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Abstract: A study on the parametric form of fuzzy numbers is presented in this paper. The Runge-Kutta Fehlberg method is exploited

to yield the approximate solution with respect to the second type of fuzzy Fredholm integro-differential equations. Both linear and

nonlinear numerical examples are provided in our analysis. The results ascertain the effectiveness and precision of the proposed method.
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1. Introduction

Real-world dynamic systems are subject to all kinds of
uncertainties, such as population growth [1, 2] and [3],
tower-bell oscillation [4], friction of sliding surfaces [5],
contaminant migration in porous media [6], and a human
life cycle [7]. Generally in mathematics, a random
variable or a fuzzy set is used for handling uncertainty. In
the 1960s, the theory of fuzzy sets was introduced by
Zadeh to deal with uncertainty due to imprecision or
vagueness, instead of randomness. Then, studies on fuzzy
numbers and associated arithmetic operations were
conducted by Zadeh [8] and [9], while further
enhancements were proposed by Mizumoto and
Tanaka [10]. The notion of LR fuzzy numbers was
initiated by Dubios and Prade [11], where a computing
mechanism for dealing with fuzzy functions was
provided.

The study of Integro-differential Equation, on the
other hand, has gained growing interest in various
physical, biological and engineering sciences [12, 13]
and [14]. In the last two decades, many researchers have
been into the analytical and numerical methods for the
solution of Integro differential equation. Since then, fuzzy
differential and integral equations have been rigorously

improved from fuzzy control application perspectives. In
modelling uncertainties in dynamical systems, fuzzy
integro-differential equations (FIDE) play an important
role. Indeed, they have been successfully used in various
domains, including engineering, biology, medicine,
physics, and economy. The authors in [15] introduced the
existence and uniqueness of solutions pertaining to FIDE.
The existing results for fuzzy delay integro-differential
equations and general fuzzy volterra-fredholm integral
equations have been researched by Balachandran and
Kanagarajan [16] and [17]. On the other hand, application
of fuzzy integral equations together with control problems
and fuzzy uncertainties have been modelled by
Diamond [18].

In general, except for a few linear and non-linear
systems, it is very difficult to get a analytical solution for
an FIDE. To solve Integro-differential equations, several
numerical methods are available in the literature [19–25]
and [26]. Using the variation iteration technique,
Abbasbandy and Hashemi [27] solved FIDE. In [28], the
numerical solutions for FIDE were provided by analyzing
homotopy. Allahviranloo et al. [29] presented a new
technique to tackle FIDE with generalized
differentiability.

∗ Corresponding author e-mail: kreangkri@mju.ac.th

c© 2021 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/150106


44 P. Hammachukiattikul et al.: RKF Method for Solving Linear and Nonlinear FFIDE

The main contribution of this paper can be summarized as
follows.

i) In this paper, we employ the Rung-Kutta Fehlberg
technique to yield the numerical solution of fuzzy
Fredholm integro-differential equations (FFIDE).

ii) Both linear and nonlinear numerical examples are
provided in our analysis.

iii) Finally, simulation results and table values are given
to show the advantage and errors obtained by Runge-
Kutta Fehlberg method.

2. Problem Formulation and Preliminaries

In this section, the fuzzy number definitions and the
fundamental notions used in fuzzy operations are
presented.

Definition 1. [30, 31] and [32]: A fuzzy subset, u1, is

called a fuzzy number when the universal set on which

ϕu1
is defined is the set of all real numbers, R, and

satisfies the following conditions:

(i) All the β -levels of u1 are not empty for 0 ≤ β ≤ 1;

(ii) all the β -levels of u1 are closed intervals of R;

(iii) supp u1 = x ∈ R : ϕu1
(x)> 0 is bounded.

In addition, Ê denotes the set of all fuzzy numbers.
Kaleva [33] provided an substitute definition for
producing the same Ê. As discussed in [34], this fuzzy
number space can be formulated in the Banach space
B =C[0,1]×C[0,1].

