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Abstract: We consider a decomposition to m-subdomains of the obstacle problem, which is modeled by a variational inequality of first
species, using the auxiliary sequences, and we have proved a alternating relation between the solutions on each subdomain. We also
proved a geommetrical convergence between the nth iteration and the solution of the initial problem, we obtained a result on the error

estimate that contains a logarithmic factor with an extra power of |log(h)|.
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1 Introduction

The Schwarz alternating method of decomposing the
domain has lately been found to be effective means for
solving elliptic partial differential equations on a multi
processing computing system. Pierre-Louis Lions
represented the starting point of an intense research
activity to develop this tool of calculation, see [1]-[3]. In
this paper, we are interested in the Schwarz alternating
method which is used to solve a class of elliptic
variational inequality in the context of overlapping
nonmatching grids, precisely in the error analysis in the
maximum norm of obstacle type problems. The
maximum error analysis of overlapping nonmatching
grids for the obstacle problem which £ is the union of
two subdomains has been investigated in [4]. The same
error analysis of a nonmatching grids for linear and
nonlinear elliptic partial differential equations as well as
elliptic quasi-variational inequalities has been addressed
in [5]-[9]. In this paper we consider a domain £ which is
the union of m overlapping sub-domains where each
sub-domain has its own triangulation.To prove the main
result, we introduce the m continuous and discrete
Schwarz sequences as well as prove a main result
concerning the error estimate of solution in L”-norm,
taking into account the combination of geometrical
convergence and uniform convergence of finite element
approximation.

This paper consists of two parts: In the first, we formulate

the problem of continuous and discrete elliptic variational
inequality we show the monotonicity and stability of
discrete solution, and define the Schwarz algorithm for m
subdomains with overlapping nonmatching grids. In the
second part, we establish m auxiliary Schwarz sequences,
and prove the main result of this work.

2 The generalized Schwarz alternating
method

2.1 Elliptic obstacle problem

Let Q be a convex domain in R? with suffciently smooth
boundary 0Q.
We consider the bilinear form

a(u,v) = /Q(Vu.Vv)dx, (D
the linear form
(r) = [ vy, @

the right hande-side

fel”(Q), ©)
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the obstacle

Y eW>(Q) suchthat ¥>0 on 0Q, (4)

and the nonempty convex set

Kg:{veHl(.Q):v:g ondQv<%in Q}, (5

where g is a regular function defined on 0Q.

We consider the obstacle problem: find u € K, such that

a(u,y—u)> (f,v—u), WeK,, (6)

Let V), be the space of finite elements consisting of
continuous piecewise linear functions. The discrete
counterpart of (6) consists of finding u;, € K, such that

Vv € Ky, (7

a(un,v—up) = (f,v—up),

where

Kgy={vev,:v=mg ondQv<n¥ inQ}, (8

T, is an interpolation operator on d€2, and ry, is the usual
finite element restriction operator on £2. The lemma below
establishes a monotonicity property of the solution of (6)
with respect to the obstacle and the boundary condition.

SO

v=20 (15)

Then,
u>i

(16)

which completes the proof.
The proof for the discrete case is similar.

Proposition 2.2Under the notations and conditions of the
preceding lemma, we have

=l < ¥ = Pllim(o) + 18 = &lli=(a0). (17)
Proof.Setting

¢ <y —¥l=)+ g —&l=0) (18)

we have
L e e e S Vo LV 4 oo

(19)
SY Y= Vl=) t lg = &ll=00)

Hence,

V<y+o (20)

On the other hand, we have

§<g+tg—8<g+lg—8<é+tlg—8&li~00)

(21)
Lemma 2.1Let (¥, g);(¥,8) be a pair of data, and u = <g+lg—&ll=00) + V=Vl
o(¥,g):ii = 6(¥,8) the corresponding solutions of (6).
IfVY>Yandg > g then o(W,g) > o(¥,3). $0 .
e | | §<E+9 @2)
Prooﬁlet v = min(0,u — @). In the region where v is Now, making use of LemmaZ2.1, we obtain
negative (v < 0),we have
< =o(y,g 2
W< i<y < ©) o(y.g) <o(W+9.8+9)=0(¥,8)+¢  (23)
which means that the obstacle is inactive for u. or ~
Thus, for v, we have o(y,g)—o(§,8) < ¢ (24)
B Similarly, interchanging the roles of the couples (y, g) and
au,v) = (f.v) (10) (7, &), we obtain
i+v<y (1n o(y,g)—o(y.g)<¢ (25)
SO The proof for the discrete case is similar.
a(d,v) = (f,v) (12)  Remark 2.3if w = , then (17) becomes
Subtracting (10) and (12) from each other, we obtain - -
g (10)and (12) i@ < g~ Elioay Q)
a(@i—u,v) >0 (13)
Theorem 2.4[10] Under conditions (3) and (4), there
but, exists a constant C independent of h such that
a(vyv)=a(u—1ii,v) = —a(i—u,v) <0 (14) llu—upl =) Sch210g|h|2, 27
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2.2 The continious Schwarz sequences

