
n→∞

∞

∑
n=0

ψn (17)

4 Applications and Illustrative Examples

Here, the CADM as proposed above is applied to a Time-
Fractional One-Factor Markovian Model (TF1FMM) for
bond pricing as follows [3]:

{

∂ α P
∂τα = 1

2
σ2ξ 2φ ∂ 2P

∂ξ 2 +(β1 +β2ξ ) ∂P
∂ξ

− ξ P,

P(ξ ,0) = 1, α ∈ (0,1] .
(18)

Procedure: Let Dα
t P(·) =Cα P(·) be applied to (18). Thus,

Cα P(ξ ,τ) =
1

2
σ2ξ 2φ ∂ 2P

∂ξ 2
+(β1 +β2ξ )

∂P

∂ξ
− ξ P. (19)

By the property: (C6), we have:

t1−α ∂P(ξ ,τ)

∂ t
=

1

2
σ2ξ 2φ ∂ 2P

∂ξ 2
+(β1 +β2ξ )

∂P

∂ξ
− ξ P.

(20)

So, operating L−1
α (·) =

t
∫

0

1
τ1−α (·)dτ on both sides of (20)

gives:

P(ξ ,τ) = P(ξ ,0)+L−1
α

(

1
2
σ2ξ 2φ ∂ 2P

∂ξ 2

+(β1 +β2ξ ) ∂P
∂ξ

− ξ P

)

.

(21)

By decomposing P(x, t), we have:

∞

∑
n=0

Pn (ξ ,τ)=























P(ξ ,0)

+L−1
α















1
2
σ2ξ 2φ ∂ 2

∂ξ 2

(

∞

∑
n=0

Pn

)

− ξ
∞

∑
n=0

Pn

+(β1 +β2ξ ) ∂
∂ξ

(

∞

∑
n=0

Pn

)















.

(22)
Thus,










P0 = P(ξ ,0)

Pn+1 = L−1
α

{

1
2

sigma2ξ 2φ ∂ 2

∂ξ 2 Pn − ξ Pn

+(β1 +β2ξ ) ∂
∂ξ

Pn

}

,n ≥ 0.

(23)
As a result, the recursive relation in (23) yields:







































































P0 = P(ξ ,0)

P1 = L−1
α

{

1
2
σ2ξ 2φ ∂ 2P0

∂ξ 2 +(β1 +β2ξ ) ∂P0

∂ξ
− ξ P0

}

P2 = L−1
α

{

1
2
σ2ξ 2φ ∂ 2P1

∂ξ 2 +(β1 +β2ξ ) ∂P1

∂ξ
− ξ P1

}

P3 = L−1
α

{

1
2
σ2ξ 2φ ∂ 2P2

∂ξ 2 +(β1 +β2ξ ) ∂P2

∂ξ
− ξ P2

}

P4 = L−1
α

{

1
2
σ2ξ 2φ ∂ 2P3

∂ξ 2 +(β1 +β2ξ ) ∂P3

∂ξ
− ξ P3

}

...

Pk = L−1
α

{

1
2
σ2ξ 2φ ∂ 2Pk−1

∂ξ 2 +(β1 +β2ξ )
∂Pk−1

∂ξ

−ξ Pk−1

}

, k ∈ N.

(24)
Whence, for: P(ξ ,0) = 1, the following are obtained:











P0 = 1,

P1 =− τα ξ
α ,

P2 =−
(

β2ξ − ξ 2 +β1

)

τ2 α

2!α2 ,

P3 =−
(

β 2
2 ξ − 3β2ξ 2 − ξ σ2 + ξ 3 +β1β2 − 3β1ξ

)