Definition 2. [35]: For arbitrary fuzzy numbers ũ1, ṽ1 ∈
Ê, β ∈ [0,1], the distance (Hausdorff metric) is employed,

i.e.,

D(u1,v1) =
supβ∈[0,1] max{

∣

∣u1(β )− v1(β )
∣

∣ , |u1(β )− v1(β )|}.

It has been highlighted in [36] that (Ê,D) is a complete
metric space, and some well-established properties are as
follows:

D(ũ1 ⊕ w̃1, ṽ1 ⊕ w̃1) = D(ũ1, ṽ1),∀ũ1, ṽ1,w1 ∈ Ê,

D(k⊙ ũ1,k⊙ ṽ1) = |k|D(ũ1, ṽ1), ∀k ∈ R1, ũ1, ṽ1 ∈ Ê,

D(ũ1 ⊕ ṽ1, w̃1 ⊕ ẽ1)≤
D(ũ1, w̃1)+D(ṽ1, ẽ1), ∀ũ1, ṽ1, w̃1, ẽ1 ∈ Ê.

Definition 3. [37]: Suppose g : [a1,a2] → Ê is a fuzzy

function. For arbitrary fixed t0 ∈ R1 and ε̂ > 0, δ̂ > 0,

therefore,

|t − t0|< δ̂ ⇒ D(g(t),g(t0))< ε̂.

Then, g is concluded as continuous.

Definition 4. [35] and [37]: Suppose g : [a1,a2]→ Ê. For

each partition R = {t0, t1, ...., tn} of [a1,a2] and for

arbitrary ζ̂i ∈ [ti−1, ti],1 ≤ i ≤ n, assume

PR =
n

∑
i=1

g(ζ̂i)(ti − ti−1), λ = max
1≤i≤n

{|ti − ti−1|}.

Then, the definite integral of g(t) ∈ [a1,a2] is provided as

follows:
∫ a2

a1

g(t)dt = lim
λ→0

PR,

and its limit exists in metric D.
Given that the fuzzy function g(t) is continuous in metric
D, the definite integral exists [35], and also

(

∫ a2

a1

g(t;β )dt) =

∫ a2

a1

g(t;β )dt,(

∫ a2

a1

g(t;β )dt) =

∫ a2

a1

g(t;β )dt.

Definition 5. [38]: Suppose x1 and y1 ∈ Ê. There exists

z1 ∈ Ê and x1 = y1 + z1, then z1 is known as the

H-difference of x1 and y1, which is represented by x1 ⊖ y1.

In addition, if there exists H-difference ũ1 ⊖ ṽ1 and

w̃1 ⊖ ẽ1, it can be deduced that

D(ũ1 ⊖ ṽ1, w̃1 ⊖ ẽ1) = D(ũ1 ⊕ ẽ1, w̃1 ⊕ ṽ1),
∀8̃u1, ṽ1, w̃1, ẽ1 ∈ Ê.

In this paper, the ”⊖” sign stands always for
H-difference and let us remark that x1 ⊖ y1 6= x1 +(−1)y1.
In this study, the following definition of differentiability
for fuzzy-valued functions introduced in [38] and
investigated in [39] is adopted:

Definition 6. Suppose g : (a1,a2) → Ê and r0 ∈ (a1,a2).
Then, g is strongly generalized H-differentiable at r0, there

exists an element g
′
(r0) ∈ Ê, therefore,

(1) for all h > 0 sufficiently close to 0, there exist g(r0 +
h)⊖ g(r0),
g(r0)⊖ g(r0 − h) and the limits (in the metric D) are:

lim
h→0+

g(r0 + h)⊖ g(r0)

h
= lim

h→0+

g(r0)⊖ g(r0 − h)

h
=

g ′(r0),

(2) for all h < 0 sufficiently close to 0, there exists g(r0)⊖
g(r0 + h),
g(r0 − h)⊖ g(r0) and the limits (in the metric D) are:

lim
h→0+

g(r0)⊖ g(r0 + h)

h
= lim

h→0+

g(r0 − h)⊖ g(r0)

h
=

g ′(r0).

In the special case when g is a fuzzy-valued function, the
consecutive results can be obtained.

