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Abstract: The behaviour of a homogeneous and isotropic thermoelastic semi-infinite material is investigated based on the accelerations

of the conductive and thermodynamical temperature. A half-space x > 0 under stress free boundary condition at x = 0 and subjected to

a thermal loading represented by a heavy sidestep function is considered. A one- dimensional system of equations in the framework of

fractional order generalised thermoelasticity theory is considered as well. Laplace transform is used to get the solution in the Laplace

domain. Thermally induced temperature, stress and strain distribution functions are determined in the Laplace domain. The Riemann-

sum approximation method is used to obtain the different inverse field functions numerically. The behaviour of the stress, strain and

the heat conductive temperature with the fractional-order parameter and time are investigated and presented graphically. Comparisons

with the classical two-temperature models are discussed.
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Thermal Loading

Nomenclature:
The following notations will be used throughout the
present work:
ϕh: Conductive temperature in the hyperbolic
two-temperature model
ϕ p: Conductive temperature in the classical
two-temperature model
σh: Principal stress component in the hyperbolic mode
σ p: Principle stress component in the classical model
eh: Cubic dilatation in the hyperbolic two-temperature
model
ep: Cubic dilatation in the classical two-temperature
model
CE : Specific heat at constant strain
co: Longitudinal wave speed
T : Absolute temperature
To: Reference temperature
t: Time
ui: Components of displacement vector
α: Two-temperature parameter.
αT : Coefficient of linear thermal expansion

ε: dimensionless mechanical coupling constant
λ , µ : Lame’s constants
ρ : Mass density
τo Relaxation time
β : Fractional-order parameter
Γ : Gamma function
θ = T −T0: Thermodynamic temperature increment
such that θ = T −To

1 Introduction

In Thermoelasticity the heat conduction in deformable
bodies arises from the conductive and thermodynamical
temperatures [1], [2]. It is noticeable that in case of time
dependent situation when there is no supply of heat the
two-temperatures are the same. Where as in case of time
dependent situation the two temperatures are different.
Some more details of such studies can be found in [3],[4].
Youssef has defined the variance theory and the
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uniqueness of the initial boundary value problem in the
generalized thermoelasticity with two-temperatures in
separate situations [5]-[7]. To remove the paradox of heat
conduction present in the two-temperature
thermoelasticity theory which admits infinite speed of
signals, Youssef enhanced the thermoelasticity theory
based on conductive and thermodynamic temperature by
assuming a hyperbolic form of the two-temperature
relation [8]. The concept of derivative and integral has
been generalized to a non-integer order and multiple
researchers addressed it [9]-[15]. Various physical
processes and models have been implemented through the
application of fractional-order derivatives. Applications
of the fractional-order theory and other contributions have
been published by many researchers [16]- [24] The
fractional-order thermoelasticity becomes more realistic
when it relies on the fractional-order operator because the
presence of the fractional-order derivatives permits the
differential equations of the system to consider the effects
of the intermediate as well as the previous states to
express the present and the next states of the medium.
One of the most famous definitions of fractional-order
was introduced by Riemann-Liouville [14] as follows:

RLD
β
t f (t) =

dn

dtn
[

1

Γ (n−β )

∫ t

0
(t − τ)n−β−1 f (τ)dτ],

n− 1 < β < n

(1)

The second definition was presented in [14] and given by:

CD
β
t f (t) =

1

Γ (n−β )

t
∫

0

(t − τ)n−β−1 dn f (τ)

dτn
dτ

n− 1 < β < n

(2)

These two definitions are the same if f (0) = 0. More
details about the comparison between the two definitions
of the fractional-order time derivative introduced by
Riemann-Liouville and that of Caputo as well as various
definitions and works of fractional- order derivatives were
reported in [22]. Based on the new theory of the
hyperbolic two-temperature generalized thermoelasticity
introduced by Youssef [8] the present work can be
considered as a generalization of the application studied
in [8] and more realistic as the present model contains
fractional- order derivatives in both equations of motion
as well as the heat equation. In the present work we will
use the following equation:

LCD
β
t f (t) = s(β−n)L f n(t), n− 1 < β < n, (3)

as in [21] to investigate the behaviours of a thermoelastic
isotropic and homogeneous half-space subjected to a
thermal loading represented by a heavy side step function
at the end x = 0. In Eq. (3), s is the complex parameter
connected to Laplace transform.