Consider the model obstacle problem: find u € Ky(g = 0)
such that

a(u,v) > f(v—u) VveKy, (28)

We decompose Q2 into m overlapping subdomains such
that

.Q:O.Qi, QNQ;#0, i=1m, j=1lm, i#]
i=1 29

and u satisfies the local regularity condition
u/Q € WHP(Q;); 2< p<oo, (30)

We denote by dQ; the boundary of £;, and I}; = dQ; N
Qj,i # j. The intersection of I} and I}; i # j is assumed
to be empty. Choosing uy = ¥, we define the alternating
Schwarz sequences (") on €; such that «'*! € K solves

a,'(ul'-’“,v—ul’»”rl)

> (fiv—ul™) in

(31
+1;
n+1 u;’ 7 on Ej
wherei=1,m, j=1,m,i# jand
1 if i>]
1117 . .
0 if i<j

2.3 Geometrical convergence

Theorem 2.5The sequences (ul"'), (ud™h),..., (uH");
n > 0 produced by the Schwarz alternating method
converge geometrically to the solution u of the obstacle
problem (28). More precisely, there exist m constants ki,
ky ooy km € (0,1),Vi=1,m—1, j=2,m, i < j such that
foralln>0

lets — 16 1y < KRG 1t =10 o

(32)

thlHLoe

Hu,—u Q) < kf’“k;?Hu—uOHLw(pj)

we consider a function w; € L*(£;) continu in 9\
[inoQ)

such that
Aw; =0 in Q,l=1,m
0 on IQ\I;
wp =
1 on I
and

ke = sup{ws(x)\x € 02, N Q2,1 # s} € (0,1) (33)

Proof.From the principle of the maximum

lot; — 1 oy < Nlti =1 o,

and

o =y < g =l < Iwiny = wis

< |lwiuj —wirfllz=(a))
< |lwinej — wirdfl| z=(ry,)
< Awill = () lj — Wil =15

< Awill 2= lwjej — wjadj |l =1,
< Awill = () 1w juti = wjudi || =1,
< will =y lw i — wisdf || = ()
< Awill 2= () 1w i = wjuei | =1z

< Awill 2= ) 1wl () i — 6 | =13

using (33), so

n+l||L

[lui —u <kk ||”1_”1HL°°

By induction, we obtain

n+1|| -

lui —u <k”k"||ui—”i1||L"°(17j)

0
< kiKllu = || =)

where u! =u’ on I};, u=00n 92;NIQ
Similarly, we have

@© 2021 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

B. Ikram, S. Samir: Generalized Schwarz Algorithm For A Class...

ot =15 = 2y) < Notg = o

SH“:‘*“i Hm(q,-)
< lwjui — wju*! =)
< [lwjui = w1
< lwjuti = w1z

n+1||LDo

< willze oy llui — u

< HWjHLN(r,-j)HWi“j — Wi ,'HLw(r,-j)

< will = lIwinj — witdj|| =)

< will = lIwinj — witdj || =1,
< Wil o) 1wl ) 1 —

< kikjllui — || =)

il

By induction, we obtain

1
et =5 1))

k,"k”l\uf

I’l

1
ui || = r3)

1
HWj”i*Wj”i ||L°°(F,,)

IN

”k;!H”i—”z! ||L°°(Q)

< "k'!H”i—”z!HLN(F,-j)
§k7+]kn||”i—”}||v°(n,-)
<Kt — S|y
<K' lk"lluj—M,HLw Q)
<K Ju— || =

2.4 The discretization

let 7" be a standard regular and quasi-uniform finite
element triangulation in €;, h; is the meshsizes. We
assume that every two triangulations are mutually
independent on £; N £;, in the sense that a triangle
belonging to one triangulation does not necessarily
belong to the other, i =1,m, j=1,m, i # j

Let Vj,; = Vh,.j(.Q,-) be the space of continuous piecewise

linear functions on, " which vanish on 9.Q N ;.
For w € C(%;) we define

={veV,;:v=0 ond;NdQ;v=m, (wjon I}

where 7, denotes a suitable interpolation operator on I;;
We define the discrete Schwarz sequence:

n+l

it e v ")

solves
(un+1ij)
a;(u zhH v—u:’hﬂ) > (fi,v— ;’hﬂ) Yy € Vhij"h
(34)
n+1

<nvy, vny

3 L”-error analysis

3.1 Definition of m auxilairy sequences

ih .