Lemma 1. [39]: Suppose g : R1 → Ê is a function, and

denote g(t) = (g(t;β ),g(t;β )), for each β ∈ [0,1]. Then,

(1) if g is differentiable in the first form (1) in Definition

6, then g(t;β ) and g(t;β ) are differentiable functions,

and g
′
(t) = (g

′
(t;β ),g

′
(t;β ))
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(2) if g is differentiable in the second form (2) in Definition

6, then g(t;β ) and g(t;β ) are differentiable functions,

and g
′
(t) = (g

′
(t;β ),g

′
(t;β )).

In [33], we can obtain the key properties of the
gH-derivatives in the first form (1), and some of which
still hold for the next form (2). In [39], we can obtain the
key properties for the next form (2). Note that
fuzzy-valued function g is I-differentiable if it fascinates
the first form (1) in Definition 6, while g is
II-differentiable if it fascinates the second form (2) in
Definition 6.

3. Fuzzy Fredholm Integro-Differential

Equations : Runge-Kutta Fehlberg Method

The Fredholm integro-differential equations are expressed
as follows: [40] and [41]






θ
′
(t) = x(t)+σ

∫ a2

a1

q(t,s)θ (s)ds

θ (t0) = θ0,

(1)

where σ > 0, q is an arbitrary given kernel function over
the square a1 ≤ t,s ≤ a2. Suppose θ denotes the fuzzy
function, x(t) noted as given fuzzy function of t ∈ [a1,a2],

and θ
′

represents a fuzzy derivative (in reference to
Definition 6) of θ ; this equation only possesses a fuzzy
solution. The sufficient conditions for the existing
equation of the second kind has been modelled in [42].

Suppose θ (t) = [θ(t;β ),θ (t;β )] is a fuzzy solution of
equation (1). By Definitions 4 and 6, the equivalent model
is obtained:


















θ
′
(t) = x(t)+σ

∫ a2

a1

q(t,s)θ (s)ds, θ (t0) = θ 0

θ
′

(t) = x(t)+σ

∫ a2

a1

q(t,s)θ (s)ds, θ (t0) = θ 0,

(2)

and it possesses a unique solution (θ ,θ ) ∈ B, which is a
fuzzy function. Specifically, for each s, the pair
[θ (t;β ),θ (t;β )] denotes a fuzzy number, therefore, each
solution of (1) is a solution of model (2). In, reverse
Model (1) and Model (2) are identical.
The parametric form of Model (2) is given by


































θ
′
(t,β ) = x(t,β )+σ

∫ a2

a1

q(t,s)θ (s,β )ds,

θ (t0) = θ0(β )

θ
′

(t,β ) = x(t,β )+σ

∫ a2

a1

q(t,s)θ (s,β )ds,

θ (t0) = θ0(β ),

(3)

for β ∈ [0,1]. Let q(t,s) be continuous in a1 ≤ t ≤ a2. For
fixed t, q(t, s) changes the sign in finite points as ti, where

θi ∈ [a1, t1]. As an example, let q(t, s) be non-negative
over [a1, t1] and negative over [t1, a2]. Then, we have







































θ
′
(t,β ) = x(t,β )+σ

∫ t1

a1

q(t,s)θ (s,β )ds

+σ
∫ a2

t1
q(t,s)θ (s,β )ds, θ (t0) = θ 0(β )

θ
′
(t,β ) = x(t,β )+σ

∫ t1

a1

q(t,s)θ (s,β )ds

+σ
∫ a2

t1
q(t,s)θ (s,β )ds, θ (t0) = θ 0(β ).

(4)

In several cases, yet, the analytical solution for Eq. (3)
cannot be available, and a numerical method has to be
used. In the interval [a1, a2], consider a set of discrete
equally spaced grid points
a1 < t0 < t1 < t2 < ..... < tN = a2 at which two exact
solutions Θ(t,β ) = [Θ(t,β ),Θ(t,β )] are approximated

by θ (t,β ) = [θ (t,β ), θ (t,β )], respectively. The grid
points at which the solutions are computed are

tn = t0 + nh, h = (a2−a1)
N

. The exact and approximate
solutions at tn,0 < n < N are represented by Θn(β ) and
θn(β ), respectively. Based on the RKF method, the

first-order approximation of Θ(t,β ),Θ(t,β ) and

θ (t,β ),θ (t,β ) is achieved as follows:



