2 One Dimensional Thermoelastic Model

For the present model we presume the following
one-dimensional fractional-order system of equations
which can describe the overall behaviour of a
semi-infinite one-dimensional homogeneous isotropic
material occupying the half- space x ≥ 0 and subjected to
thermal loading at the end x = 0. The three- dimensional
forms of this system are present in Youssef [8]. We
assume that the material is subjected to thermal loading
and stress-free at the end x = 0. All the field functions are
initially set at zero. We also presume that no body force is
applied to the medium. When no inner heat sources and
charges are present, the generalized thermoelastic one
dimensional system of differential fractional-order
equation assumes the following equations:
The conductive heat equation:

K (
∂ 2ϕ(x, t)

∂x2
) =(

∂

∂ t
+ τo

∂ 2

∂ t2
)(ρCE θ (x, t)+

+Toγ(1+ τβ D
β
t )e(x, t))

(4)

Equation of motion:

ρ
∂ 2e(x, t)

∂ t2
=(λ + 2µ)(1+ τβ D

β
t )

∂ 2e(x, t)

∂x2
−

−γ
∂ 2θ (x, t)

∂x2

(5)

and the stress-strain constitutive equations take the forms:

σ(x, t) = (1+ τβ D
β
t )(λ + 2µ)e(x, t)− γθ (x, t) (6)

and

e(x, t) =
∂u(x, t)

∂x
. (7)

Instead of the classical two-temperature relation between
the heat conduction ϕ and the thermodynamical
temperature θ given by:

θ = ϕ −α
∂ 2ϕ

∂x2
(8)

we used the following hyperbolic relation as given in[8]:

∂ 2θ

∂ t2
=

∂ 2ϕ

∂ t2
−α

∂ 2ϕ

∂x2
(9)

3 Dimensionless System of Equations in

Laplace Domain

For converting the previous system of Eqs.(4)-(9) into
dimensionless system we used the set of dimensionless
variables as in [8] and dropping the primes for
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convenience, we get the following non-dimensional
system of equations:

∂ 2ϕ(x, t)

∂x2
=(

∂

∂ t
+ τo

∂ 2

∂ t2
)(θ (x, t)+

+ξ ε1(1+ τβ D
β
t )e(x, t))

(10)

The dimensionless fractional-order differential equation of
strain takes the form:

∂ 2e(x, t)

∂ t2
= (1+ τβ D

β
t )

∂ 2e(x, t)

∂x2
−ω

∂ 2θ (x, t)

∂x2
(11)

The constitutive equations take the following forms:

σ(x, t) = (1+ τβ D
β
t )e(x, t)−ωθ (x, t) (12)

and

e(x, t) =
∂u(x, t)

∂x
(13)

The hyperbolic two-temperature non-dimensional
equation becomes:

∂ 2ϕ

∂ t2
=

∂ 2θ

∂ t2
−α

∂ 2ϕ

∂x2
(14)

Applying the Laplace transform defined by:

L{ f (t)} =

∞
∫

0

e−st f (t)dt (15)

together with Caputo definition (3) to the system of Eqs.
(10)-(14) we get the following none dimensional system
of equations in Laplace domain:

∂ 2ϕ(x,s)

∂x2
= s(1+ sτo)[θ (x,s) + ε1ξ (1+ sβ τβ β )e(x,s)]

(16)

∂ 2e(x,s)

∂x2
=

1

s2(1+ sβ τβ )
[s4e(x,s) +

+ω(s2 ∂ 2ϕ(x,s)

∂x2
−α

∂ 4ϕ(x,s)

∂x4
)]

(17)

σ(x,s) = (1+sβ τβ )e(x,s) −
ω

s2
(s−2ϕ(x,s)−α

∂ 2ϕ(x,s)

∂x2
)

(18)
and the relation between the two types of temperature:

θ (x, ps) = ϕ(x,s)− s−2α
∂ 2ϕ(x,s)

∂x2
) (19)

Combining Eqs. (17) and (18) gives:

∂ 2σ(x,s)

∂x2
= s2e(x,s) (20)

where ε1 =
ε2

s+Ω .
Eqs. (16)-(20) represent the non-dimensionless governing
equations of the present one - dimensional fractional-
order thermoelastic model in the light of generalized
fractional-order thermoelasticity with hyperbolic
two-temperature equation.

4 The Solutions in the Laplace Domain

Eliminating e(x,s) between the Eqs. (16) and (17), we get
the following fourth order non-homogeneous differential
equation;

N ϕ(x,s)−M
∂ 2ϕ(x,s)

∂x2
+

∂ 4ϕ(x,s)

∂x4
= 0, (21)

where

M =
s2
(

α +
(

τβ sβ (sτo + 1)+ 1
)

(ξ ωε1 + 1)+ s L
)

α
(

τβ sβ + 1
)

(sτo + 1)(ξ ωε1 + 1)

N =
s4(sτo + 1)

α
(

τβ sβ + 1
)

(sτo + 1)(ξ ωε1 + 1)
,

where L = τo(α + ξ ωε1 + 1) + 1) The most general
solution of (21) according to the current formulation of
the problem takes the form;

ϕ(x,s) =
2

∑
i=1

Cie
−kix, (22)

where Ci are coefficients depending on s whose values can
be evaluated using the boundary conditions, ±ki are the
roots of the characteristic equations corresponding to Eq.
(21), which is;

N −M k2 + k4 = 0.