For a) =uy =rpy; i=1,m, we define the sequences
n+l
wpt! EV( g such that
1 1 1 ;")
ai(a)l.’;;r V= "+) (fi,v— ';f) VVGV j
(35)
”+]<rh llla VSrh'W
To simplify the notation, we take
|-lij = ll-lz=(r3;)
i =lll=() Mij=h 7n,;=m (36)
Lemma 3.1Fori=1m—1, j=2m, i<j
1 1
[ AR PR leu —op; +ZHM — o)
(37
- | n+1 n+1
[}t —ul |y < ZHM - fhl\ﬁZIIu — aplli
Proof.By induction

for n = 0, using the discrete version of Remark 2.3, we
get

o I I 1
llu; —wiplli < [lu; — @li + || @, — g, |li

< luf *wh||i+|7fh”?*”h”?'h|ij
00
< luj — ol + |t — wjylij
I | 00
< uy — @y lli + llu; — il
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uj — iyl < lluej — @}yl + |0fy, —
< luf — @yl + [t — maey i
< ||“;1‘ - w}h”j + [uf — ) ji
<oty — @1+ e} — i

So

I
1
g —ug i < Y [Juf —
p=1

1
et —wjill; < Y Nl —
p=0

< ot — gyl + lluj — e

Jr||”j*“jh||j

Al

0
oplli+ Y [lu? — o ;
p=0

1
o llj+ X uf — of
p=1

For n = 1, using the discrete version of Remark 2.3:

lee? — i < ] —

i+ ||, — uj

nlli

< luf — @i + |mhe; — Ty ij

< luf — @i+ uf — ujyij

< Juf — @i+ [luf — ujy

< |Jui — @flli+ luj — @}yl

+ [lotf — @i+ (1) —
165 — iyl < [l — @3yl + |0F, — w3l

< | — 3|+ e} — 7y i

< w5 — @iy llij+ uf — ug i

< juf — 0,1+ N7 — uiyl

< || — @Ryl + lluf — @l

+ [lutj — @yl + |} — gyl

JF“?'*“(J)'th

So

i

2
uf — ulli <Y |luf —
p=1

1
o+ Y lluf — o
p=0

2 2
2 2
luf —wipll; < Y N = @flli+ Y lluf — i
p=0 p=1

We suppose that

n
[ = ll; < ) Ml — oo I+ leu — o
p=0

Then, using the discrete version of Remark 2.3 again:

(|}

Then

[Ju

" —

n+l _
J

Then

H”j

n+1 _

n+1

1 1
Wl | <l —
<t -
<t -

< ! -

< ! -

n
+ Z |u? — @l
p=1

n+1

uy i < ZHM

n+1||j < Hun+1

1 1 1
o i+ oo™ — gy

— Uy
”“H + | oned} — i
@l i+ [ — i
o + [|uf — I

i+ leu — ol

ih”i

n
—ofli+ Yl — o
p=0

o+ Nl —

< Huf}ﬂ n+l||j+|7rhun+l ”h“;l;:]bi
< Hufjm n+l||]+|un+l AP
< Hufjm n+l||]+||un+l P
< Jluj*! *u"“llﬂrrfllu Al

n
+ ) (luf — o,
p=0

n+l||]

leu

thj

n+1
—oflli+ Y lluf — ol
p=l

Lemma3.2v i = 1l,m—1, j = Z,—m, i < j.Then there
exists a constantc independent of h and n such that

e ™t =y e < 2(n+ 1)Ch2[log b

(38)
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n+l n+1H]

! (2n+ 3)Ch?|loghl?

[Ju

Proof.By induction
for n = 0, using Theorm 2.4

leed — weiylli < Nt — @0 i+ | @3y — I
< ot — eogylli+ [l — 1
< ch*log|h|* + ch*|logh|*
< 2ch?|logh|?

leej = gl < N = @yl + Nl —

< [lu} = @1+ lluf — wey I
< ch®[logh|? + 2ch*log|h|?

< 3ch?|logh|?

Now we suppose that

[} =% [|; < (2n+ 1)Ch?[logh|?
||uf’+' rz+lHl < HM”H n+l|| + erzﬂ rz+lHl
e A TR
< ch?|log |> + (2n+1)ch?|logh)?
< 2(n+1)ch?*|logh|?
ot =ty < Ml — e+ el =l

< HMTL] n+l||]+||un+l
< ch?|logh|? +2(n+ 1)ch*|logh|?

< (2n+3)ch?|logh|*

n+l||l

3.2 L= error estimate

Theorem 3.3Let h = max(hi,h)), i=1,m—1; j=2,m
and i < j. Then, there exists a constant C independent of
both h and n such that

llupt — i o=y < CH|loghPs M =7j  (39)

Proof.Let us give the proof for M = i. The case M = j is
similar.

For N = i, let k = max(k;,k;)

Using Theorem 2.5, lemma 3.2, we obtain

ez — ey i < oz = a1 —

< k2n|u7u0‘[j+ Hu;Hrl

n+l Hl

n+1Hl
5 0 n+1 n
<Ku—ulij+ Y uf = flli+ Y [luf — ol
p=1 p=0

<K u—uC|;j +2(n+1)Ch? [logh|?

We suppose that

an S hz

we obtain

| —ul i < Ch?|logh|?

4 Conclusion

In this work, we have established an approach of the
alternating Schwarz algorithm for m overlaping
subdomains with nonmatching grids, for the class of
elliptic variational inequality. This type of estimation
which we have obtained relies on the geometrical
convergence and the error estimate between the
continuous and discrete Schwarz iterates. We contend that
this result plays an important role in the study of the
numerical analysis for the class of elliptic variational
inequality in the context overlapping nonmatching grids
using the parallel Schwarz method.
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