θ n+1(β ) = θ n(β )+
6

∑
i=1

wili(tn, [θ (tn)]
β )

θ n+1(β ) = θ n(β )+
6

∑
i=1

wili(tn, [θ (tn)]
β ),

(5)

where wi’s are constants, and

li(tn, [θ (tn)]
β ) = [li(tn, [θ (tn)]

β ), li(tn, [θ (tn)]
β )],

where

li(tn, [θ (tn)]
β ) = h F

(

tn +βih, [θ (tn)]
β +

i−1

∑
j=1

γi jl j(tn, [θ (tn)]
β )
)

,

li(tn, [θ (tn)]
β ) = h G

(

tn +βih, [θ (tn)]
β +

i−1

∑
j=1

γi jl j(tn, [θ (tn)]
β )
)

,
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and

l1(tn, [θ(tn)]
β ) = min

{

h F
[

tn, θ n(β ),θ n(β )
]}

,

l2(tn, [θ(tn)]
β ) = min

{

h F

[

tn +
h

4
, [θ(tn)]

β +
1

4
l1(t, [θ(tn)]

β )

]}

,

l3(tn, [θ(tn)]
β ) = min

{

h F

[

tn +
3h

8
, [θ(tn)]

β +
3

32
l1(t, [θ(tn)]

β )

+
9

32
l2(t, [θ(tn)]

β )

]}

,

l4(tn, [θ(tn)]
β ) = min

{

h F

[

tn +
12h

13
, [θ(tn)]

β +
1932

2197
l1(t, [θ(tn)]

β )

−
7200

2197
l2(t, [θ(tn)]

β )+
7296

2197
l3(t, [θ(tn)]

β )

]}

,

l5(tn, [θ(tn)]
β ) = min

{

h F

[

tn +h, [θ(tn)]
β +

439

216
l1(t, [θ(tn)]

β )

−8l2(t, [θ(tn)]
β ) +

3680

513
l3 1(t, [θ1(tn)]

β )−
845

4104
l41(t, [θ1(tn)]

β )

]}

,

l6(tn, [θ(tn)]
β ) = min

{

h F

[

tn +
h

2
, [θ(tn)]

β −
8

27
l1(t, [θ(tn)]

β )

+2l2(t, [θ(tn)]
β )−

3544

2565
l3(t, [θ(tn)]

β )

+
1859

4104
l4(t, [θ(tn)]

β )−
11

40
l5(t, [θ(tn)]

β )

]}

.

And

l1(tn, [θ (tn)]
β ) = max

{

h G
[

tn, θ n(β ),θ n(β )
]}

,

l2(tn, [θ (tn)]
β ) = max

{

h G

[

tn +
h

4
, [θ (tn)]

β +
1

4
l1(t, [θ (tn)]

β )

]}

,

l3(tn, [θ (tn)]
β ) = max

{

h G

[

tn +
3h

8
, [θ (tn)]

β +
3

32
l1(t, [θ (tn)]

β )

+
9

32
l2(t, [θ (tn)]

β )

]}

,

l4(tn, [θ (tn)]
β ) = max

{

h G

[

tn +
12h

13
, [θ (tn)]

β

+
1932

2197
l1(t, [θ (tn)]

β )−
7200

2197
l2(t, [θ (tn)]

β )

+
7296

2197
l3(t, [θ (tn)]

β )

]}

,

l5(tn, [θ (tn)]
β ) = max

{

h G

[

tn +h, [θ (tn)]
β +

439

216
l1(t, [θ (tn)]

β )

−8l2(t, [θ (tn)]
β )+

3680

513
l31(t, [θ1(tn)]

β )

−
845

4104
l41(t, [θ1(tn)]

β )

]}

,

l6(tn, [θ (tn)]
β ) = max

{

h G

[

tn +
h

2
, [θ (tn)]

β −
8

27
l1(t, [θ (tn)]

β )

+2l2(t, [θ (tn)]
β )−

3544

2565
l3(t, [θ (tn)]

β )

+
1859

4104
l4(t, [θ (tn)]

β )−
11

40
l5(t, [θ (tn)]

β )

]}

.