τ3 α

3!α3 ,

P4 =





−β 3
2 ξ + 7β 2

2 ξ 2 + 4ξ σ2β2

−6β2ξ 3 − 4ξ 2σ2 + ξ 4 −β1β 2
2

+10β1β2ξ +β1σ2 − 6β1ξ 2 + 3β 2
1





τ4 α

4!α4 ,

P5 =

















−β 4
2 ξ + 15β 3

2 ξ 2 + 11β 2
2 σ2ξ

−25β 2
2 ξ 3 − 30β2σ2ξ 2 + 10β2ξ 4

−4σ4ξ + 10σ2ξ 3 − ξ 5 −β1β 3
2

+25β1β 2
2 ξ + 4β1β2σ2

−40β1β2ξ 2 − 15β1σ2ξ + 10β1ξ 3

+10β 2
1 β2 − 15β 2

1 ξ

















τ5 α

5!α5
,

P6 =−





























β 5
2 ξ − 31β 4

2 ξ 2 − 26β 3
2 σ2ξ

+90β 3
2 ξ 3 + 146β 2

2 σ2ξ 2

−65β 2
2 ξ 4 + 34β2σ4ξ − 120β2σ2ξ 3

+15β2ξ 5 − 34σ4ξ 2 + 20σ2ξ 4 − ξ 6

+β1β 4
2 − 56β1β 3

2 ξ − 11β1β 2
2 σ2

+180β1β 2
2 ξ 2 + 119β1β2σ2ξ

−110β1β2ξ 3 + 4β1σ4 − 75β1σ2ξ 2

+15β1ξ 4 − 25β 2
1 β 2

2 + 105β 2
1 β2ξ

+15β 2
1 σ2 − 45β 2

1 ξ 2 + 15β 3
1





























τ6 α

6!α6
,
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P7 =−









































β 6
2 ξ − 63β 5

2 ξ 2 − 57β 4
2 σ2ξ + 301β 4

2 ξ 3

+588β 3
2 σ2ξ 2 − 350β 3

2 ξ 4 + 180β 2
2 σ4ξ

−896β 2
2 σ2ξ 3 + 140β 2

2 ξ 5 − 462β2σ4ξ 2

+350β2σ2ξ 4 − 21β2ξ 6 − 34σ6ξ
+154σ4ξ 3 − 35σ2ξ 5 + ξ 7 +β1β 5

2

−119β1β 4
2 ξ − 26β1β 3

2 σ2 + 686β1β 3
2 ξ 2

+602β1β 2
2 σ2ξ − 770β1β 2

2 ξ 3

+34β1β2σ4 − 959β1β2σ2ξ 2 + 245β1β2ξ 4

−147β1σ4ξ + 245β1σ2ξ 3 − 21β1ξ 5

−56β 2
1 β 3

2 + 490β 2
1 β 2

2 ξ + 119β 2
1 β2σ2

−525β 2
1 β2ξ 2 − 210β 2

1 σ2ξ + 105β 2
1 ξ 3

+105β 3
1 β2 − 105β 3

1 ξ









































τ7 α

7!α7
,

P8 =

























































−β 7
2 ξ + 127β 6

2 ξ 2 + 120β 5
2 σ2ξ − 966β 5

2 ξ 3

−2136β 4
2 σ2ξ 2 + 1701β 4

2 ξ 4 − 768β 3
2 σ4ξ

+5376β 3
2 σ2ξ 3 − 1050β 3

2 ξ 5 + 3792β 2
2 σ4ξ 2

−3696β 2
2 σ2ξ 4 + 266β 2

2 ξ 6 + 496β2σ6ξ
−3024β2σ4ξ 3 + 840β2σ2ξ 5 − 28β2ξ 7

−496σ6ξ 2 + 504σ4ξ 4 − 56σ2ξ 6 + ξ 8 −β1β 6
2

+246β1β 5
2 ξ + 57β1β 4

2 σ2 − 2394β1β 4
2 ξ 2

−2490β1β 3
2 σ2ξ + 4396β1β 3

2 ξ 3 − 180β1β 2
2 σ4

+7518β1β 2
2 σ2ξ 2 − 2450β1β 2

2 ξ 4

+2064β1β2σ4ξ − 4564β1β2σ2ξ 3 + 476β1β2ξ 5

+34β1σ6 − 1344β1σ4ξ 2 + 630β1σ2ξ 4 − 28β1ξ 6

+119β 2
1 β 4

2 − 1918β 2
1 β 3

2 ξ − 602β 2
1 β 2

2 σ2

+3850β 2
1 β 2

2 ξ 2 + 2772β 2
1 β2σ2ξ − 1820β 2

1 β2ξ 3

+147β 2
1 σ4 − 1260β 2

1 σ2ξ 2 + 210β 2
1 ξ 4

−490β 3
1 β 2

2 + 1260β 3
1 β2ξ + 210β 3

1 σ2

−420β 3
1 ξ 2 + 105β 4

1

























































κ ,

...

where κ = τ8 α

8!α8 .

Therefore,

P(ξ ,τ) = lim
k→∞

Pk =
∞

∑
n=0

Pk . (25)

Equation (25) is an approximate-analytical solution of
(18) corresponding to the time-fractional one-factor
Markovian model for bond pricing. We consider the
financial data according to [1] w.r.t CIR model with
σ = 0.0894, β1 = 0.00315, and β2 = −0.0555. The plots
of the resulting solutions for α = 1, α = 0.5, and
α = 0.75 are displayed in Fig.1, Fig. 2, and Fig. 3
respectively.

4.1 Numerical Solutions

This subsection deals significantly with the
approximate-analytical solutions obtained via the
proposed method (CADM). In the classical setting when

Fig. 1: Approximate analytical solution graphic for α = 1

Fig. 2: Approximate analytical solution graphic for α = 0.5

Fig. 3: Approximate analytical solution graphic for α = 0.75
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the parameter value, α → 1, Fig. 1 describes the
geometrical behaviour of the approximate solution in line
with the market (financial) data as contained in [1]. In a
similar way, Fig. 2 and Fig.3 describe the geometrical
behaviour of the approximate solution for the time-orders,
α → 0.5 and α → 0.75 respectively. These time fractional
cases (α → 0.5 and α → 0.75) are compared with the
integer case (α → 1) making the result in [1] a particular
case of this present work.

5 Prospectives

In this paper, approximate-analytical solution is proposed
for a Time-Fractional One-Factor Markovian Model
(TF1FMM) for bond pricing whose derivative is defined
in conformable sense. Preference is given to the CIR
model version of TF1FMM with the market parameters
according to [1] in order to clarify the effectiveness of the
proposed solution method. Thereafter, the solutions at
different values of time-fractional order are graphically
displayed. This proposed method of solution can be
extended to multi-factor models formulated in terms of
stochastic dynamics. In addition, the solution obtained,
and the proposed method can effectively serve as
benchmarks for further researches in related areas via
other semi-analytical methods.
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