After some manipulations to the system of Eqs. (16)- (19)
we get the following general solutions of the physical
quantities of the present model in the domain of Laplace;
The thermodynamical temperature assumes the form:

θ (x,s) =
2

∑
i=1

Ci e−kix(1−
αk2

i

s2
) (23)

The strain and the stress in the domain of Laplace takes
the form:

e(x,s) =
2

∑
i=1

Cie
−kix

ε
(−1+ k2

i(
s−ξ

1+ sτo

+
ω

s2
)) (24)

σ(x,s) =
2

∑
i=1

Cie
−kix[β (−1+

k2
i

s2
)+

−1+ k2
i (

s−ξ

1+sτo
+ ω

s2 )

ε
]

(25)
Eqs. (22) -(25) represent the complete solution of the
system (16)-(20) in the Laplace transform domain.

5 Determination of the Parameters

To define the previous parameters, the following initial
conditions have been provided as well as the medium is
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Fig. 1: Effect of fractional-order parameter β on ϕ , σ and e at t = 0.2, τo = 0.1 (a) hyperbolic conductive temperature;
(b) parabolic conductive temperature; (c) hyperbolic and parabolic conductive temperature; (d) stress in hyperbolic case;
(e) stress in parabolic case; (f) hyperbolic and parabolic stress; (g) strain in hyperbolic case; (h) strain in parabolic case;
(i) hyperbolic and parabolic strain.

set at rest initially and has reference temperature To, so
the initial conditions are given by;

θ (x,0) = 0, σ(x,0) = 0,

∂θ (x,0)/∂ t = 0, ∂σ(x,0)/∂ t = 0,

(26)

we also presume that the medium undergoes the following
boundary conditions at the close end x = 0;

ϕ(0, t) = ϕoH(t), σ(0, t) = 0, (27)

where H(t) is the Heaviside step function and ϕo is the
strength of the thermal loading, while at x = ∞, the
boundary conditions take the form:

ϕ(∞, t) = 0, , σ(∞, t) = 0, 0 < t < ∞, (28)

Applying the Laplace transform to Eqs. (27) and (28) we
obtain the following dimensionless form of the boundary

conditions:

ϕ(0,s) = ϕo/s, σ(0,s) = 0,

θ (∞,s) = 0, σ(∞,s) = 0, (29)

Similarly the dimensionless initial conditions in the
domain of Laplace can be obtained. By applying these
conditions to (22)-(25), the constants Ci, ei can be
obtained as given below:

C1 =
ϕo(β ε + 1)sξ (sτo + 1)

(

s2 − k2
2 ω

)

− k2
2 s2ϕo

(k2
1 − k2

2)
(

ω (β ε + 1) sξ (s τo + 1)+ s2
) ;

C2 =
ϕo(β ε + 1)sξ (sτo + 1)

(

s2 − k2
1 ω

)

− k2
1 s2ϕo

(k2
1 − k2

2)
(

ω (β ε + 1) sξ (s τo + 1)+ s2
) ;

(30)

After substituting with the constants given by Eq. (30)
into Eqs. (22)-(25), we obtain the complete solution in the
Laplace domain of the non-dimensional field functions;
temperature, stress and strain respectively.

c© 2021 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 1, 23-29 (2021) / www.naturalspublishing.com/Journals.asp 27

t=0.20

t=0.25

t=0.30

t=0.35

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

h

(a)

t=0.10

t=0.15

t=0.20

t=0.25

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

p

(b)

h

p

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

ConductiveTemperature

(c)

t=0.20

t=0.25

t=0.30

t=0.35

0.5 1.0 1.5 2.0 2.5 3.0
x

-0.08

-0.06

-0.04

-0.02

h

(d)

t=0.10

t=0.15

t=0.20

t=0.25

0.5 1.0 1.5 2.0 2.5 3.0
x

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

p

(e)

h

p

0.5 1.0 1.5 2.0 2.5 3.0
x

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

Stress

(f)

t=0.20

t=0.25

t=0.30

t=0.35

0.5 1.0 1.5 2.0 2.5 3.0
x

0.05

0.10

0.15

e
h

(g)

t=0.10

t=0.15

t=0.20

t=0.25

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0005

0.0010

0.0015

0.0020

ep

(h)

eh

ep

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0005

0.0010

0.0015

0.0020

0.0025

Strain

(i)

Fig. 2: Effect of time t on ϕ , σ and e at β = 0.5, τo = 0.1
(a) hyperbolic conductive temperature; (b) parabolic conductive temperature; (c) hyperbolic and parabolic conductive temperature; (d)

stress in hyperbolic case; (e) stress in parabolic case; (f) hyperbolic and parabolic stress; (g) strain in hyperbolic case; (h) strain in

parabolic case; (i) hyperbolic and parabolic strain.