Define






































































































F [tn, [θ (tn)]
β ]] =

16

135
l1(tn, [θ (tn)]

β )+
6656

12825
l3(tn, [θ (tn)]

β )

+
28561

56430
l4(tn, [θ (tn)]

β )−
9

50
l5(tn, [θ (tn)]

β )

+
2

55
l6(tn, [θ (tn)]

β )

G[tn, [θ (tn)]
β ]] =

16

135
l1(tn, [θ (tn)]

β )+
6656

12825
l3(tn, [θ (tn)]

β )

+
28561

56430
l4(tn, [θ (tn)]

β )−
9

50
l5(tn, [θ (tn)]

β )

+
2

55
l6(tn, [θ (tn)]

β )

From the above equations, we have






































θ n+1(β ) = θn(β )+ F [tn,θ n(β ),θn(β )]

θ n+1(β ) = θn(β )+ G[tn,θ n(β ),θn(β )]

θ 0(β ) = θ0(β )

θ 0(β ) = θ0(β )

(6)

4. Numerical Examples

In this section, in view of the conditions acquired in the previous

section, we present some simulation examples to demonstrate

the adequacy of the proposed methods and the merits of our

approach.

Example 1. Let us consider the following fuzzy

integro-differential equation:














θ ′(t) = [0.96+0.04β ,1.01−0.01β ][et −
t2

2
]+

t2

2

∫ 1

0
sθ (s)ds

θ (0;β ) = [0.96+0.04β ,1.01−0.01β ], 0 ≤ β ≤ 1, 0 ≤ t,s ≤ 1.

The exact solution is given by

Θ(t;β ) = [(0.96+0.04β )et
, (1.01−0.01β )et ].

The approximate solution, by using the Runge-Kutta Fehlberg

method, is given by






















































θ
β
n+1 = θ

β
n [1+h+

h2

2
+

h3

6
+

h4

24
+

h5

120
+

h6

2080
]

θ
β
n+1 = θ

β
n [1+h+

h2

2
+

h3

6
+

h4

24
+

h5

120
+

h6

2080
]

θ
β
0 = θ0

θ
β
0 = θ0.

Table 1 and Fig. 1 depict a variation among the exact and the

estimated solutions at t = 1.
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Fig. 2: At t=0.1 in Ex. 1

Example 2. Consider the following fuzzy integro-differential

equation:














θ ′(t) = [0.5+0.5β ,2−β ][et +(
1−e2

2
)t]+

∫ 1

0
tθ 2(s)ds

θ (0;β ) = [0.5+0.5β ,2−β ], 0 ≤ β ≤ 1, 0 ≤ t,s ≤ 1.

The exact solution is given by

Θ(t;β ) = [(0.5+0.5β )et
, (2−β )et ].

The approximate solution, by using RKF method, is given by























































θ
β
n+1 = θ

β
n [1+h+

h2

2
+

h3

6
+

h4

24
+

h5

120
+

h6

2080
]

θ
β
n+1 = θ

β
n [1+h+

h2

2
+

h3

6
+

h4

24
+

h5

120
+

h6

2080
]

θ
β
0 = θ0

θ
β
0 = θ0.
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Fig. 4: At t=0.1 in Ex. 2

Table 2 and Fig. 3 depict a comparison between the exact and

the approximate solutions at t = 1. In addition, evolution of

curves are represented in Figs. 2 and 4 with t = 0.1,

respectively. From Tables 1 and 2, it can be observed that the

errors obtained by the proposed method are better than those

from Euler and R-K methods of order four.

Remark 1. To the best of the authors knowledge, very few

investigations on solving Fuzzy Fredholm integro-differential

equations using numerical techniques [19, 26] and [32].

Therefore, in this paper, we study the Runge-Kutta Fehlberg

method for solving linear and nonlinear fuzzy Fredholm

integro-differential equations, as summarized in Section 3.
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Table 1: Error analysis in Ex. 1

Exact solution Error in Euler method Error in RK four Error in RK Fehlberg

β Θ(t,β ) Θ(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β )

0 2.609550555 2.745454547 0.1196 0.1258 0.2001e-5 0.2105e-5 0.2192e-7 0.2306e-7

0.1 2.620423683 2.742746365 0.1201 0.1257 0.2009e-5 0.2103e-5 0.2201e-7 0.2304e-7

0.2 2.631296810 2.740028083 0.1206 0.1255 0.2018e-5 0.2101e-5 0.2210e-7 0.2301e-7

0.3 2.642169937 2.737309801 0.1211 0.1254 0.2026e-5 0.2099e-5 0.2219e-7 0.2299e-7

0.4 2.653043065 2.734591519 0.1216 0.1253 0.2034e-5 0.2097e-5 0.2228e-7 0.2297e-7

0.5 2.663916192 2.731873238 0.1220 0.1252 0.2043e-5 0.2095e-5 0.2237e-7 0.2294e-7

0.6 2.674789319 2.729154956 0.1225 0.1250 0.2051e-5 0.2093e-5 0.2247e-7 0.2292e-7

0.7 2.685662447 2.726436674 0.1230 0.1249 0.2059e-5 0.2091e-5 0.2256e-7 0.2290e-7

0.8 2.696535574 2.723718392 0.1235 0.1248 0.2068e-5 0.2088e-5 0.2265e-7 0.2288e-7

0.9 2.707408701 2.72100011 0.1240 0.1247 0.2076e-5 0.2086e-5 0.2274e-7 0.2285e-7

1 2.718281828 2.718281828 0.1245 0.1245 0.2084e-5 0.2084e-5 0.2283e-7 0.2283e-7

Table 2: Error analysis in Ex. 2

Exact solution Error in Euler method Error in RK four Error in RK Fehlberg

β Θ(t,β ) Θ(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β ) θ1(t,β )

0 1.359140914 5.436563657 0.0623 0.2491 0.1042e-5 0.4169e-5 0.1142e-7 0.4566e-7

0.1 1.495055006 5.164735474 0.0685 0.2366 0.1146e-5 0.3960e-5 0.1256e-7 0.4338e-7

0.2 1.630969097 4.892907291 0.0747 0.2242 0.1251e-5 0.3752e-5 0.1370e-7 0.4109e-7

0.3 1.766883188 4.621079108 0.0810 0.2117 0.1355e-5 0.3543e-5 0.1484e-7 0.3881e-7

0.4 1.902797280 4.349250926 0.0872 0.1993 0.1459e-5 0.3335e-5 0.1598e-7 0.3653e-7

0.5 2.038711371 4.077411743 0.0934 0.1868 0.1563e-5 0.3126e-5 0.1712e-7 0.3425e-7

0.6 2.174625463 3.80559456 0.0996 0.1744 0.1667e-5 0.2918e-5 0.1826e-7 0.3196e-7

0.7 2.310539554 3.533766377 0.1059 0.1619 0.1772e-5 0.2710e-5 0.1941e-7 0.2968e-7

0.8 2.446453646 3.261938194 0.1121 0.1494 0.1876e-5 0.2501e-5 0.2055e-7 0.2740e-7

0.9 2.582367737 2.990110011 0.1183 0.1370 0.1980e-5 0.2293e-5 0.2169e-7 0.2511e-7

1 2.718281828 2.718281828 0.1245 0.1245 0.2084e-5 0.2084e-5 0.2283e-7 0.2283e-7
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5. Conclusion

The problem of Runge-Kutta Fehlberg method for solving fuzzy

integro-differential equations has been studied. We have

transformed the original problem to two parametric ODEs,

which are solved by the Runge-Kutta Fehlberg method. Two

numerical examples have been given. The obtain error rates

from the Runge-Kutta Fehlberg method, the Runge-kutta

method of order four, and the Euler method are summarized in

Tables 1 and 2. It can be seen that the Runge-Kutta Fehlberg

method is able to produce lower error rates as compared with

those from the Runge-Kutta method of order four and the Euler

method.

For further work, the solutions of higher-order fuzzy integro-

differential equations will be investigated for solving a variety of

problems.
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