6 Numerical Form of the Inversion of the

Laplace Transform

The physical quantities ϕ(x, t), σ(x, t) and e(x, t) can be
obtained by inverted the system of Eqs.(22)-(25) back to
the time domain. Therefore, we use a numerical equation
based on the expansion of Fourier. In this technique any
function f (s) is inverted back to the original function
f (t) in the time domain as given below:

f (t) =
exp(ct)

t1
[
1

2
f (c)+ℜ(

N

∑
1

f (c+
ikπ

t1
exp(

ikπ

t1
)],

0 < t1 < 2t,
(31)

where ℜ is the real part, i is imaginary number unit and
N is a sufficiently large integer representing the number of

terms in the truncated Fourier series chosen such that:

exp(ct)ℜ

[

f (c+
iNπ

t1
)exp(

iNπt

t1
)

]

≤ ε1, (32)

where ε1 is a small positive number that represents the
degree of accuracy required. The parameter c is a positive
free parameter that must be greater than the real part of
all the singularities of f (s) . The optimal choice of c was
obtained according to the criteria described in Honig and
Hirdes [25]. Details about the analysis of the formula (31)
are present in [26].

7 Discussion of The Results

For numerical computations, we used the physical
constants of the Copper material used in [21]. We
investigate the distributions of the field functions; (i.e. ϕ ,
σ and e) for different values of the parameters δ , β and t
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and compare their behaviour with the corresponding
physical quantities ϕc, σ c and ec. The results are
collected in groups of figures; each group presents the
effect of one of the mentioned parameters on the physical
quantities.
Figure (1) illustrates the effects of the fractional-order
parameter β on the field functions. In Fig.1 (a) and (b) we
noticed that both of the hyperbolic ϕh and parabolic
conductive temperature ϕc are inversely proportional to
the variation of the fractional-order parameter β . Figure
1(c) shows the comparison between the two types of the
heat conduction; ϕh and ϕP; where it is noticeable that
the hyperbolic heat conduction ϕh is asymptotically
stable, while the heat conduction in a model with classical
two-temperature ϕP has a local asymptotic stability.
Figures 1 (d), (e) and (f) illustrate the effects of
fractional-order parameter β on the stresses σh and σP.
We noticed that the field functions changes significantly
with the variation of the fractional-order parameter.
Figures 1(d) and 1(e) indicate that the absolute value of
the stress magnitude varies inversely with the variance of
the fractional-order parameter. In Fig. 1(f), it is noticed
that the absolute value of the stress amplitude σh is less
than the stress in the classical two-temperature model σP

and the stress σh attains its equilibrium state before σP.
Figures 1(g), (h) and (i) illustrate the effects of the
fractional-order parameter on the strain. It is noticeable
that the strain in the two forms of heat conduction varies
inversely with the variance of the fractional-order
parameter.
Figures (2) represent the variations of the field function
under the changes of time t. Figure 3(a) and 3(b) shows
inverse proportionality between the two types of heat
conduction with the variance of time t. Figure 2(c) shows
that the hyperbolic heat conduction ϕh is asymptotically
stable while the the heat conduction ϕP has a local
stability. Figures 2(d), 2(e) and 2(f) show the variation of
the stress with the variation of time t. It is noticed that the
stress under the two types of heat conduction resembles
that under the variation of the fractional-order parameter
β . Figures 2(g) and 2(h) illustrate the variation of the
strain with the variation of time t. It is noticeable that the
strain under the two models of two-temperature varies
inversely with the variation of time unlike the variance of
the strain with the variance of the fractional- order
parameter β .
In comparison with the model presented in [8] our model
is more acceptable because [8] involves a sudden drop of
temperature to zero degree in figures (1) and (2) which is
impossible. However, in the present model the
temperature drops to zero degree asymptotically.

8 Conclusion

We noticed that the field function ϕ , σ and e has an
asymptotic stability in the hyperbolic case while they
have local stability in the parabolic two-temperature

model. The field functions in the hyperbolic
two-temperature model attained their equilibrium state
faster than the field function in the parabolic
two-temperature model. Moreover, all field functions
were inversely proportional to the variance of the
fractional-order parameter and attained the equilibrium
state at the same point ≃ 3.0.
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